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Abstract

We consider long-run averages of additive functionals on infinite discrete-state Markov
chains, either continuous or discrete in time. Special cases include long-run average costs
or rewards, stationary moments of the components of ergodic multi-dimensional Markov
chains, queueing network performance measures, and many others. By exploiting Foster–
Lyapunov-type criteria involving drift conditions for the finiteness of long-run averages
we determine suitable finite subsets of the state space such that the truncation error is
bounded. Illustrative examples demonstrate the application of this method.
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1. Introduction

We consider infinite Markov chains, either continuous or discrete in time, on a countable
state space S. In continuous time we denote the Markov chain by (Xt )t≥0 and its generator
matrix by Q = (qij )i,j∈S . In discrete time we denote the Markov chain by (Yn)n∈N and its
transition probability matrix by P = (pij )i,j∈S .

For irreducible recurrent Markov chains, an invariant measure ψ = (ψi)i∈S exists, which is
unique up to a multiplicative constant, and for f (1), f (2) : S → R with ψ |f (1), ψ |f (2)| < ∞,
we have

lim
t→∞

∫ t
0 f

(1)(Xs) ds∫ t
0 f

(2)(Xs) ds
= ψf (1)

ψf (2)
, respectively lim

N→∞

∑N
n=0 f

(1)(Yn)∑N
n=0 f

(2)(Yn)
= ψf (1)

ψf (2)

with probability 1; see [8, pp. 85–86, 203–209]. Hence, obtaining ψf for functions f on the
state space of irreducible recurrent Markov chains is of high practical relevance.

Particularly important special cases of irreducible recurrent Markov chains are ergodic
Markov chains, where ψ is the unique stationary distribution π = (πi)i∈S that coincides
with the limiting distribution. It satisfies πQ = 0 in continuous time and πP = π in discrete
time, respectively. According to the respective ergodic theorems, if the expectation Eπ [|f |]
for a function f : S → R is finite, then the averages of additive functionals converge (for time
approaching infinity) almost surely to the stationary expectation Eπ [f ] = ∑

i∈Sπif (i) = πf ,
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that is,

lim
t→∞

1

t

∫ t

0
f (Xs) ds = Eπ [f ], respectively lim

N→∞
1

N

N∑
n=0

f (Yn) = Eπ [f ]

with probability 1; see [2, pp. 52–54], [19, pp. 264–265] for the continuous-time case, and [2,
pp. 16–19], [19, pp. 45–47] for the discrete-time case. Hence, Eπ [f ] is the long-run average
of an additive functional on the respective Markov chain.

We are interested in approximating ψf for infinite recurrent Markov chains by using finite-
state truncations, which is important in cases where no analytical solution to the infinite chain
is available and the state space must be truncated, e.g. for computational purposes. While
corresponding truncation approximations of stationary distributions have been studied quite
extensively, see [9], [11], [13], [14], [16], [24], [25], and [18, Chapter 7], there is a lack of
similar studies for ψf or its special case of stationary expectations.

The goal is to perform the truncation such that the truncation error is bounded by an a priori
specified constant. Obviously, since in general no information on the value of ψf is available
in advance we have to bound the relative truncation error. Therefore, provided thatψf is finite,
we shall provide a method for determining a finite subset C ⊂ S of the state space such that
for a small prescribed ε ∈ (0, 1),

∑
i∈C ψif (i)∑
i∈S ψif (i)

≥ 1 − ε. (1)

Note that this yields a ‘true’a priori truncation error bound in that ε indeed bounds the proportion
of ψf that is cut off by the finite-state truncation. There is no need to compute the left-hand
side, in particular the numerator, of the inequality (1) since we shall guarantee that C is chosen
such that the truncation error is bounded by ε. In other words, we do not aim to compute the
truncation error a posteriori, but we start with an a priori fixed maximum truncation error and
obtain a suitable truncation.

In Section 2 we establish appropriate ‘Foster–Lyapunov-type criteria’ involving ‘drift condi-
tions’ and in Section 3 we show how to use them for determining appropriate finite sets C ⊂ S
that meet (1). Subsequently, in Section 4 we provide application examples. Finally, in Section 5
we conclude the paper and outline further research directions.

2. Foster–Lyapunov-type criteria

For discrete-time Markov chains (Yn)n∈N the drift function dg : S → R with respect to a
function g : S → R is defined by

dg(i) = E[g(Yn)− g(Yn−1) | Yn−1 = i] =
∑
j∈S

pijg(j)− g(i),

that is, when writing g and dg in the form of column vectors, dg = Pg − g. Hence, dg(i) is
the (generalized) drift in state i with respect to g.

For continuous-time Markov chains (Xt )t≥0 the drift function dg : S → R with respect to a
function g : S → R is defined by

dg(i) = d

dt
E[g(Xt ) | Xt = i] =

∑
j∈S

qij g(j),
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Bounded truncation error in infinite Markov chains 611

that is, when writing g and dg in the form of column vectors, we have dg = Qg.
For finite C ⊂ S, γ > 0 and f, g : S → R≥0 we consider the following conditions:

(C1) for all i ∈ S \ C : dg(i) ≤ −γf (i);
(C2) for all i ∈ C : dg(i) < ∞;

(C3) for all r < ∞: |{i ∈ S : g(i) ≤ r}| < ∞.

Conditions of this form are often referred to as Foster–Lyapunov-type criteria since they are
generalizations of classical criteria for positive recurrence or ergodicity, respectively, of Markov
chains. For discrete-time Markov chains, in the special case where f (i) = 1, we have a
criterion for positive recurrence, which in fact is very famous. In the case |C| = 1 it is due to
Foster [10], in the slightly more general case of arbitrary finite C it was proven by Pakes [17].
For continuous-time Markov chains, in the special case where f (i) = 1, we have a famous
criterion for regularity and positive recurrence, which is due to Tweedie [21, Theorem 2.3].
Appropriate functions g with respect to which the drift function dg is defined are often called
Lyapunov functions and the conditions on dg as (generalized) drift conditions.

Theorem 1. Let (Yn)n∈N be an irreducible discrete-time Markov chain with transition probabil-
ity matrix P = (pij )i,j∈S , C ⊂ S finite γ > 0 and letf, g : S → R≥0 meet the conditions (C1)–
(C3). Then (Yn)n∈N is recurrent and for any invariant measure ψ the sum ψf = ∑

i∈Sψif (i)

is finite.

The recurrence of (Yn)n∈N follows from [21, Theorem 3.3] so that an invariant measure ψ
exists. The finiteness ofψf follows as a special case of [23, Theorem 1], where Markov chains
in discrete-time on a general state space are considered without any irreducibility assumption,
which generalizes an earlier result for ergodic discrete-time Markov chains on a general state
space [22, Theorem 1].

Theorem 2. Let (Xt )t≥0 be an irreducible continuous-time Markov chain with generator matrix
Q = (qij )i,j∈S , C ⊂ S finite, γ > 0 and let f, g : S → R≥0 meet the conditions (C1)–(C3).
Then Q is regular (it uniquely defines (Xt )t≥0, the Feller process of Q), (Xt )t≥0 is recurrent,
and for any invariant measure ψ the sum ψf = ∑

i∈Sψif (i) is finite.

The regularity and the recurrence follow from [21, Theorem 2.2] so that an invariant measure
ψ exists. The finiteness of ψf can be shown by applying Theorem 1 to the embedded jump
chain of (Xt )t≥0 (cf. [6]). Hence, consider the embedded discrete-time jump chain (Yn)n∈N

with transition probability matrix P ∗ = (p∗
ij )i,j∈S given by

p∗
ij = 1

qi
qij + δij , (2)

where qi = −qii . Since our continuous-time Markov chain (Xt )t≥0 is irreducible recurrent,
the jump chain (Yn)n∈N is also irreducible recurrent; see, e.g. [1, pp. 184–188]. An invariant
measure ψ∗ for the jump chain is given by ψ∗

j = qjψj . The continuous-time drift condition

∞∑
j=0

qij g(j) ≤ −γf (i)
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yields the drift condition

∞∑
j=0

p∗
ij g(j)− g(i) =

∞∑
j=0

(
qij

qi
+ δij

)
g(j)− g(i) = 1

qi

∞∑
j=0

qij g(j) = dg(i)

qi
≤ −γf (i)

qi
(3)

for the embedded chain. Thus, according to Theorem 1, ψ∗f ∗ with f ∗(i) = f (i)/qi is finite.
Since, obviously, ψ∗f ∗ = ψf the proof is completed.

The following is fundamental for obtaining the state space truncation procedure in the next
section.

Theorem 3. Let (Yn)n∈N be an irreducible recurrent discrete-time Markov chain with transition
probability matrix P = (pij )i,j∈S , let ψ be an invariant measure, and let dg = Pg − g ≤ h

for some ψ-integrable function h ≥ 0. Then ψdg = ψ(Pg − g) ≥ 0.

Proof. Without loss of generality let S = N. Define

�
(n)
ij := P(Yn = j, Yn−1, . . . , Y1 	= i | Y0 = i), i, j ∈ N, n ≥ 1,

ψj :=
∞∑
n=1

�
(n)
0j , j ∈ N.

Then for the �(n)ij , we have the recursion

�
(1)
ij = pij , �

(n)
ij =

∑
k 	=i

�
(n−1)
ik pkj , n ≥ 2,

which yields

ψj =
∞∑
n=1

�
(n)
0j

= p0j +
∞∑
n=2

∞∑
k=1

�
(n−1)
0k pkj

= p0j +
∞∑
k=1

∞∑
n=1

�
(n)
0k pkj

= p0j +
∞∑
k=1

ψkpkj

=
∞∑
k=0

ψkpkj ,

sinceψ0 is the probability of eventually returning to state 0, and thus, due to recurrenceψ0 = 1.
Therefore, ψ is an invariant measure, and since any other invariant measure is obtained by
multiplication with some positive scalar it is sufficient to consider only this particular invariant
measure.

Remark 1. In the general case (no recurrence required), by (1, ψ1, ψ2, . . .) the minimal subin-
variant measure ψ with ψ0 = 1 is defined; see, e.g. [1, pp. 172–174] for more details.
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Now for N ∈ N and j ∈ {0, . . . , N} define

�
(n,N)
0j := P(Yn = j, Yn−1, . . . , Y1 ∈ {1, . . . , N} | Y0 = 0), ψ

(N)
j :=

∞∑
n=1

�
(n,N)
0j .

With similar considerations as above, we have the recursion

�
(1,N)
0j = p0j , �

(n,N)
0j =

N∑
k=1

�
(n−1,N)
0k pkj , n ≥ 2,

which yields

ψ
(N)
j =

∞∑
n=1

�
(n,N)
0j

= p0j +
∞∑
n=2

N∑
k=1

�
(n−1,N)
0k pkj

= p0j +
N∑
k=1

∞∑
n=1

�
(n,N)
0k pkj

= p0j +
N∑
k=1

ψ
(N)
k pkj .

Defining ψ(N)j = 0 for j > N and ψ(N) = (ψ
(N)
j )∞j=0, we can state that ψ(N)j increases

monotonically in N with limN→∞ ψ(N) = ψ (componentwise, weak convergence). Now we
can consider ψ(N)(Pg− g) instead of ψ(Pg− g). Since ψ(N)j = 0 for almost all j ∈ N, there
is no problem when changing the order of summation. We can write

ψ(N)dg = ψ(N)(Pg − g)

=
N∑
i=0

ψ
(N)
i

( ∞∑
j=0

pijg(j)− g(i)

)

= ψ
(N)
0

( ∞∑
j=0

p0j g(j)− g(0)

)
+

N∑
i=1

ψ
(N)
i

( ∞∑
j=0

pijg(j)− g(i)

)

= ψ
(N)
0

∞∑
j=0

p0j g(j)− ψ
(N)
0 g(0)+

N∑
i=1

ψ
(N)
i

∞∑
j=0

pijg(j)−
N∑
i=1

ψ
(N)
i g(i)

= ψ
(N)
0

∞∑
j=0

p0j g(j)+
N∑
i=1

ψ
(N)
i

∞∑
j=0

pijg(j)−
N∑
i=0

ψ
(N)
i g(i)

= ψ
(N)
0

N∑
j=0

p0j g(j)+
N∑
i=1

ψ
(N)
i

N∑
j=0

pijg(j)−
N∑
i=0

ψ
(N)
i g(i)

+
N∑
i=0

ψ
(N)
i

∞∑
j=N+1

pijg(j)
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= ψ
(N)
0

N∑
j=0

p0j g(j)+
N∑
j=0

g(j)

N∑
i=1

ψ
(N)
i pij −

N∑
i=0

ψ
(N)
i g(i)

+
N∑
i=0

ψ
(N)
i

∞∑
j=N+1

pijg(j)

= ψ
(N)
0

N∑
j=0

p0j g(j)+
N∑
j=0

g(j)(ψ
(N)
j − p0j )−

N∑
i=0

ψ
(N)
i g(i)

+
N∑
i=0

ψ
(N)
i

∞∑
j=N+1

pijg(j)

= (ψ
(N)
0 − 1)

N∑
j=0

p0j g(j)+
N∑
i=0

ψ
(N)
i

∞∑
j=N+1

pijg(j)

≥ (ψ
(N)
0 − 1)

N∑
j=0

p0j g(j).

Due to the finiteness of dg(0) and recurrence, we have

lim
N→∞

N∑
j=0

p0j g(j) = dg(0)+ g(0) < ∞, lim
N→∞ψ

(N)
0 = 1,

and, thus, we obtain

lim sup
N→∞

ψ(N)dg ≥ lim
N→∞(ψ

(N)
0 − 1)

N∑
j=0

p0j g(j) = 0.

Due to dg ≤ h, we have ψj (h(j)− dg(j)) ≥ 0 for all j ∈ N, and Fatou’s lemma yields

ψ(h− dg) =
∞∑
j=0

ψj (h(j)− dg(j))

=
∞∑
j=0

lim
N→∞ψ

(N)
j (h(j)− dg(j))

≤ lim inf
N→∞

∞∑
j=0

ψ
(N)
j (h(j)− dg(j))

= lim inf
N→∞

∞∑
j=0

ψ
(N)
j h(j)− lim sup

N→∞

∞∑
j=0

ψ
(N)
j dg(j).

Since h is ψ-integrable, by monotone convergence, we obtain

lim
N→∞

∞∑
j=0

ψ
(N)
j h(j) =

∞∑
j=0

ψjh(j) = ψh,
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and, hence,
0 ≤ ψ(h− dg) ≤ ψh− lim sup

N→∞
ψ(N)dg ≤ ψh.

From these inequalities, we obtain h− dg , and, thus, dg is ψ-integrable with ψdg ≥ 0.

Now we provide an analogous theorem for continuous-time Markov chains.

Theorem 4. Let (Xt )t≥0 be an irreducible recurrent continuous-time Markov chain with gen-
erator matrix Q = (qij )i,j∈S , dg = Qg ≤ h for some ψ-integrable function h. Then
ψdg = ψQg ≥ 0 for any invariant measure ψ .

Proof. Consider again the embedded discrete-time jump chain (Yn)n∈N with transition
probability matrix P ∗ = (p∗

ij )i,j∈S given by (2), i.e. p∗
ij = (1/qi)qij + δij , invariant measure

ψ∗ given by ψ∗
j = qjψj , drift d∗

g where d∗
g (i) = dg(i)/qi (cf. (3)), and upper drift bound h∗

given by h∗(i) = h(i)/qi . Obviously, we have ψ∗d∗
g = ψdg , and since h∗ is ψ∗-integrable,

Theorem 3 yields ψ∗d∗
g ≥ 0.

Before we apply these results to the task of truncating the state space, we make some remarks
concerning the drift bound h.

• Under the conditions of Theorem 1 or Theorem 2, respectively, we always have dg(j) ≤ 0
for all j ∈ S \ C, and since C is finite, h = dg 1C ≥ dg is trivially ψ-integrable, where
1 is the indicator function.

• A special case of our theorems appears in [12], where positive recurrence and thus the
summability of ψ is assumed, and the corresponding drift condition is sup dg(j) < ∞.
In this case h = C = sup dg(j) is, of course, ψ-integrable. For a finite-state space S
we trivially could state ‘= 0’, and ‘≥ 0’ is guaranteed by [12, Theorem 1(ii)] in a
quite general context, where the continuous-time case is given as a special case by [12,
Proposition 1].

3. Truncation of the state space

Now we exploit the theorems of the previous section in order to determine finite subsets of the
state space such that the truncation error is bounded as stipulated by (1). The drift conditions
provided by the aforementioned criterion by Tweedie [21, Theorem 2.3] for regularity and
positive recurrence have been exploited in [9] in order to obtain bounds of the form

∑
i∈Cπi ≥

1 − ε when approximating the stationary distributions of infinite ergodic continuous-time level
dependent quasi-birth-and-death (LDQBD) processes. We will use a similar approach for
deriving the desired bounds (1) for recurrent continuous-time and discrete-time Markov chains
on countable state spaces. The main idea is to choose γ > 0 and g such that the finite set C is
appropriate for truncation. This procedure is based on the following result.

Theorem 5. Let f, g, γ,C meet the conditions of Theorem 1 or Theorem 2, respectively.
Furthermore, let

f (j) > 0 for all j ∈ C0 := {i ∈ S : dg(i) > 0}, (4)

and let f (j1) > 0 for some j1 ∈ C0 := S \ C0. Then, we have

∑
j 	∈C ψjf (j)∑
j∈S ψjf (j)

≤ c

c + γ
, (5)
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where

c = max
j∈C0

dg(j)

f (j)
> 0. (6)

Proof. First note that C0 := {j ∈ S : dg(j) > 0} has finitely many elements due to condition
(C1). Furthermore, this condition guarantees that dg(j1) < 0, yieldingψj1dg(j1) < 0 since the
invariant measure ψ has no zero-entry. As pointed out above, by Theorem 3 and Theorem 4,
under the conditions of Theorem 1 or Theorem 2 respectively, we haveψdg ≥ 0, and, therefore,
there is some j0 ∈ C0 with dg(j0) > 0, that is C0 	= ∅. Assumption (4) guarantees that c > 0
is well defined by (6).

Now we scale g and, thus, dg by 1/(c + γ ) > 0, that is

g∗(j) := g(j)

c + γ
, dg∗(j) = dg(j)

c + γ
.

This yields dg∗(j) ≤ cf (j)/(c + γ ) for j ∈ C and dg∗(j) ≤ −γf (j)/(c + γ ) for j /∈ C, or,
written in concise form

dg∗(j) ≤
(

c

c + γ
− 1C(j)

)
f (j).

Summation of ψjdg∗(j) yields

0 ≤ ψdg∗ =
∑
j∈S

ψjdg∗(j) ≤ c

c + γ

∑
j∈S

ψjf (j)−
∑
j 	∈C

ψjf (j).

Due to the assumptions, ψf 	= 0, which immediately implies (5) and completes the proof.

Remark 2. If f (j) > 0 for infinitely many j ∈ S, due to the finiteness of C, there will always
be some j1 ∈ C with f (j1) > 0. If f (j) > 0 holds only for finitely many j ∈ S, the truncation
of the state space is quite easy, we can simply choose the finite set C = {j : f (j) > 0}.
However, the proof of Theorem 5 can be extended to this case via the obvious inequality

0 =
∑
j 	∈C

ψjf (j) ≤ c

c + γ

∑
j∈S

ψjf (j),

where we define c = 0 for C0 = ∅ (which is possible in this situation).

With ε = c/(c + γ ), Theorem 5 yields the desired bound for our procedure of determining
a finite set C meeting (1). When a Lyapunov function g is given, c is determined by the
corresponding drift function dg and, thus, we can only vary γ . For guaranteeing c/(c+γ ) = ε,
we choose γ = (c/ε) − c. Since ε < 1 and c > 0, we have γ > 0. If for this choice of γ
the set C = {j ∈ S : dg(j) > −γf (j)} is finite, we have an appropriate truncation of the state
space. Otherwise, we have to find a new Lyapunov function. A simple scaling does not help in
this case since by the definition of γ and c, C is invariant with respect to scaling of g.

The results just derived provide the basis for a method of finding an appropriate set C0 for
truncating the sum ψf as follows.

(i) Choose a Lyapunov function g.

(ii) Compute the drift dg .
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(iii) Determine
C0 = {i ∈ S : dg(i) > 0},
c = max

j∈C0

dg(j)

f (j)
, (7)

γ = c

ε
− c, (8)

C = {j ∈ S : dg(j) > −γf (j)}. (9)

(iv) If C is finite, (1) holds. Otherwise choose a new Lyapunov function and restart with (ii).

4. Examples

Now we demonstrate our state space truncation approach by two illustrative examples,
where we restrict ourselves to continuous-time Markov chains, as the truncation procedure
works similarly in the discrete-time case.

Example 1. We start with an example of a two-dimensional continuous-time Markov chain
(Xt ) = (X

(1)
t , X

(2)
t ) with state space S = N × N and transitions according to Table 1 with

parameters λ,μ, δ1, δ2 > 0, which describes a stochastic gene expression model [20] that was
also considered in [9]. As a concrete numerical case, we choose λ = 60, μ = δ2 = 0.01, and
δ1 = 0.2. In [9], the authors looked for a set C fulfilling∑

(x1,x2)∈C π(x1,x2)∑
(x1,x2)∈S π(x1,x2)

≥ 1 − ε,

where π is the stationary distribution. The method used in [9] is the above method with
f (x1, x2) = 1. The Lyapunov function g was defined by

g(x1, x2) = (x1 − 300)2 + (x2 − 300)2,

yielding the drift function

dg(x1, x2) = −0.4x2
1 − 0.02x2

2 + 0.02x1x2 + 234.21x1 + 6.01x2 − 35 940.

Obviously, this drift function is negative up to finitely many values (x1, x2), the maximum
according to (7) is c = 126, and for ε = 0.05, by (8), we have to choose γ = 2 394. Thus,
from (9), we obtain

C = {(x1, x2) : dg(x1, x2) ≥ −2 394}
as a finite subset of the state space that meets the desired truncation error bound.

It is clear that our truncation procedure does not require a specific transition structure or a
specific numbering of the states. In many applications, however, the above characterization
of C might be relatively impractical, in particular when a specific numbering of the states is
given and the generator matrix of the Markov chain must be truncated to render numerical
computations possible. Think, for example, of infinite LDQBD processes, where the states are
ordered according to the chosen level definition and the block structured generator matrix is
truncated at certain blocks corresponding to high (or low) level numbers such as, e.g. in [3],
[4], [5], [7], [9], and [15]. Then it is often more convenient to consider an appropriate finite
superset of C rather than to work directly with C. For instance, simple algebra yields

C ⊂ {(x1, x2) : 221 ≤ max{x1, x2} ≤ 657}, C ⊂ {(x1, x2) : 250 ≤ x1 + x2 ≤ 975},
where the first superset can be found in [9] too. It contains 384 123 states, the second one
contains 445 401 states.
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Table 1: State transitions of the gene expression example.

From state To state Rate

(x1, x2) (x1 + 1, x2) λ

(x1, x2) (x1, x2 + 1) μx1
(x1, x2) (x1 − 1, x2) δ1x1
(x1, x2) (x1, x2 − 1) δ2x2

The Lyapunov function defined above is still appropriate when considering the stationary
moments of the first or the second component, respectively, that is, we consider Eπ [f (1)] and
Eπ [f (2)] with f (1)(x1, x2) = x1 and f (2)(x1, x2) = x2, respectively. It is easy to see that

C1 = {(x1, x2) : dg(x1, x2) ≥ −γ x1}, C2 = {(x1, x2) : dg(x1, x2) ≥ −γ x2}
are finite for arbitrary γ > 0. By simple algebra, we obtain dg(x1, 0) < 0 and dg(0, x2) < 0
for any x1, x2 ∈ N, yielding that C0 = {(x1, x2) : dg(x1, x2) > 0} does not contain any point
(x1, x2) with f (j)(x1, x2) = 0 for j = 1 or j = 2. Thus, there is no problem when defining
the value c according to (7). For f (1), we have c = 0.42 and for ε = 0.05, by (8), we have
γ = 7.98. For simplicity and as a means of comparison, we give supersets for C1 similar to
those given above. We have

C1 ⊂ {(x1, x2) : 231 ≤ max{x1, x2} ≤ 665}, C1 ⊂ {(x1, x2) : 261 ≤ x1 + x2 ≤ 993},
where the first superset contains 390 195 states and the second one contains 460 324 states.

Similarly, for f (2), we have c ≈ 0.4272 and γ ≈ 8.1176 (for ε = 0.05), yielding

C2 ⊂ {(x1, x2) : 230 ≤ max{x1, x2} ≤ 920}, C2 ⊂ {(x1, x2) : 377 ≤ x1 + x2 ≤ 1246},
where the first superset contains 795 341 states and the second one contains 706 875 states.

Example 2. We continue with a simple but extremely instructive example that demonstrates
the applicability of the state space truncation procedure to nonergodic recurrent Markov chains
and shows some peculiarities with regard to the specific choice of a Lyapunov function.

Consider a birth–death process (Xt )t≥0 with birth rate λ and death rate λ, that is a Markov
chain with state space N and the generator matrix

Q =

⎛
⎜⎜⎜⎝

−λ λ

λ −2λ λ

λ −2λ λ

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ .

Obviously, ψ = (1, 1, . . .) is an invariant measure. Consider the computation of

H = lim
t→∞

∫ t
0 (1/(Xs + 1)2) ds∫ t

0 (1/2
Xs ) ds

= ψf (1)

ψf (2)
, f (1)(j) = 1

(j + 1)2
, f (2)(j) = 1

2j
.

We want to use our method to find finite sets C1 and C2 such that

(1 − ε1)H ≤ H ∗ ≤ 1

1 − ε2
H,
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where

H ∗ =
∑
j∈C1

ψjf
(1)(j)∑

j∈C2
ψjf (2)(j)

is the approximation obtained by finite summation. Obviously,
∑
j∈Ci

ψjf
(i)(j)∑∞

j=0 ψjf
(i)(j)

≥ 1 − εi, i = 1, 2

is sufficient. We start with considering f (1)(j) = 1/(j + 1)2, j ∈ N. Since f (1)(j) > 0 for
all j ∈ N there are no problems when defining c = maxj∈C0(dg(j)/f (j)) according to (7),
independent of the Lyapunov function g. When directly using Theorem 2, an appropriate choice
for g is

g(j) =
j+1∑
k=1

1

k
, j ∈ N.

Then, we have

dg(0) = λ

2
, dg(j) = − λ

(j + 1)(j + 2)
, j = 1, 2, . . . .

For sufficiently large j ∈ N there exists γ > 0 such that dg(j) ≤ −γf (j). Therefore,
by Theorem 2, ψf (1) < ∞. Now we choose γ and C according to (8) and (9). Hence,
γ = (c/ε1)− c, where c = dg(0) = λ/2, implying

C1 =
{
j ∈ S : − λ

(j + 1)(j + 2)
> −

(
λ

2ε1
− λ

2

)
1

(j + 1)2

}
.

It is straightforward to see that C1 is a finite set if and only if ε1 >
1
3 , which for reasonable ε1

is, of course, not true. Therefore, we have to find a new Lyapunov function. Choose

g(j) =
j+1∑
k=1

1√
k
, j ∈ N.

Then, we have c = dg(0) = λ/
√

2 and

dg(j) = − λ√
(j + 1)(j + 2)(

√
j + 1 + √

j + 2)
, j = 1, 2, . . . .

Since dg(j) ≈ λ/2j3/2 for large j ,

C1 =
{
j : − λ√

(j + 1)(j + 2)(
√
j + 1 + √

j + 2)
> −

(
λ

2ε1
− λ

2

)
1

(j + 1)2

}

is finite for any ε1 > 0. For ε1 = 1
20 , we obtain C1 = {0, 1, . . . , 361}.

Now consider f (2)(j) = 1/2j , j ∈ N. Our first Lyapunov function g, defined by

g(j) =
j+1∑
k=1

1

k
, j ∈ N
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is also appropriate for ψf (2) < ∞ by Theorem 2. In this case, this Lyapunov function can be
used for defining C2 since

C2 =
{
j ∈ S : − λ

(j + 1)(j + 2)
> −

(
λ

2ε2
− λ

2

)
1

2j

}

is finite for all ε2 > 0. For ε2 = 1
20 , we obtain C2 = {0, . . . , 10}.

Note that since, for this example, we know the exact invariant measure ψ = (1, 1, 1, . . .)
and ψf (1) = π2/6, we can easily determine the ‘best choice’ for C1, namely C1 = {0, 1, . . . ,
11}. Similarly, from ψf (2) = 2, we know that C2 = {0, . . . , 4} would be the best choice.

Hence, the example demonstrates that there are Lyapunov functions that meet the conditions
of Theorem 2 but are not suitable for our state space truncation procedure. Additionally, we
see that the truncations we obtain are quite conservative. This implies that the truncation errors
are actually much smaller than requested. This can be interpreted as an advantage, but we also
have to consider that usually we have to solve for ψ and/or ψf numerically, implying that
conservative truncations imply higher effort. Of course, tight bounds are desirable.

5. Conclusion

With regard to long-run averages of additive functionals in infinite recurrent Markov chains,
we have exploited Foster–Lyapunov-type drift conditions in order to obtain finite subsets of
the infinite-state space such that at most a prescribed (small) portion of the long-run average
lies outside this finite set. This can be taken as a state space truncation method with bounded
truncation error, which is extremely useful for, e.g. numerically computing long-run averages,
where a state space truncation is inevitable. The approach is independent of specific ways of
computing long-run averages. In either case it provides a bound on the approximation error due
to the state space truncation. Error bounds for long-run averages rather than for probabilities are
particularly valuable when we have a method available that computes long-run averages without
explicitly relying on the stationary distribution (if it exists) or an invariant measure. In particular,
the state space truncation method solves the open issue that the memory-efficient matrix-
analytic method presented in [5] for computing stationary expectations in LDQBD processes
without at first explicitly computing the stationary distribution was lacking an accuracy measure.
Now, in conjunction with the state space truncation method of this paper, [5] constitutes a
powerful matrix-analytic method for numerically approximating long-run averages of additive
functionals in infinite recurrent LDQBD processes, where an approximation error bound can be
specified a priori. This enormously advances the state of the art in matrix-analytic computations
and their applicability to, e.g. performance analysis of complex networks with infinite multi-
dimensional state spaces. Moreover, as the state space truncation method is not restricted to
Markov chains with a specific transition structure, it provides many new options for the analysis
of a large class of stochastic models.

A couple of further research issues arise. We have considered nonnegative functions f ,
which makes sense, since by applying generalized ergodic theorems we have to guarantee the
finiteness of ψ |f |. In many applications, nonnegative functions are indeed sufficient to model
the problem at hand. Nevertheless, further research on generalizations to arbitrary functionsf is
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desirable and currently ongoing. For the tightness of the approximation error bounds, the chosen
Lyapunov function is a crucial factor. Not all Lyapunov functions that guarantee the finiteness
of the long-run average under consideration are suitable for our state space truncation method;
some lead to infinite subsets. Furthermore, even if suitable, different Lyapunov functions yield
different finite subsets corresponding to different tightness of the respective bounds. Hence,
the systematic derivation of Lyapunov functions that are good in the sense of yielding as tight
bounds as possible deserve further attention. For instance, restricted function classes might be
considered as candidate Lyapunov functions and their properties with regard to the state space
truncation method are to be studied.
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