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On Deformations of Pairs (Manifold,
Coherent Sheaf)

Donatella Iacono and Marco Manetti

Abstract. We analyse infinitesimal deformations of pairs (X, F) with F a coherent sheaf on a
smooth projective variety X over an algebraically closed field of characteristic 0. We describe a
differential graded Lie algebra controlling the deformation problem, and we prove an analog of a
Mukai-Artamkin theorem about the trace map.

1 Introduction

Let J be a coherent sheaf on a smooth projective variety X over an algebraically closed
field of characteristic 0; in particular J admits a finite locally free resolution. The sheaf
trace morphism is defined to be

(1D Tr: Home, (F,F) — Ox,

and the trace maps Tr': Exti, (F,F) - H'(X, Ox) are the morphisms induced in hy-
percohomology by Tr [1,16,27].

The maps Tr' and Tr? have a clear interpretation in the setting of deformation
theory of I and of the determinant bundle detJ of F. Every deformation of J in-
duces naturally a deformation of the determinant line bundle det J; the vector spaces
Exti (F,F), i = 1,2, are the tangent and obstruction spaces of the functor Defg of
deformations of JF; the spaces H i(X ,0x), i = 1,2, are the tangent and obstruction
spaces of the functor Def 4. 5 of deformations of detF. Then the maps T, i=12,
are induced by the natural transformation Def5 — Def 4e( 5.

Moreover, since we are in characteristic 0, the Picard functor is unobstructed and
this allows proving that Tr* annihilates all the obstructions to deformations of F. As
a consequence, we have the following well-known result.

Theorem 1.1 (Mukai-Artamkin [1,22]) In the above situation, ifTr2 is injective, then
the deformation functor Defg is unobstructed. If Tr' is surjective and Tr* is injective,
then the natural transformation Def 5 — Def 4¢, 5 is smooth.

Mukai and Artamkin assumed that JF is simple. However, it is immediately clear
that this assumption is used only for the pro-representability of the functor Defs
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and hence for the existence of the universal deformation of F, while the proof of the
smoothness of the semi-universal deformation works also without the simpleness as-
sumption.

One of the main goals of this paper is to extend the previous result to the case
of infinitesimal deformations of pairs (X, F), consisting of deformations of both the
variety X and the coherent sheaf F.

As a first result, we describe a well-defined homotopy class of differential graded
Lie algebras associated with the deformations of the pair (X, F).

For every quasi-coherent sheaf of DG-Lie algebras £* on an algebraic variety X,
RT(X, L") is defined, up to homotopy equivalence, to be the DG-Lie algebras of de-
rived sections and we shall say that a deformation problem is controlled by £* if it is
controlled in the usual way by the DG-Lie algebra RT'(X, £*). A canonical represen-
tative for RT(X, £*) is given by the totalization, in the simplicially enriched model
category of DG-Lie algebras, of the cosimplicial space of Cech cochains of £* with
respect to any open affine cover of X; see Section 6.

For a coherent sheaf F on a projective smooth variety X, it is known that the de-
formations of J are controlled by the sheaf of the DG-Lie algebra of endomorphisms
of any finite locally free resolution of F [6].

It is also known that if € is a locally free sheaf on a smooth variety X, then the
deformations of the pair (X, ) are controlled by the DG-Lie algebra associated with
the sheaf of first order differential operators on € with principal symbol [13, 20, 25].
For a general coherent sheaf F, the sheaf of differential operators on J is equally well
defined [9, §16.8], but, in general, it is not the right object controlling the deformations
of pairs.

Therefore, we first introduce the right algebraic object associated with the defor-
mation problem; we shall call this object the module of derivations of pairs. It extends
the sheaf of differential operators on J, involving a finite locally free resolution of F.
This allows us to define a coherent sheaf of DG-Lie algebras over X controlling the
deformations of the pair (X, J) (Theorem 7.11).

In particular, the cohomology groups T(iX’ ) of the associated DG-Lie algebra fit
into a long exact sequence:

- — Exty(F,F) — T(x 4y — H'(X,0x) — Ext}"(F,F) — -,
where ®x denotes the tangent sheaf of X. In particular, we recover the well-known
fact that if Ext}(F,F) = 0, then the natural transformation Def x5y — Defy is
smooth, since it is surjective on tangent spaces (T(IX’(f) — H'(X,®x)) and injective

on obstruction spaces (T¢y 4y > H*(X, ©x)).
Then we devote our attention to the natural transformations

Def(X’g?) —> Def(X,det F) —> Defx .

In particular, we describe an extension of the trace maps to the DG-Lie algebra of
differential operators with principal symbol (Theorem 5.6).

Finally, we are able to prove the following result (Theorem 7.16), which is the analog
of Theorem 1.1, for deformations of pairs.
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Theorem 1.2 Let F be a coherent sheaf on a projective smooth variety X defined over
an algebraically closed field of characteristic 0. Consider the trace maps

Tr': Exty (F,F) — H' (X, Ox).

(i) If the map Tr" is surjective and the map Tr* is injective, then the natural trans-
formation Def x g — Def x get 5) is smooth.

(i) If Tr* is injective and Def (X,det F) is unobstructed, then Def (x 5y is unobstruc-
ted.

(il) If H'(X,O®x) = 0 and Ext}(F,F) = K, e.g., if F is simple, then Def x ) is
pro-representable.

For instance, if J is a simple coherent sheaf [22, p. 101] of positive rank over a
surface S with trivial canonical bundle, then Tr' is surjective, Tr* is injective, and
therefore the natural transformation Def x 5) = Def(x get ) is smooth. When & is
locally free, Theorem 1.2 was already proved in [13] by using transcendental methods,
and hence over the field of complex numbers.

Our proof of Theorem 1.2 is almost entirely algebraic and it relies on the the explicit
description of a DG-Lie algebra controlling the deformations of the pair (X, F) and
the extension of the trace maps.

Another derived extension of the determinant map was introduced in [24] from
the derived stack of perfect complex to the derived stack of line bundle.

The paper is organized as follows. The first sections of this paper are devoted to
the introduction and the study of the first properties of the module of derivations of
pairs; we prove that it behaves very well with respect to all the canonical constructions,
injective and projective resolutions, de Rham complexes, and Fitting stratifications.
In Section 5, we define a coherent sheaf of DG-Lie algebras associated with derivations
of pairs and the extension of the trace map (Theorem 5.6) that generalises the classical
one given in (1.1). Section 6 is included for the reader’s convenience; there we review
the relevant notions on deformation functors associated with differential graded Lie
algebras and with semicosimplicial DG-Lie algebras. In Section 7, we analyse the
infinitesimal deformations of pairs, describing the DG-Lie algebra that controls these
deformations (Theorem 7.11), and we prove the main theorem (Theorem 1.2) about
the trace map (Theorem 7.16).

2 Derivations and Automorphisms of Pairs

Let A - R be a morphism of unitary commutative rings and M, N two R-modules.
We shall denote by Homy (M, N) (resp.: Homg (M, N)) the R-module of A-linear
(resp.: R-linear) maps M — N: the R-module structure on Hom,4 (M, N) is induced
by the R-module structure on N. We shall denote by Der4 (R, N) = Homg (Qg/a, N)
the R-module of A-linear derivations R — N. We shall refer to the R-module R & M
as the trivial extension whenever R® M is considered as a commutative ring equipped
with the product (r, m)(s, n) = (rs,rn + sm) [25, p. 10].
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Definition 2.1 Let A — R be a morphism of unitary commutative rings and M an
R-module. The R-module of A-derivations of the pair (R, M) is defined as

u(rm) —ru(m) = h(r)m, }

Da(R,M) = {(h,u) € Dera (R, R)xHomu(M, M) ‘ for every 1€ R.m € M

Remark 2.2 In the setup of the above definition we have the following.

o If r1,72,... € R generate R as an A-algebra and mjy, m,,... € M generate M as
R-module, then every (h,u) € Ds(R, M) is uniquely determined by h(r,), h(r2), ...
and u(m;), u(ms),....

« If R® M is the trivial extension of R by M, then a pair

(h,u) e Hom4 (R, R) x Hom4 (M, M)
belongs to D4 (R, M) if and only if the map R& M — R& M, (r,m) — (h(r),u(m))
is an A-derivation.

Lemma 2.3  There exists an exact sequence of R-modules

0 —> D4(R, M) —> Ders(R® M,R & M) — Homg(M, R) ® Der (R, M),

where the R-module structure on the derivations of the trivial extension R&M is induced
by the inclusion R - R & M.

Proof Everyelement of Homu(R® M, R® M) is represented by a matrix of A-linear
maps ( ¢4 ), with
a€Homu(R,R), beHoms(M,R), ceHomy(R,M), deHomy(M,M),
and then there exists a natural isomorphism of R-modules
Homu(R® M,Re& M)
=Homy (R, R) @ Homs (M, R) ® Homy (R, M) @ Homyu (M, M).

We have already noticed that (h,u) € D4(R, M) if and only if

(h0) eDera(R® M,R& M).

Therefore, defining <D( a Z) = (b, ), it is straightforward to see that if ( 4 2) isa
derivation, then b is R-linear and c is a derivation. It also easy to prove that the image
of ®is {b € Homg (M, R) | b(m)n+mb(n) =0 forallm,n e M}®Dery(R,M). W
Lemma 2.4 In the setup of Definition 2.1, let us denote by
¢ Ds(R,M) — Homu (M, M) and a:Ds(R,M)—> Ders(R,R),
the projection maps restricted to D4 (R, M).
(i) If M is a faithful module, i.e., ifann(M) = 0, then q is injective and its image is

the submodule of differential operators of first order with principal symbol.
(ii) There exists an exact sequence of R-modules

21) 0 — Homg(M, M) —> D4(R, M) — Ders(R,R) .
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Proof The only nontrivial statement is the one concerning the image of g. Recall
that a morphism v € Hom4 (M, M) is a differential operator of first order if for every
r € Rthe map [v,r]: M - M, where [v,r](m) = v(rm) — rv(m), is a morphism of
R-modules. In this case the symbol ¢ (v) is defined as the map

o(v):R > Homg(M, M), ov)(r)=[v,r],

and it is called principal if o(v)(r) is a scalar multiple of the identity for every r € R.
Notice that the symbol ¢ (v) is an A-derivation, since for every r, s € R, we have

a(v)(rs) = [v,rs] = [v,r]s + r[v,s].

If (h,u) € Do(R, M), then for every r € R, [u, r] = h(r) Idy € Homg (M, M). Con-
versely, letv € Hom4 (M, M) be a first order differential operator such that o (v) (R) <
R1dy. Since M is faithful, for every r € R there exists a unique h(r) € R such that
o(v)(r) = [v,r] = h(r)Idy. Since (v) is an A-derivation, h:R — R is also an
A-derivation and therefore (h,v) € D4(R, M). [ |

The restriction a: D4 (R, M) — Ders(R,R) of the projection on the first factor
is called the anchor map of the pair. It is clear that D4 (R, M) is a Lie subalgebra of
Dera (R, R) x Hom4 (M, M) and we have the relation

[x,ry] =a(x)(r)y+r[x,y], x,yeDa(R,M),reR,

called Poisson identity. Note that the bracket on Der4 (R, R), and then on D4 (R, M),
is bilinear over A and not over R.

Example 2.5 (Lie derivative) Let A — R be a morphism of unitary commutative
rings. Then every h € Der4 (R, R) gives a canonical element (h, L) € Da(R, Qg/a)
uniquely determined by the equation Lj,(dx) = d(h(x)), x € R.

Recall that we may define the module of Kahler differentials as Qg4 = I/I?, where
I is the kernel of the multiplication map R ®4 R — R, the differential dx is the class
of x ® 1 - 1® x in I/I?, and the R-module structure is induced by the morphism of
A-algebras R > R®4 R, r — r ® 1 [21, §25]. For every h € Ders(R, R) we define
Ly:I/I* — I/1? as the factorization to the quotient of the derivation

kR®sR—>R®4R, k(x®y)=h(x)®y+x®h(y).
The equation Lj,(dx) = d(h(x)) is trivially satisfied. For every r, s, x € R, we have

Ly(rsdx) =k((r®1)(sx®1-s®x))
=(h(r)®)(sx®1-s®@x)+(r®l)k(sx®1-s®x)
= h(r)sdx + rL,(sdx),

and then (h,Ly) € Da(R, Qgya)-

The definition of D4 (R, M) extends naturally to D4 (R, M, ), where M, is a dia-
gram of R-modules over a small category I. Here we are mainly interested in two cases.
The former is when [ is just a set, a diagram of R-modules is just a collection {M;},
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i € I, and D4(R, M,) is the limit of the diagram of anchor maps a: D4 (R, M;) —
Der4 (R, R). For later use, it is notationally convenient to define
HXDA(R, M,) = DA(R, M.) = llm(OC DA(R, M,) —> DCI'A(R, R))
i i
={(h,...;ui...) | (h,u;) € D4(R, M;),forall i e I}.
The latter is when M, = {M; ER M,} is a morphism of two R-modules. Then
D4 (R, M,) is the set of triples (h, uy, u, ), with
(h,u1) € DA(R,M;), (h,up) € DA(R,M3), fuy=uyf.
Therefore, there exists an exact sequence of R-modules
@
0 — Ds(R,M,) — D4(R, M;) XDers(R,R) D4(R, M) — Hompg (M, M5),
where ®((h,w1), (h,uz)) = fu; —usf.

Lemma 2.6 Let A — R be a morphism of unitary commutative rings and M, N two
R-modules. Then we have two natural R-linear morphisms of Lie algebras:

(2.2)
) v
DA(R,M®R N) < DA(R,M) XDerA(R,R) DA(R,N) — DA(R,HOI’DR(M,N)),
q)((]’l, u), (h,V)) = (l’l, U ®gr IdN + IdM ®RV),
W((hw), (1)) = (h f > vf = fu).
Proof Straightforward. Notice that u®gIdy + Idy ®gv is well defined, although u, v

are not R-linear and the two addends u ®g Idy, Idy ®gv are not defined. Similarly
vf — fu is a morphism of R-modules, although v f and fu are only A-linear. [ |

As a particular case of Lemma 2.6 we obtain a natural R-linear morphisms of Lie
algebras (the transpose):

(-)T:D4(R, M) — D4 (R, Homg (M, R)),
(hyu) — (hyu)" =¥((h,u), (h,h)) = (h, f = hf - fu).

Definition 2.7 'The Leibniz extension of a derivation of the pair (h,u) € D4(R, M)
is the sequence (1, u,) € D4(R, ARM), n > 0, uniquely determined by the formulas

(2.3)

n
(2.4) ug = h, u,,(ml/\n-/\mn):Zml/\~~~/\u(m,~)/\-~/\m,,.
i=1

The Leibniz extension is properly defined: by the universal property of wedge prod-
ucts, (2.4) defines a sequence of A-linear maps ii,: A4 M — ALM. Now AR M is the
quotient of A’{ M by the A-submodule H generated by all the elements
A ATIGATM A A=A AMATI A Ay, T ER,mj e M;0<i<n,

and it is immediate to verify that i, (H) c H and then that (h, i, ) factors to a deriva-
tion of the pair (h,u,) € Da(R, ARM). The Leibniz extension is functorial in the
following sense: given a morphism of R-modules f: M — N and (h, u) € D4(R, M),
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(h,v) € Do(R,N) suchthatvf = fu, thenv, f*" = f*"u, for every n. Moreover, for
every n, the map

DA(R,M) — DA(R,ASM),  (hyu) —> (b up),

is a morphism of Lie algebras. This follows immediately from the fact that, for every
(h,u), (k,v) € Dao(R, M), we have

n
UgVu(My A Amy) =Y my A Auv(mg) A Amy,
in1

+Zm1/\...u(m,»)/\~--/\v(mj).../\mn
i<j
+Zm1/\...v(mi)/\---/\u(m].).../\mn.

i<j

Definition 2.8 If M is a free module of rank # and (h, u) € D4 (R, M), we shall call
(h,u,) € Da(R, AR M) the trace of (h, u).

The name trace is motivated by the fact thatif 4 = 0, i.e., if u € Homg (M, M), then
u, is the multiplication by the trace of u.

2.1  Automorphisms of Pairs

Let A — R be a morphism of commutative unitary rings and let M be an R-module.
We shall denote by Aut, (R) the group of A-linear automorphisms of R, i.e., the au-
tomorphism group of the A-algebra R, and by Auts (M) (resp. Autg(M)) the group
of A-linear (resp. R-linear) automorphisms of M.

Definition 2.9 'The group of A-linear automorphisms of the pair (R, M) is defined
as the subgroup Aut, (R, M) c Auts (R) xAuta (M) of pairs (6, ¢) such that ¢(rm) =
0(r)¢(m) for every r € R, m € M.

Let R ® M be the trivial extension of R by M. As in the proof of Lemma 2.3, there
exists a natural inclusion

Homy (R, R) x Homy (M, M) c Homuy (R & M,R & M),

and it is immediate to see that an element of Hom4 (R, R) x Hom, (M, M) is an au-
tomorphism of the pair (R, M) if and only if it is an automorphism of the A-algebra
Re M.

The analog of the anchor map is the group homomorphism

a:Auty (R, M) — Auty(R), «a(6,¢) =106,

whose kernel is Autg (M).
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There exists the analog of Lemma 2.6 and of the Leibniz extension for automor-
phisms of pairs. It is straightforward to verify that there exist two natural group ho-

momorphisms
(2.5) Auty (R, M) X gy, (r) Auta (R, N)
/ \
AutA(R,M®R N) AutA(R,HomR(M,N))

o((6,¢), (6,9)) = (6, ¢@y), ¥((6,9),(6,9)) = (0, f > yf¢™).
Similarly, every (6, ¢) € Auts(R, M) gives a sequence (6, ¢,) € Auty(R, ARM),
n > 0, uniquely determined by the formulas

$o=06, du(ma-—-Amy)=¢(m)A---nd(my).
If M is free of rank n, we write (0, ¢,,) = det(0, ¢). When 6 = Id, we recover the
usual notion of the determinant of an R-linear endomorphism.
Assume now that A contains the field Q of rational numbers and let

(h,u) € DoA(R,M) c Dera(R® M,R® M)

be a nilpotent derivation of pairs. Then its exponential

Oohn oo n

u
exp(h,u) = (Z; E’,,Z:;) ;)
also preserves the direct sum decomposition R @ M and then
exp(h,u) € Auta (R, M) c Auts(R & M).

It is plain that the exponential commutes with the anchor maps and the usual proper-
ties of the exponential imply that exp commutes with the morphisms (2.2) and (2.5).
The exponential also commutes with Leibniz extensions of derivations and automor-
phisms. This is immediate from the previous remark since the assumption Q c A
implies that A} M is a direct summand of ®% M. In particular, the exponential of
the trace is the determinant of the exponential.

Lemma 2.10 Let R be a commutative unitary algebra over a field K of characteristic
0, and let M be an R-module. Then for every local Artin K -algebra A with residue field
K, the group exp(Dxk (R, M) ® my) is naturally isomorphic to the group of A-linear
automorphisms of the pair (R ® A, M ® A) lifting the identity on (R, M).

Proof We have already noticed that via the diagonal inclusion
Homg (R, R) x Homg (M, M) c Homg (R® M,R & M),

a couple (h,u) € Homg (R, R) x Homg (M, M) is a K -linear derivation (resp. au-
tomorphism) of the pair (R, M) if and only if it is a K -linear derivation (resp. au-
tomorphism) of the trivial extension R @ M. Thus, the lemma is an immediate con-
sequence of the well-known fact [17, Proposition 5.44] that for every commutative
unitary K -algebra S, the group exp(Derk (S, S) ® my ) is naturally isomorphic to the
group of A-linear automorphisms of S ® A lifting the identity on S. |
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3 Lifting to Resolutions

Throughout this section, A — R is a fixed morphism of unitary commutative rings.
Forevery (h,u) € D4(R, M), the derivation h preserves the annihilator of M. In fact,
if r € Rand rm = 0 for every m € M, then also h(r)m = u(rm) — ru(m) = 0, for
every m € M.

The above consideration shows that in general the anchor map

a:D4(R, M) —> Ders(R,R)

is not surjective. For instance, if M = R/I, with I an ideal of R, then the image of
« is the submodule of derivations preserving the ideal I. If (h,u) € D4(R, M), we
have seen that h preserves the annihilator of M, which is precisely the ideal I. Con-
versely, any derivation h € Der (R, R) has a canonical lifting (h, h) € D4(R, R), and
if h(I) c I, then (h, h) factors to an element of D4 (R, M).

Lemma 3.1 In the above setup, if f: P — M is a surjective morphism of R-modules
with P projective, then every (h,u) € D4(R, M) lifts to an element (h,v) € D4(R, P)
such that fv = uf. In particular, we have the following.
(i) Every derivation of pairs lifts to any projective resolution.
(i) If P is a projective R-module, then the anchor map a: D (R, P) — Ders(R, R) is
surjective.

Proof Consider first the case when P is a free R-module with basis {e; }. Choosing
elements v; € P such that f(v;) = u(f(e;)) € M for every i, then the A-linear map

viP— P, v(Yase) =Y awi+h(ai)es,
i i

has the required properties. If P is not free, since every projective module is a direct
summand of a free module, there exist a free module F together with two morphisms
i:P - F, g:F - P such that gi = Idp. Since fg:F — M is surjective, there exists
(h,w) € DA(R, F) lifting (h,u) and it is sufficient to take

(h,v) = (h,gwi) € D4(R, P).

If M = 0, then for every h € Ders(R, R) we have (h,0) € D4(R,0) and the above
computation gives the surjectivity of the anchor map a: D4 (R, P) - Ders(R,R). W

Lemma 3.2  In the above setup, if g: M — ] is an injective morphism of R-modules
with ] injective, then every (h,u) € D (R, M) extends to an element (h,v) € Do(R,])
such that vg = gu. In particular, we have the following.
(i) Every derivation of pairs extends to any injective resolution.
(i) IfJ is an injective R-module, then the anchor map a: Da(R,]) - Dera(R,R) is
surjective.

Proof Letg:] — I be an injective morphism with I injective as an A-module. Then

the composition gg: M — ] — Iisalso injective. Consider the R-module Homy (R, I),
where the R-module structure is given by (ty)(r) = y(¢r) for any #,r € R and any
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y € Homyu (R, I). Then the map
B:] — Homu(R,I), j+— B(j)(r)=q(rj)el, VreR,

is an injective R-linear morphism. Since ] is injective as an R-module, there exists a
splitting y: Homy4 (R, I) — ], such that yB = Id;. Let (h,u) € D4(R, M) be a fixed
derivation of the pair; since I is injective as A-module and u is a morphism of A-mod-
ules, there exists a morphism w € Homy (I, I) such that wqg = qgu:

I
I

Consider now the map wy,: Hom4 (R, I) — Homy (R, I) defined by

M a8
ul
a8

M —

wi(y) =woy—yoh,
for any v € Homu (R, I). Then (h,wy,) € Da(R,Homu(R, 1)) since wy, is A-linear
and wy, (ty) = twy,(y) + h(t)y, for any £, r € R. Indeed, we have
wi(ty)(r) = (wo ty —ty o h)(r) = w(y(tr)) - y(th(r)),
while
twi(y)(r) = t(woy—yoh)(r) =w(y(ir)) - y(h(ir))
=w(y(tr)) —y(th(r)) - y(rh(t)).

Then we prove that (h, wy) extends (h,u), i.e., fgu = wj,fg. For every r € R and
every m € M, we have

(wnPg(m))(r) =w(Bg(m)(r)) - Bg(m)(h(r)) = w(q(rg(m)) - q(h(r)g(m))
=w(q(g(rm)) - q(g(h(r)m)) = qgu(rm) — q(g(h(r)m))
= qg(ru(m)) + qg(h(r)m) - q(g(h(r)m))
= qg(ru(m)) = pg(u(m))(r).

Finally, it is sufficient to take (h,v) = (h, ywp,B) € Da(R,]). Item (i) is now clear and
item (ii) follows by considering the injective morphism 0 — J. |

Corollary 3.3 Let0 - K 5 P Emo 0 be a short exact sequence of projective
R-modules, and denote by

L =Da(R,K —5 P) = Do(R, P > M) = { (h, 1) € Da(R, P) | u(a(K)) < a(K)}.
Then the natural morphisms of Lie algebras
L=DAs(R,K—5P) > D4s(R,K), L=Du(R K- P)— Dyu(R,P),

Da(R, P -5 M) - D4(R, M),
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fit in the following exact sequences of R-modules

0 —> L —> D4(R, P) - Homg (K, M) —> 0,

0 —> Homg(P,K) —> L - Da(R, M) —> 0,

0 —> Homg(M, P) > L — D4(R,K) — 0,
where p(h,u) = Bua, j(v) = (0, av), h(u) = (0, up).

Proof Since Ba = 0, the morphism p is properly defined and it is surjective because
M is projective, P ~ K & M, and therefore

Hompg(P,P) — Homg(K, M), u— fua,

is surjective. The surjectivity of L — D4 (R, M) is given by Lemma 3.1 and therefore
the anchor map a: L — Der4 (R, R) is also surjective. The third exact sequence follows
by the snake lemma applied to the commutative diagram

0 S L Ders(R,R) ——0

| |

0 —— Hompg(K,K) —— D4(R,K) —— Dera(R,R) ——0
where S = {f € Homg(P, P) | f(K) c K}. [ |

Consider now a mor%hism of commutative unitary rings A - R and a cochain
complex C = {--- - C' = C*! - ...} of R-modules. Then we can define D4(R, C)
as in Definition 2.1, by replacing Hom4 (M, M) with the module of morphisms of
cochain complexes of A-modules. Equivalently D (R, C) is defined considering C as
a diagram of R-modules over the ordered set Z.

However, for the application we have in mind, it is more convenient to consider
the DG-Lie subalgebra

Di(R.0) = { (o <Deri (R 1) xHomi (€.) | SR D .
For the definition and the main properties of Der}; (R, R) and Hom}; (C, C), we refer
the reader to [15, §1]. Notice that the differential is the internal derivation & = [d, -]
and Der’, (R, R) = 0 for every i # 0: this implies that D¥, (R, C) = Hom}(C, C) for
everyi # 0,and DY (R, C) = I[T* Da(R, C') is the limit of the diagram of anchor maps
D4(R,C") - Dery (R, R). Finally, note that D4 (R, C) = Z°(D}%(R, C)).

In order to extend Lemma 3.1 and Corollary 3.3 to the differential graded case,
it is useful to work in the projective model structure on the category of unbounded
cochain complexes [12, Theorem 2.3.11]: with respect to this model structure, a mor-
phism of cochain complexes M — N is a weak-equivalence if it is a quasi-isomor-
phism. It is a fibration if it is degreewise surjective. It is a cofibration if it has the left
lifting property with respect to all the trivial fibrations. Moreover, if M — N is a cofi-
bration, then for every i the map M’ — N is a split injective with projective cokernel;
the converse holds whenever N is bounded above.
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In particular, for every cofibrant complex P, since P’ is projective for every i, there
exists a short exact sequence

3.1 0 — Hom} (P, P) —> D%(R, P) —> Ders(R,R) —> 0.

Proposition 3.4 Let f:K — P be a trivial cofibration between cofibrant complexes of
R-modules. Then the two natural DG-Lie algebra morphisms

D3(R.K) «— D3(R.K > P) — D3(R, P)

are quasi-isomorphisms of complexes of R-modules. In particular, D (R, K), D} (R, P)
are quasi-isomorphic DG-Lie algebras.

Proof By assumption f is a cofibration and then we have a short exact sequence of
cofibrant complexes

0—>Ki>P—>M—>O.

Since K, P, M" are projective modules for every i, Corollary 3.3 gives two short exact
sequences of complexes

0 — D%(R,K -5 P) — D%(R, P) —> Hom}(K, M) —> 0,
0 — Homy(M, P) — D%(R,K -5 P) — D’(R,K) —> 0.

Finally, since M is cofibrant acyclic, the natural map M — Cone(Idyy) is a trivial
cofibration and then admits a left inverse; hence the complexes M, Homjy (M, P),
and Homy (K, M) are contractible. [ |

Corollary 3.5 Let P and K be quasi-isomorphic cofibrant complexes of R-modules.
Then D} (R, P) is quasi-isomorphic to D} (R, K) as a DG-Lie algebra.

Proof By general facts of model category theory [12, Lemma 1.1.12], two cofibrant
complexes P and K are quasi-isomorphic if and only if there exists a span of trivial
cofibrations P - Q « K. Therefore, the conclusion follows from Proposition 3.4. W

Example 3.6 If P — M is a projective resolution of an R-module M, then Corol-
lary 3.5 implies that the graded Lie algebra H* (D’ (R, P)) depends only on M. More-
over, by (3.1) we have H' (D% (R, P)) = Exth (M, M) for every i # 0,1and, by (2.1) of
Lemma 2.4, there exists an exact sequence

0 —> Ext% (M, M) — H°(D% (R, P)) —> Dera(R, R)
— Exty (M, M) — H'(D%(R,P)) — 0.
In fact, Exth (M, M) = H' (Homj(P, M)) = H'(Hom}(P, P)) for every i. By Lem-
ma 3.1, the natural map Z°(D% (R, P)) - Da(R, M) is surjective; its kernel is given
by the R-linear morphisms of complexes P — P inducing the trivial map on M.

Since P is a projective resolution, these morphisms are exactly the ones homotopic
to 0, and then there exists a natural isomorphism H°(D% (R, P)) = D4(R, M). Since
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Extp(M, M) = 0 for i < 0, the above equality is completely equivalent to the long
exact sequence

.. — Homg2(P, P) —> Homg!(P, P) — D4(R, P) —> D4(R, M) —> 0.

4 Anchor Invariance of Fitting Ideals

The content of this section is not relevant for the remaining part of the paper, and it
is written as an application of the previous results that we consider of independent
interest.

Let A — R be a morphism of unitary commutative rings and M an R-module. We
have seen that, unless M is either projective or injective, the anchor map

DA(R, M) =5 Der4(R,R)

is generally not surjective.

Theorem 4.1 In the above setup, if M is finitely generated, then for every (h,u) €
D4(R, M), the derivation h preserves the Fitting ideals of M.

Proof Recall [4,26] that the Fitting ideals of M, Fitto(M) c Fitt;(M) c --- c R, are

defined by considering any free resolution F N R™ 25 M - 0 and the exterior

powers ALF —— ARR™. Then, for every i > 0, the Fitting ideal Fitt,,_;(M) c R is
the ideal generated by the coefficients of all elements in the image of ", with respect
to the canonical basis of ALR™. The definition is independent of the choice of the
resolution and then Fitt,, (M) = R whenever M is generated by m elements.

By Lemma 3.1, the derivation of the pair (4, u) lifts to a couple (h,v) € D4(R, R™)
and (h,w) € Ds(R, F) such that up = pv and fw = vf. Let us prove first that the
ideal I = Fitt,,_;(M) is preserved by h. Let ey, ..., e,, be the canonical basis of R™.
For every x € F, we have

f(x)=> aiei, f(w(x))=>) bie;, aibicl,
and then
Z h(ai)ei =v(f(x)) - Zaiv(ei) = zbiei - Zaiv(ei) el-R™,

proving that h(a;) € I for every i. As regards the invariance of the Fitting ideals
Fitt,,_, (M) for r > 1, it is sufficient to repeat the above argument to the maps

NN r pm
[ ARF — ARR

and to the Leibniz extensions of (h,v) and (h, w). [ |

Corollary 4.2  Let A — R be a morphism of noetherian rings and let M and N be two
finitely generated R-modules. If a derivation h € Der (R, R) lifts to D4(R, M) and to
D4(R, N), then h preserves the Fitting ideals of TorX (M, N') and Exth (M, N).

Proof Let P — M be a projective resolution, then 4 lifts to an element of D4 (R, P),
and by Lemma 2.6 h lifts also to D4 (R, Tor®(M, N)) and D4(R, Exti (M,N)). ™
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Joining Theorem 4.1 and Example 2.5 we get a new proof of the following classical
result.

Corollary 4.3 (R.Hart [10]) Let A be a commutative ring and R a finitely generated
commutative A-algebra. Then every A-derivation of R preserves the Fitting ideals of

QR/A'

More generally, taking the Leibniz extension of the Lie derivative, we also obtain
that every A-derivation of R preserves the Fitting ideals of AR Qg 4 for every n. No-
tice also that the Leibniz extension of the Lie derivative commutes with the de Rham
differential.

Example 4.4 Assume that R is a principal ideal domain and that M is a finitely
generated R-module. Then a derivation h € Der4 (R, R) lifts to D4 (R, M) if and only
if h preserves the Fitting ideals of M. In fact, we have a cyclic decomposition

o0 ens  aildis

R
M=t (an)

and therefore the Fitting ideals are (ajaz-+-a,) ¢ --- ¢ (a1a2) c (a;). Assume that h
preserves all the Fitting ideals, then /(a;) € (a;) for every i; this is clear if either i = 1
or a; = 0, while for i >1and a; # 0, we have

h(ay---ai1) € (ar---ai), h(ar---a;) € (ar---ai),
h(a1~--a,-) = h(a1~--a,-_1)ai + al--~a,-_1h(a,-),

and then a;---a;_1h(a;) € (a1 -+ a;_1a;). Now the map

wM— M, u(inei) = Zh(xi)ei

gives a derivation of the pair (h, u).

5 Coherent Sheaves of DG-Lie Algebras and Trace Maps

Assume now that X — Spec A is a scheme over A, and denote by
®X/A = j’fomox(ﬂx/A,ox) = @erA(OX, OX)

the relative tangent sheaf. Given a sheaf F of O x-modules, we can define D 4 (X, F) as
the subsheaf of @ /4 x Hom4 (F, F) of all the elements satisfying the same condition
of Definition 2.1. Similarly, for every morphism f:JF — G of sheaves of Ox-modules,
we can define the sheaf D4 (X, F = G), for instance, by the exact sequence

0— Da(X,F L5 §) —> Du(X,F) xoy,, Da(X,9) ~2 Homo, (F, ),

where ©(h,u,v) = fu—-vf.

If 5 is coherent and p: Y — X is the affine morphism of schemes such that p,Oy =
Ox @ T [11, Exercise I1.5.17], then by Lemma 2.3 we have an exact sequence of sheaves
of Ox-modules

(51) 00— Dy(X,F) — p.Oy y — Homp, (F,0x) ® Homo, (Qx/a,F).
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Proposition 5.1 In the above situation, if A is noetherian, X is of finite type over A,
and F and G are coherent sheaves, then also DA (X, F), Da(X, G), and D4 (X, F = G)
are coherent. For every open affine subset U c X, we have

DA(X, ?)(U) = DA(Ox(U),?(U)),
DA(X, T L G)(U) = D4(0x(V), F(U) L 5(v)).

Proof According to the above assumptions, the scheme Y is also of finite type over
A and the morphism p is finite. In particular, both Qx/4 and p.®y 4 are coher-
ent sheaves and so D4 (X, F) is coherent, being the kernel of a morphism of co-
herent sheaves. Given an open affine subset U c X, the proof that the natural map
Da(X,F)(U) - Ds(Ox(U),F(U)) is an isomorphism follows by comparing the
exact sequences obtained by applying the functor I'(U, =) to (5.1) and the exact se-
quence of Lemma 2.3. The statement about D4 (X,F = §) is proved in the same
way. |

Example 5.2 Let F be alocally free sheaf on X, then the sheaf D4 (X, F) is isomor-
phic to the sheaf of A-linear first order differential operators on F with scalar symbol.
Via this isomorphism, the exact sequence

0 — Homo, (F,F) — Da(X,T) — Ox/y — 0

corresponds, up to isomorphism, to the Atiyah extension of F [2], [20, Example 2.3],
(25, p. 145].

Definition 5.3 Let X — Spec Abe anoetherian scheme over a noetherian ring A. By
a (quasi)coherent sheaf of Lie algebras over X/A we mean a (quasi)coherent sheaf of

Ox-modules £, together an A-bilinear bracket £ x £ AR £ inducing a structure of
a Lie algebra over A on every stalk of £. Note that the bracket is not O x-linear, so this
is not the same structure as a Lie algebra in the monoidal category of quasi coherent
modules. A morphism of (quasi)coherent sheaves of Lie algebras is a morphism of
sheaves of O x-modules commuting with the brackets.

For instance, if F is a coherent sheaf on X, then the anchor map
a:Da(X,T) = Oxya

is a morphism of coherent sheaves of Lie algebras over X/A. If ¥ — § is a morphism
of coherent sheaves, then the natural maps

DA(X,EF—>9)—>DA(X,EF), DA(X,EF—> 9)—>®A(X,9),
are morphisms of coherent sheaves of Lie algebras over X/A.

Recall that a differential graded (DG) Lie algebra over a commutative ring A is
the data of a cochain complex (L, d) of A-modules, together with an A-bilinear map
[-,-]:Lx L — L (called a bracket) of degree 0, such that the following conditions are
satisfied.

« (graded skew symmetry) [x, y] = —=(-1)"/[y,x] € L'*, for every x € L' and

yell
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x]] = 0 for every x € L**!, with i € Z.

e [x,x] = 0forevery x € L?, and [x, [x,
[[x, y], 2] + (=1)"[y,[x,2]], for every x €

+ (graded Jacobi identity) [x, [y, 2]] =
Li,yel/,andz¢L.
« (graded Leibniz rule) d[x, y] = [dx, y] + (-1)'[x,dy], for every x € L’ and
yell
A morphism of differential graded Lie algebras y: L — M is a morphism of cochain
complexes that commutes with brackets.

Definition 5.4 Let X — Spec A be a noetherian scheme over a noetherian ring A.
By a quasi-coherent sheaf of DG-Lie algebras over X/A, we mean a complex £* of
quasi-coherent sheaves of O x-modules, together with an A-bilinear bracket

Lx— XL* [’] Lx—
inducing a structure of DG-Lie algebra over A on every stalk of £. A quasi-coherent
sheaf of DG-Lie algebras £* is coherent if @£’ is a coherent sheaf. A morphism
of quasi-coherent sheaves of DG-Lie algebras is a morphism of complexes of Ox-
modules commuting with the brackets.

Example 5.5 Let X — Spec A be a noetherian scheme over a noetherian ring A,
and let £* be a bounded complex of coherent sheaves of Ox-modules. For every
index i, the sheaf ﬂ{omfgx((‘i*, €*) = TI;Homg, (€7, &7*") is coherent, and then
Homg (€*,E*) is a coherent sheaf of DG-Lie algebras.

As in Section 3, we can define the complex of O x-modules D% (X, £*) as the sub-
sheaf of Der; (Ox, Ox) x Hom} (E*,E"), whose elements are the pairs (h, u) such
that u(rm) — ru(m) = h(r)m, for every r € Ox,m € £*. For every i # 0, we have
Di(X, &%) = J—Comiox(e*, &*), while DY (X, &) is the limit of the set of anchor
maps DY (X, &) 5 Dery (0x, Ox) = Ox/4. Thus D} (X, ) is a coherent sheaf of
DG-Lie algebras and there exists a short exact sequence of coherent sheaves of DG-Lie
algebras over X/A:

(5.2) 0 —> Homg, (E%,E") — D(X,E") — Ox/a.

According to Lemma 3.1, the anchor map D (X, £*) 5oy /4 is surjective whenever

every sheaf &/ is locally free. Analogously to Remark 5.1, for every open affine subset
U c X, wehave D4 (X,E*)(U) 2 Da(Ox(U), E*(U)).

It is well known that, for every bounded complex £* of locally free sheaves, we can
define the trace map

(5.3) Tr: Homg (€7, €") — Ox,
which is a surjective morphism of complexes of coherent sheaves: given
f € Homy, (E¥,€%),

Tr(f) =0fori#0.If i = 0, then f is the datum of a finite sequence of morphisms of
locally free sheaves fj: &/ - &/, and Tr(f) = X;(~1)/ Tr(f;), where

Tr: Homo, (&7, &) - Ox
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is the usual trace map.

It is easy to verify that Tr is also a morphism of sheaves of DG-Lie algebras where
Ox is equipped with the trivial bracket. Since the differential on Homg (€%, E*) is
an adjoint operator, it is sufficient to prove that Tr([ f, g]) = 0 for every

feHom, (€%,€%) and geHom) (€%,&%).

This is clear if i + j # 0, and so it is not restrictive to assume i = —j. Since the trace
is Ox-linear, we can reduce this fact to the following statement from linear algebra:
let V;, i € Z, be a sequence of finite-dimensional vector spaces, with V; # 0 for at
most finitely many indices i. Then for every integer p and any two sequences of linear
maps,

fi Vi — Viip, gt Vi — Vip,

wehave ¥, (-1)" Tr(fi-pgi— (—l)ngi+Pﬁ) = 0. In fact, by a basic fact of linear algebra
we have Tr(fi_,gi) = Tr(gi fip) for every i, and then

Z(_l)i Tr(fi-pgi — (_I)Pzgz#pfi) = Z(_l)i Tr(fi-p&i) - (_I)H‘D Tr(gi+pfi)
= 2 (=)' Tr(fi-pgi) - (-1)' Tr(gi fi-p) = 0.

Denoting by Homyg, (€%, E*), the sheaf of traceless endomorphisms of €%, i.e.,
the kernel of (5.3), and by Ext (F, F), its hypercohomology groups, there exists a
long exact sequence
(5.4) - — Exti(F,F) — H'(X,0x) — Ext%(F,F)o

— Ext%(F,F) - HA(X, Ox) —> -

By the results of Section 2, we can extend the trace map Tr: J—(om%x (E%,&%) - Oy
to a Lie algebra morphism

(5.5) Tr: DY (X, E*) —> Da(X,det£Y).

Assume that the finite complex £ is nonzero only for degrees between # and m; then
by definition, an element ong (X, E*) is given by a sequence (h, uy, ..., u, ), where
h € Ders(Ox,0x) and (h,u;) € Da(X, &) for every i. Taking the trace of every
pair (h,u;) (Definition 2.8) we obtain a finite sequence of derivations of pairs

(h,vi) € Da(X,det &), v =Tr(u;),i=n,...,m.
Then for every odd index i, we consider the transpose (2.3):
(hvi)T e Da(X, (det&)™).
Since
[(h,vo), (hyv1)T] € Du(X,detE) XDers (0x,0x) Da(Xs (deteH)™),
we can apply the Lie morphism ® of Lemma 2.6 in order to obtain an element

Tr(h, ug,up) € Dy(X, (det E%) ® (det EN) ™).
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It is now clear that, with a finite number of constructions as above, we have a well-
defined element

Tr(hythns - i) € Da(X, det €%) = Dy (X, @ (det €)D",

Moreover, we have also proved that all the maps considered above,

Da(X, ) — Da(X,det&), TT"Da(X,det&) —> D4(X,det£%),

i
are morphisms of sheaves of Lie algebras. Keeping in mind that
DY(X,E%) = [T"Da(X,E7), D)(X,E%) =Hom) (E%,€%), j#0,
i
we can glue together (5.5) and (5.3) and obtain a morphism of sheaves of DG-Lie
algebras
(5.6) Tr: DL (X, E7) — Da(X,detEY).

The following theorem is now clear.

Theorem 5.6  For every bounded complex of locally free sheaves £* on a scheme X of
finite type over a noetherian ring A, there exists a commutative diagram of morphisms
of coherent sheaves of DG-Lie algebras

0 — Homy (E*,8%) —= D}(X,E*) — = Ox/y —>0

0 Ox Da(X,detE*) —2> @x/y —>0

6 A Short Review of Deformation Theory via DG-Lie Algebras

The main references for this section are [6,8,17-19]. From this section, and throughout
the rest of the paper, we work over a fixed algebraically closed field K of characteristic
zero. We denote by Set the category of sets and by Artx the category of Artin local
K -algebras with residue field K, and by DGLA = DGLAk the category of DG-Lie
algebras over K. Unless otherwise specified, for every local algebra A € Artx, we
denote by my its maximal ideal.

Given a DG-Lie algebra L over K, we can define two functors of Artin rings. The
Maurer-Cartan functor MCy: Artg — Set is defined by

MC(A) = {xeL'®my | dx + 1[x,x] =0},

where the DG-Lie structure on L®m 4 is obtained by scalar extension from the DG-Lie
structure on L. The deformation functor Def: Artg — Set is

MC.(A) {xel'®@my|dx+[x,x]=0}
gauge exp(LO ®my)

DefL (A) =

>
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where the gauge action *:exp(L® ® my) x MC1(A) - MCL(A) may be defined by
the explicit formula

n
e’ xxi=x+ [a.7] ([a,x] —da).
n>0 (1’1 + 1)'

A quasi-isomorphism of DG-Lie algebras is a morphism that induces an isomor-
phism in cohomology. Two DG-Lie algebras L and M are said to be quasi-isomorphic
or homotopy equivalent if they are equivalent under the equivalence relation gener-
ated by quasi-isomorphisms.

By standard facts about deformation functors [18,19], it is known that the tangent
space to Def is isomorphic to H'(L) and that H?(L) is an obstruction space.

Remark 6.1 Everymorphism L — M of DG-Lie algebras induces a natural transfor-
mation of the associated deformation functors Def; — Def ;. A basic result [19, Tho-
erema 1.5] asserts that if H°(L) — H°(M) is surjective, H'(L) - H'(M) is bijective,
and H*(L) — H?*(M) is injective, then Def — Def ) is an isomorphism.

Lemma 6.2 Let L be a DG-Lie algebra over a field of characteristic 0 with H'(L)
finite-dimensional. If the natural map

N°={xeL’|dx=0,[x,L']=0} — H°(L)

is surjective, then Def is pro-representable.

Proof Notice first that N° is a Lie subalgebra of L°. Then define N’ = L’ for every
i > 2 and choose a vector subspace N' c L! such that L' = d(L°) @ N'. The inclusion
of DG-Lie algebras N = @®,59 N' — L satisfies the condition of Remark 6.1 and then
Def = Defy. On the other side, the gauge action on MCly is trivial and then Defy =
MCy is pro-representable by Schlessinger’s theorem [23, Theorem 2.11]. ]

Let Apon be the category whose objects are finite ordinal sets and whose mor-
phisms are order-preserving injective maps between them. A semicosimplicial dif-
ferential graded Lie algebra is a covariant functor Apmen — DGLA. Equivalently, a
semicosimplicial DG-Lie algebra g* is a diagram

- _—
Jo—=gi—=0h—< -,
where each g; is a DG-Lie algebra, and for each i > 0, there are i + 1 morphisms of
DG-Lie algebras 0g ;:gi-1 = @i,k =0, ..., i,suchthat dx,1,;110;,; = 0y,i+10k,i> for any
k > 1. Here we use the non-standard notation of lower indexes for a semicosimplicial
object, since the upper indexes are already used to denote degrees.

We denote by Tot(g”) the image of a semicosimplicial differential graded Lie al-
gebra g* via the Thom-Whitney totalization functor Tot: DGLA*"" — DGLA. We
refer to [3, §], [6, §3.2], [7, §3] and [15, §3] for an explicit description of the DG-Lie
algebra Tot(g”) and its properties. Here, we remind only that there exists a quasi-
isomorphism of complexes of vector spaces between Tot(g”) and the total complex
associated with the cochain complex C(g”) (considering any g* as a semicosimpli-
cial object in the abelian category of DG-vector spaces). As a consequence of this fact,
if f: g® — h® is a morphism of semicosimplicial differential graded Lie algebras such
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that f:g; — b; is a quasi-isomorphism of DG-Lie algebras for every i, then the image
Tot(f): Tot(g*) — Tot(h*) is a quasi-isomorphism.

Considering the DG-Lie algebra Tot(g” ), we can naturally associate with any semi-
cosimplicial DG-Lie algebra g* the functor of Artin rings Defrpy(ga): Artg — Set.
According to [6, Definition 3.1, Definition 3.3], we can also associate with g2 two
other functors of Artin rings. The former Z!_(exp g*): Artx — Set is defined, for any

A € Artg, by
dl + %[Z,l] =0, al,ll =e™ % 80,11,
0g,2M ® =0 x11 ® 03,
1 A _ 1 0 > > >
Zsc(expg )(A) = (l’m) € (90 x gl)®mA =dn+ [az’zao)ll’n]

for some n € g;' ® my
The latter H (exp g*): Artg — Set is defined, for any A € Artg, by
Hi (expg®)(A) = Zc(expa®) (4)/~,

where two elements (o, 719 ) and (I, m;) € ZL_(exp g®)(A) are equivalent under the
relation ~ if and only if there exist elements a € g°; ® m4 and b € g;* ® m4 such that

e’ xly=1, -mpe—0y,aem;edgia=db+][0do1l,b].
Theorem 6.3 Let g* be a semicosimplicial DG-Lie algebra such that H(g;) = 0 for
all i > 0 and j < 0. Then there exists an isomorphism of functors of Artin rings
(6.1) Def ror(ga) — Hyo(exp g*).
Proof See [6, Theorem 4.10]. [ |
Remark 6.4 If each g; is concentrated in degree zero, i.e., g* is a semicosimplicial
Lie algebra, then the functor H!_(exp g*) has an easier explicit description [7, §1]:

H! (expg”®): Artg — Set

doX ,—01X ,02X
XeEgOmy | e’ e Me% =1
Hl (expa)(4) = 1 | 3

~

where x ~ y if and only if there exists a € gy ® my4, such that e=%19¢*¢%% = ¢,

Let £ be a coherent sheaf of DG-Lie algebras over an algebraic variety X and U =
{U;} an affine open cover of X. In this case, the Cech (double) complex C(U, £) of
L is exactly the total cochain complex associated with the semicosimplicial DG-Lie
algebra

L(U): HiL(Ui)—>Hi,jL(Uij):>>Hi,j,kL(Uijk)—> )

i, £(Uj,..i, ) are given by

ah('x)io.“ik = xin---l";"'ik‘U4 L0 fOr h = 07 cee k-
oy
For notational convenience, we denote by Tot(U, £) the Thom-Whitney totaliza-
tion of the semicosimplicial DG-Lie algebra £(U). Note that in this case

(6.2) H'(Tot(U, L)) = H(C(U, £)) = H (U, L) = H' (X, £).
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Remark 6.5 For any coherent sheaf of DG-Lie algebras £, the quasi-isomorphism
class of Tot(U, £) does not depend on the choice of the affine open cover [6]. If L — G
is a morphism of coherent sheaves of DG-Lie algebras that is a quasi-isomorphism
at every stalk, then for any affine open cover U, the induced morphism of DG-Lie
algebras Tot(U, £) — Tot(U, G) is a quasi-isomorphism of DG-Lie algebras.

This motivates the following definition.

Definition 6.6 Let £ be a (quasi) coherent sheaf of DG-Lie algebras over an al-
gebraic variety X. Suppose that, for an open affine cover U of X (and so for all),
the DG-Lie algebra Tot(U, £) controls a given deformation problem. Then we also
say that £ controls the deformation problem. Note that in this case H'(X, £) is the
tangent space and H?(X, £) is an obstruction space for the controlled deformation
problem.

7 Deformations of Pairs (Scheme, Coherent Sheaf)

Henceforth, unless otherwise specified, we denote by X a scheme of finite type over
the field K.

Definition 71 Let F be a coherent sheaf on X. An infinitesimal deformation of the
pair (X, F) over A € Artx is the data (X4, F4), where

+ X4 is an infinitesimal deformation of X over 4, i.e., a pullback diagram

X— X4

L

Spec K —— Spec A,

where 7 is flat;
¢ J4 is a coherent sheaf of Ox,-modules on X4, flat over A, and a morphism
F4 — T, inducing an isomorphism F4 ®0,, Ox - 7.

Definition 72 Let J be a coherent sheaf on a scheme X. Two infinitesimal de-
formations (X4, F4) and (X', F,) of the pair (X, F) over A are isomorphic if there
exist an isomorphism of deformations f: X4 — X', and an isomorphism F4 — f*F)
of coherent sheaves of O, -modules.

We recall that the trivial infinitesimal deformation of (X, F) over A € Artx is
given by the pair (X x Spec A, F ®0, Oxxspeca =T ®x A).

An infinitesimal deformation of (X, F) is locally trivial if it is locally in X isomor-
phic to the trivial infinitesimal deformation.

Definition 7.3 Let F be a coherent sheaf on a scheme X. The functor of infinites-
imal deformations of the pair (X, J) is the functor Def x ): Artx — Set, where
Def (x,5)(A) is defined to be the set of isomorphism classes of deformations of the
pair (X, F) over A. The functor of locally trivial infinitesimal deformations of the
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pair (X, ¥) is the functor Def(lg(,g) : Artg — Set, where Def(lg()g)(A) is defined to
be the set of isomorphism classes of locally trivial deformations of the pair (X, J)
over A.

Remark 74 If X is a smooth variety, then any infinitesimal deformation of X is
locally trivial. If J is a locally free sheaf over a variety X, then any infinitesimal de-
formation of the sheaf islocally trivial. Then there exists an isomorphism of functors
Def & 7 2 Def x gy, for alocally free sheaf J on a smooth variety X.

7.1 Locally Trivial Infinitesimal Deformations

Let us analyse the data that define a locally trivial infinitesimal deformation (X4, F4)
of (X,F) over A. Let U = {U;};1 be an affine open cover of X. The deformation
X4 of X is trivial over every affine open subset; thus for any i € I, there exists an
isomorphism a;: Ox(U;) ® A - Ox, (U;). On every U; x Spec A, we have the sheaf
Flu, ® A of Ox(U;) ® A-modules. Since «; is an isomorphism, we can view Fjy, ® A
as a sheaf of Ox, (U;)-modules; the Ox, (U;)-modules structure on JFy, ® A is given
by s-x = a;~'(s)x, forany s € Ox, (U;) and x € Fjy, ® A.

To give a locally trivial deformation F4 of the sheaf F over X4, we need to glue the
sheaves J|y, ® A of Ox, (U;)-modules over double intersections. The isomorphisms
aiju,;: Ox(Uij) ® A - Ox,(U;;j) and ocleU!OX(Uij) ® A - Ox,(Uij;) induce a

structure of sheaf of Ox, (U;;)-module on the sheaves F|y, ® A, and Fjy, ® A
J

|U; |Ui;°

respectively. To glue these sheaves, we need an isomorphism

Yij: H:IUi ®AU,~j - §|Ui ®A

of Ox, (Ujj)-modules, i.e., for all s € Ox, (Ujj), ¥ij(s - x) = s - y(x). By the explicit
definition of O, (U;;)-modules structures, we have

|Ui;

yij(sx) =yij(ay, (s)x) and  s-yi(x) = o5 ()i ().
Since a;|y,, is an isomorphism, there exists t € Ox(U;;) ® A such that s = a;)y, (1).

Therefore, the linearity reads as follows: y;;(tx) = a j[l}‘jailUij (t)yij(x), for any

te Ox(U,'j) ®A and xc¢ 3:|Uij ® A.
In conclusion, in order to define a locally trivial infinitesimal deformation of (X, F)
over A, it is enough to give, for any U, an automorphism 6;; = « j|_l}”ai|Uii of
ij
Ox ( Uij) ®A

satisfying the cocycle condition on the triple intersections, an automorphism y;; €
Homg (F|y,, ® A, Fjy,; ® A) satisfying the cocycle condition on the triple intersections
and such that y;;(tx) = 0;;(¢)(x), forany t € Ox(U;j) ® Aand x € Fjy,, ® A.

Since we are in characteristic zero, according to Lemma 2.10, we can take the log-
arithm and conclude that (6;j,y,;) = e*, where x;; € Dk (X, F)(U;j) ® my; the
condition of gluing on triple intersections is equivalent to

e*re ke = 1 e exp(Di (X, F)(Uijk) ®my), Vi, j kel
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Asregards the isomorphisms, suppose that (X4, F4) and (X/,, F, ) arelocally triv-
ial isomorphic infinitesimal deformations of the pair (X, F) over A. Then there exist
an isomorphism of deformations f: X4 — X/, and an isomorphism ¢: F4 — f*F/, of
coherent sheaves of Oy, -modules.

Let U = {U, } ;1 be an affine open cover of X. Then for each i € I, there exists an
induced automorphism of Ox(U;) ® A:

-1

1. ; fv, a!
bi=af fighai: Ox(Up) ® A5 0, (U;) — Oxr, (Us) —— Ox(U;) ® A.

Therefore, a'b; = flz,l i, and so on U;; we have
1

1 1 1 a1
(aibi) " (ajb))u, = ai oo, @5 = @i %,

This implies b;‘e;.,.bj =0jiie, 0= bj_IG;jb,- , where 0;; = «;'a; and 621- = oc;-_locﬁ
are the automorphisms of Ox (U;;) ® A corresponding to the deformations X4 and
X', respectively.

As regards the sheaves, ¢y, : Fajy, > f*Fyy, is an isomorphism of Ox, (U;)-
modules for any i. The structure of Ox,-modules on F 4|y, is given by a;, while the
structure on f*?g‘ui isgivenby s-x = &}~ f1(s)x, for every s € Ox, (U;). Therefore,
¢y, must satisfy ¢y, (sx) = s¢y, (x), forall s € O, (U;), where

$u,(sx) = pu, (@ '(5)x)  and  spu,(x) = @] f7(s)$u, (x).
Since a; is an isomorphism, there exists t € Ox(U;)®Asuch thats = «;(t). Therefore,

we have ¢y, (tx) = ocg_l(f‘l((xi(t)))qﬁui (x) =bi(t)pu,(x), forany t € Ox(U;) ® A
and x € F) Uy, ® A. Moreover, let

yij € Homg (Fy, ® A, Jjy, ® A) and y}; e Homg (Fy, ® A, Ty, ® A),
the automorphism of Oy, (U;;)-modules corresponding to the deformations 4 and
F',, respectively. Then the following diagram must commute:

¢i|u,-}-

Fiv, @ Ay, ———Fju, @ Ay,

%il l”’gi
‘Pi\u,»j

Slej ®A|Uij %?‘Uj ®A

|Ui;

i.e., w;j¢i|Uij = ¢j\Uijwij’ that is (ﬁjl}}ijlllgj(/)i‘Uij = 1//,]

In conclusion, let (X4, F4) and (X';, F,) be two locally trivial isomorphic defor-
mations of the pair (X, J) over A, corresponding to the elements {(0;;, y;;)} and
{(6;,yi;)}. The isomorphism given by f: X4 — X} and ¢: T4 — f*TF) corre-
sponds to the elements (b;, ¢;) € Da( Ox(U;) ® A, F(U;) ® A), for any i, such that
bi_legjbj = Gij and ¢i_lw;j¢j = I//,'j, for any i and ]

Since we are in characteristic zero according to Lemma 2.10, we can take the log-
arithms and write (b;, ¢;) = e%, where a; € Dk (X,F)(U;) ® my. The condition
of gluing is equivalent to e™% ¢*ie% = ¢%ii, where {e*i = (8ij,vij)} and {e¥i =

G

https://doi.org/10.4153/CJM-2018-027-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-027-8

1232 D. Iacono and M. Manetti

Theorem 7.5 Let F be a coherent sheaf on a scheme X of finite type over the field K.
Then the coherent sheaf of Lie algebras D (X, F) controls the problem of locally trivial
infinitesimal deformations of the pair (X, F).

Proof According to Definition 6.6, we must prove that for any affine open cover
U = {U;} of X, there exists an isomorphism of functors of Artin rings
1
Def o1, oy (x,9)) — Def(%,?) .

This follows from the previous consideration and from the explicit description of the
functor Def (1, vy (x,5)) given in Remark 6.4: for every A € Arty , we have

{{xi-} €I Dr (X, F)(Uij) @ my | e¥ike  ike¥ii = 1}
Def o1, py (x,5)) (A) = : : ! ,

~

where x ~ y if and only if there exists {a;} € [; Dk (X, F)(U;) ® mu such that
e i oXij o MlUy = pyij [}
Example 7.6 Let Z be a closed subscheme of an algebraic scheme X and denote
by ®x(—logZ) c @y the subsheaf of tangent vector fields that are tangent to Z. It is
known that the sheaf of Lie algebras ® x (- log Z) controls the locally trivial infinitesi-
mal deformations of the pair (X, Z) [14]. By the same argument used at the beginning
of Section 3, we have two morphisms of sheaves of Lie algebras

Ox(-logZ) 25 Dy (X,07) — Ox(-logZ), aoA=Id.

Indeed, the image of the anchor map « preserves the annihilator of the sheaf O and,
conversely, every derivation h preserving the ideal sheaf of Z induces a derivation of
pair (h, h).

The geometrical interpretation of these morphisms is clear: the morphism A con-
trols the natural transformation that associates with a locally trivial deformation of
(X, Z) the corresponding locally trivial deformation of (X, Oz). The anchor map «
associates a locally trivial deformation of the pair (X, 0z) with the corresponding
locally trivial deformation of (X, Supp Oz).

7.2 Infinitesimal Deformations

Next we analyse all the infinitesimal deformations of a pair (X, F). We assume that X
is smooth and projective, so that every infinitesimal deformation of X is locally trivial
and every coherent sheaf on X has a finite locally free resolution.

Let £* — J be a finite locally free resolution of J, i.e., an exact sequence

d

0—segm dgmn 441 d 0 g Ly,

where &7 is a locally free sheaf for any j. According to Example 5.5, we can consider
the sheaf of DG-Lie algebras D (X, £*) associated with the complex £*.

Lemma 7.7  Let F be a coherent sheaf on a smooth projective variety X and f:E* - F
and g:G* — T two finite locally free resolutions of F. Then for any open affine cover
U = {U;} of X, the DG-Lie algebras Tot(U, D (X, €*)) and Tot(U, D (X, G*)) are
quasi-isomorphic.
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Proof Since the variety is smooth and projective, by the Hilbert Syzygy Theorem,
there exist two bounded complexes H* and N* of locally free sheaves and a commu-
tative diagram of complexes

0——E&" 5" H* N* 0
h
f+g l
F

such that h: H* — J is a quasi-isomorphism; in particular, the induced morphisms
&* > H* and §* - H* are quasi-isomorphisms.

Let U be an affine open subset of X. Since the sections of a locally free sheaf of an
Ox-module over U is a projective O x(U)-module, the injection

E(U)® G (U) — H*(U)

is a cofibration, since H*,N* are bounded complexes and therefore 3*(U), N*(U)
are cofibrant complexes of Ox (U )-modules. Since U is affine, the maps

E(U)e S (U) — F(WU) and H*(U) — F(U)
are quasi-isomorphisms and then the induced maps
E(U) — H*(U) and G*(U) — H*(U)

are trivial cofibrations.

Then we have the following diagram of morphisms of coherent sheaves of DG-Lie
algebras:

D (X, %) — DL (X, & L H*) — DL (X, H*)

— Di (X, 9" -5 H*) — D (X, 9).

According to Propositions 5.1 and 3.4, for every open U; € U, we have a diagram of
quasi-isomorphisms of DG-Lie algebras

Dz (X, & L 50)(U)) D3 (X, 5 -5 1) (U)
D5 (X, €)(U;) D, (X, 3)(U;) D3 (X, §)(U))

Finally, applying the Tot functor, we conclude that
Tot(U, D (X,€%)) and Tot(U,Dg (X,5%))
are quasi-isomorphic DG-Lie algebras. ]

Definition 7.8 Let J be a coherent sheaf on a smooth projective variety X.

For any i € Z, we define the coherent sheaves ‘J'é x,5) to be the cohomology
shgaves of Dy (X, E*) for a finite locally free resolution £* — F of J: Té.x,?) =
H(Dj (X,€*)). Similarly, we define the hyper-cohomology groups Tix,7)
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H! (X, D} (X,€*)). Lemma 7.7 implies that the sheaves ‘.TEX,?) and the groups T("X)Sr)
are well defined, since they do not depend on the choice of the resolution.

The short exact sequence (5.2) of complexes of coherent sheaves
0 — Homg (E7,€") — D (X,€") — Ox — 0
gives a hypercohomology long exact sequence

(7.1)
0 —> Extg((ff,?) — T(OX)?) — HO(X>®X) — Extg((?, 3") — T(IX,S»”) — e

By the hypercohomology spectral sequence, we have

P-q _ 9 P+q
EDT = HP (X, Tly ) = The .

According to Example 3.6, we have that ‘J'EX,?) = 8xt€9x(§, F), for i # 0,1, and we
have an exact sequence of sheaves

0 — Homo, (F,F) — Ty 5y — Ox — Exty (F,F) — Tixo) — 0.

In particular, the sheaf ‘J'é X,9) vanishes in the locus where J has projective dimen-
sion < i.

7.3 Local Case

First, we analyse the infinitesimal deformations of the pair (X, F) in thelocal case. Let
X = Spec R be smooth and affine over K and F = M, where M is a finitely generated
R-module. Let (E*,d) be a finite complex of projective R-modules such that the
sequence

0—pgm Lpma 4 g1t dp Moo

is exact. Finally, consider the DG-Lie algebra D (R, E*).

Proposition 7.9  In the notation above, the DG-Lie algebra Dy (R, E*) controls the
infinitesimal deformations of the pair (X, F), i.e., there exists an isomorphism of defor-
mation functors DefDEz (R.E*) = Def (x 7).

Proof The variety X = Spec R is smooth and affine and so it has only trivial infinites-
imal deformations [25, Theorem 1.2.4]. Therefore, for any A € Artx , any infinitesimal
deformation of the pair (X, F = M) over A is of the form (X x Spec A, F4 = M),
where M, is an R® A-module, that is, A-flat, together with a morphism 7: M4 — M,
inducing an isomorphism M4 ® 4 K - M [6, §1].

The flatness condition allows us to lift the relations; therefore, any deformation M4
of M over A corresponds to an exact sequence E* ® A — M, that reduces to

E*— M

when tensored with K, i.e., any deformation M4 of M over A corresponds to a de-
formed complex (E*®A, d 4 ) and any of these complexes is of the form (E* ® A, d+x),
for x € MCDE; (R,E*) (A) = MCHOmﬁ; (E*,E*) (A)
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Two deformations (X x Spec A, 4 = M4) and (X x Spec A, F/, = M',) of (X, M)
over A are isomorphic if there exist an isomorphism of deformations

f: X x Spec A — X x Spec A

and an isomorphism F4 - f*F’, of R ® A-modules.

In particular, the isomorphism of the modules lifts to an isomorphism of the de-
formed complexes and vice versa. Then an isomorphism is given by a pair (6, y)
where 0: R® A - R ® A is an isomorphism that lifts the identity of R and

vi(E*®Ad+x) — (E*®A,d+x')

is an isomorphism lifting the identity, such that w(rm) = (r)y(m), foranyr € R® A
andany m € E* ® A.

As in Lemma 2.10, for any A € Artx the group exp(DY (R, E*) ® m,) is naturally
isomorphic to the group of A-automorphisms of the pair (R ® A, E* ® A) lifting the
identity on (R, E*); therefore, it corresponds to the group of the isomorphisms of
deformations. [ |

Example 710 (cf. [5, Proposition A3]) Assume that X is a smooth surface, D c X a
reduced divisor, and J a sheaf of O p-modules. Assume that for every point p € D, the
stalk F), is a torsion-free Op, ,-module. Then by the Auslander-Buchsbaum Theorem
[21, Theorem 19.1], the projective dimension of every stalk of the sheaf JF is at most 1.
In particular, TéX,IT) = Exty (F,F) = 0, for every i > 2.

If X is affine, we have Ext% (F,F) = HO(SxtéX (F,5)) =0, and so the pair (X, F)
has unobstructed deformations.

7.4 Global Case

Finally, we analyse all the infinitesimal deformations of a pair (X, ). Essentially, we
must glue together the computations about the locally trivial infinitesimal deforma-
tions (Theorem 7.5) and the deformations in the local case (Proposition 7.9).

Theorem 7.11 Let J be a coherent sheaf on a projective smooth variety X and let
&* — T be a finite locally free resolution of F. Then the coherent sheaf of DG-Lie alge-
bras Dy (X, £*) controls the problem of deformations of the pair (X, F). In particular,
T(lx’g) is the tangent space and T(ZX’?) is the obstruction space for Def x ).

Proof The proof follows the general lines already used in [6]. According to Defini-
tion 6.6, we need to prove that for any affine open cover U = {U;} of X, there exists
an isomorphism of functors of Artin rings DefTot(u,D% (x,e+)) = Def(x 7).
According to the isomorphism given in (6.1), it is enough to show that there ex-
ists an isomorphism H} (exp(Dj (X,E*)(U))) — Def(x 5. Therefore, for any
A € Artg, we need to prove that every element in Z} (exp(Dy (X, €*)(U)))(A)
corresponds to an infinitesimal deformation of the pair (X, F) over A and that two
elements are equivalent if and only if the corresponding deformations are isomor-
phic. This follows from the local study analysed in Proposition 7.9 and a gluing pro-
cedure as in Theorem 7.5. Indeed, an element (I, m) € Z! (exp(Dy (X, €*)(U)))(A)
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gives a deformation of the pair (X, F) as gluing of deformations on each U;. We only
stress the fact that the gluing condition on the isomorphisms involves an element in
I,k ﬂ-ComE)lX(S*, E7)(Uijk) ® my; this is due to the fact that we do not need to
glue the deformed complexes but rather their cohomology to get a sheaf (see [6, §2]
for more details about this). As regards the equivalence relation ~, the first condition
is the isomorphism of the induced deformation on each open set, the second condi-
tion gives the gluing of the local isomorphism to obtain a global isomorphism of the
induced deformations.

More explicitly, an element (1, m) € Z! (exp(Dy (X, €*)(U)))(A) is given by the
sequences

I={Li} e [1Homg, (£*,€)(U;) ®@my,

m = {(h,],ll,])} € H‘D% (X,g,*)(U,]) ® my
L]

such that

(1) forany i, the element /; satisfies the Maurer—Cartan equation, i.e., d1;+3[1;, I;] =
0)

(2) forany i and j, the restriction of /; and [; to U;; are gauge equivalent under m;;,
ie., li|U,~j =e™ii % lj|Uij’

(3) for any i, j, and k, we have the condition:

hiklu,, ® —hiklu,, ® hijlu, =0,

Uikl v, ® ~siklug ® tijlug, = [+ Ll mijeds

for some n = {n;jx} € [1; k fHomgx(E*, E7)(Uijx) ® my.

According to the local study, conditions (1) and (2) imply that every I; defines a de-
formation of the pair (X, J) on U; and that the deformations induced by /; and /; on
Ui; are isomorphic. Finally, the third condition implies that we can glue together the
local deformations to get a global deformation of the pair (X, F) over A. Indeed, the
former condition is the gluing of the locally trivial deformation of U; over the double
intersections to obtain a deformation of X over A; the latter regards the gluing of the
local deformations of the sheaf . We only stress the fact that the isomorphisms that
glue the restrictions of the deformed complexes (€7, ® A, d+1;) and (€ U, @A, d+1 i)
for any i and j, satisfy the cocycle condition only up to homotopy. Indeed, we do not
need to glue the restriction of the deformed complexes of sheaves together but rather
their cohomology. Therefore, the gluing isomorphism must satisfy the cocycle con-
dition only up to homotopy.
As regards the equivalence relation, suppose that

(lo = {lo,i}> mo = {(ho,ij> 40,ij) })

and

(h = {hi}smy = {(hyijsu1,i7) }) € Zg (exp(Di (X, €*)(U))) (A)

https://doi.org/10.4153/CJM-2018-027-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-027-8

On Deformations of Pairs (Manifold, Coherent Sheaf) 1237

are equivalent under the relation ~. Then we need to prove that the induced deforma-
tions are isomorphic. The equivalence implies the existence of

a={givi} e[ D (X, ") (Vi) ®my
b={b;;} e [1Homy (E*,E*)(Uij) ®my
irj

such that
6‘1 * lO = ll) —Mmp ® —a,-|Uij e e aleij =db+ [lo,leij, b]

The first condition implies that the deformations of the pair induced by Iy and /; are
isomorphic locally on U;; the second condition provides the gluing of the isomor-
phisms along double intersections. (We have a strict cocycle condition for the iso-
morphisms of the deformations of X and, as before, we have a homotopy cocycle
condition for the gluing of the deformed complexes.)

As regards the tangent and obstruction spaces for Def x ), we have that

H'(Tot(U, Dy (X, €%)))

is the tangent space and H?(Tot(U, D (X, £*))) is an obstruction space. According
to Definition 7.8 and to equality (6.2), we have that

H' (Tot(Dg (X, €%)(W))) = H' (X, D (X, €")) = Tiy.)- n

Remark 712 In the situation of Theorem 711, consider the sheaf of truncated
DG-Lie algebras

00D (X, &) = D (X, €") @ Hompy (€%,€%) c D (X, E").

i<0
We have seen in Example 3.6 that the natural map Dx (X, £*) — Dk (X, F) induces
a surjective quasi-isomorphism of coherent sheaves of DG-Lie algebras

020D (X, &) > Dy (X, F).

Therefore, the sheaf of truncated DG-Lie algebras o<oD5, (X, £*) also controls the
locally trivial deformations of the pair, and the obvious natural transformation

Def(l;(’:}:) —> Def(x’g:)

is induced by the inclusion o4y D (X, ") ¢ D (X, E).
We are now ready to prove the last item of Theorem 1.2.

Proposition 7.13  Let J be a coherent sheaf on a projective smooth variety X. As-
sume that H(X,®x) = 0 and Ext}(F,F) = K. Then the functor Def x 5 is pro-
representable.

Proof Let £ — JF be a finite locally free resolution of F. According to (7.1) the
vector space T(OX, ) 1 one-dimensional generated by the identity on the complex £*.
Therefore, for every open affine cover U the vector space H’(Tot(U, D (X,€*))) is
one-dimensional and generated by the identity on EI*Ui04»»fk for every k > 0 and every
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io, ..., i. In particular the DG-Lie algebra Tot(U, Dy (X, €*)) satisfies the condi-
tion of Lemma 6.2 and the conclusion follows by Theorem 7.11. ]

Let X be a projective smooth variety, J a coherent sheaf on X, and £* — JF a finite
locally free resolution. By definition det I’ = det £*, and we have defined a morphism
of sheaves of DG-Lie algebras (see equation (5.6)):

Tr: Dy *(X, ") —> Dx (X, det F).

By Theorem 711, the sheaf Dg * (X, £*) controls the deformations of the pair (X, F),
while the sheaf D (X, det F) controls the deformations of the pair (X, det F).

We can interpret this morphism as a natural transformation of deformation func-
tors. Some deformations of the pair (X, F) correspond to deformations of X and of
the complex €*; then with these deformations we can easily associate a deformation of
the pair (X, detF = det £*), considering the determinant of the deformed complex.
In general, not all the deformations of I correspond to deformations of the complex,
but this is true only locally on X and the deformations of the complex glue only in
cohomology. Anyway, we can still define a deformation of the pair (X, det F), as we
see in the following lemma.

Lemma 714 Let X be a projective smooth variety and I a coherent sheaf on X. Then
there exists a commutative diagram of deformation functors

Tr

Def (x,7) Def (x et 7)

~ 7

DefX

where the diagonal arrows are the forgetful natural transformations, and the natural
transformation Tt is induced by the trace map Tr: Dy (X, €*) - Di (X, detdF), for
any finite locally free resolution € — J.

Proof LetU = {U;} be an open affine cover for X such that every sheaf £* is free
on every U;. Fix A € Artg and consider a deformation (X4, 4) € Def(x 5 (A).
According to Theorem 7.11, this deformation corresponds to an element

(1,m) € Ze (exp(Di (X, €)(W)))(A),
where
I={l;} e [IHomy, (E,E%)(U;) ® my,
i
m = {(h,'j, u,-j)} € HD% (X,E*)(U,]) ®@my.
ij

In particular, for any i, j, and k, we have the following conditions:
Ujkluy ® ~tikluy, ® tijlug = [d+ Liluo nijed,

for some n = {n;jr} € I1; x Homg, (E*,€*)(Uijk) ® ma. Applying the trace mor-
phisms to m, for any i and j, we have

Tr(hij,u,-j) = (h,-j,Tr(u,-j)) € DHO( (X, detff)(Uij) ® my
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such that
Tr(ujklu,, ) ® = Tr(uiklu,, ) ® Tr(uijlu,,) = Tr([d + ilu,, nije]) = 0.
This implies that the element
Tr(m) = {(hij, Tr(uij)} € [T D (X, det F)(Usj) @ my
irj
satisfies the cocycle condition on triple intersections and so, by Theorem 7.5, it defines
a deformation of the pair (X, det F) over A.

An analogous computation shows that the isomorphism class of the induced defor-
mation of (X, detF) does not depend on the isomorphism class of the deformation of
(X, ). Indeed, let (X4, F4) and (X', F’,) be isomorphic deformations correspond-
ing to the elements (ly = {lo,i }, mo = {(ho,ij> 4o,ij)}) and

(h={hi}smy = {(hy,ijsu1,i5)}) € Zo(exp(Di (X, ) (U))) (A).

According to Theorem 7.11, the isomorphism corresponds to the existence of
a= {gi’vi} € H ‘D](I)( (X, 8*)(Ul) ®my
1

b={bi;} etsl [ Homg, (E%,E*)(Uij) ®my
ij

such that
e% % lo = ll, —Mmgp e —ai|Uij e M e aleij =db+ [lo’j|Uij) b]
In particular, applying the trace morphisms for any i and j, we have
= Tr(mo) @ = Tr(a;y,) ® Tr(m;) ® Tr(aj‘U“) =0e DY (X,detF)(U;j) ®my.
ij

By Theorem 7.5, this implies that the induced deformations of (X, det F) are isomor-
phic. ]

Remark 7.15 Asaparticular case, if we only consider the deformations of a coherent
sheaf J on a fixed projective variety X, then trace induces a morphism of functors

Defs — Defger 5 -

In this case, the induced morphisms in cohomology are the ones already analysed
in [27, Theorem 3.23].

Theorem 716 Let X be a projective smooth variety and £* a locally free finite reso-
lution of a coherent sheaf F. Consider the linear maps Tr': Exti (F,F) - H' (X, Ox)
induced by the morphism of sheaves of DG-Lie algebras Tr: Homg, (€*,€*) — Ox.

If the map Tr" is surjective and the map Tr* is injective, then the induced natural
transformation Def (x ) — Def (x get ) is smooth. IfTr2 is injective and Def (x ge( 7)
is unobstructed, then Def (x 5y is unobstructed.

By the exact sequence (5.4), the above assumptions on Tr' and Tr* are equivalent
to assuming Extx (F, ), = 0.
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Proof By Theorem 5.6, there exists a commutative diagram with exact rows and
columns of morphisms of coherent sheaves of DG-Lie algebras

0 0

Hom}y (€%, 8*)g —— Hom} (£%,E%),

0 — Homjp (£*,€*) D (X, &%) —E— 0y 0
Tr Tr
0 Ox Dk (X, det &) —*— O 0
0 0

The hypothesis on the morphisms Tr: Homg, (€*,€*) — Ox implies that the same
holds for the morphisms induced by Tr: Dk * (X, £*) - Dg (X, detF). Then it is
enough to apply the Standard Smoothness Criterion [19, Theorem 4.11] to the corre-
sponding morphism of functors Tr: Def x 5 = Def x get 5)-

If Def (x get ) is unobstructed, then Tr?: T(ZX),JF) - T(ZX) det ) annihilates all the
obstructions and its injectivity implies that also Def x g is unobstructed. ]
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