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On Deformations of Pairs (Manifold,
Coherent Sheaf)

Donatella Iacono andMarco Manetti

Abstract. We analyse inûnitesimal deformations of pairs (X ,F) with F a coherent sheaf on a
smooth projective variety X over an algebraically closed ûeld of characteristic 0. We describe a
diòerential graded Lie algebra controlling the deformation problem, and we prove an analog of a
Mukai–Artamkin theorem about the tracemap.

1 Introduction

LetF be a coherent sheaf on a smooth projective variety X over an algebraically closed
ûeld of characteristic 0; in particularF admits a ûnite locally free resolution. _e sheaf
tracemorphism is deûned to be

(1.1) Tr∶HomOX(F,F)Ð→ OX ,

and the trace maps Tri ∶ExtiX(F,F) → H i(X ,OX) are themorphisms induced in hy-
percohomology by Tr [1, 16,27].

_e maps Tr1 and Tr2 have a clear interpretation in the setting of deformation
theory of F and of the determinant bundle detF of F. Every deformation of F in-
duces naturally a deformation of the determinant line bundle detF; the vector spaces
ExtiX(F,F), i = 1, 2, are the tangent and obstruction spaces of the functor DefF of
deformations of F; the spaces H i(X ,OX), i = 1, 2, are the tangent and obstruction
spaces of the functor DefdetF of deformations of detF. _en the maps Tri , i = 1, 2,
are induced by the natural transformation DefF → DefdetF .

Moreover, since we are in characteristic 0, the Picard functor is unobstructed and
this allows proving that Tr2 annihilates all the obstructions to deformations of F. As
a consequence, we have the following well-known result.

_eorem 1.1 (Mukai–Artamkin [1,22]) In the above situation, if Tr2 is injective, then
the deformation functor DefF is unobstructed. If Tr1 is surjective and Tr2 is injective,
then the natural transformation DefF → DefdetF is smooth.

Mukai and Artamkin assumed that F is simple. However, it is immediately clear
that this assumption is used only for the pro-representability of the functor DefF
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and hence for the existence of the universal deformation of F, while the proof of the
smoothness of the semi-universal deformation works also without the simpleness as-
sumption.

One of the main goals of this paper is to extend the previous result to the case
of inûnitesimal deformations of pairs (X ,F), consisting of deformations of both the
variety X and the coherent sheaf F.
As a ûrst result, we describe a well-deûned homotopy class of diòerential graded

Lie algebras associated with the deformations of the pair (X ,F).
For every quasi-coherent sheaf of DG-Lie algebras L∗ on an algebraic variety X,

RΓ(X ,L∗) is deûned, up to homotopy equivalence, to be the DG-Lie algebras of de-
rived sections and we shall say that a deformation problem is controlled by L∗ if it is
controlled in the usual way by the DG-Lie algebra RΓ(X ,L∗). A canonical represen-
tative for RΓ(X ,L∗) is given by the totalization, in the simplicially enriched model
category of DG-Lie algebras, of the cosimplicial space of Čech cochains of L∗ with
respect to any open aõne cover of X; see Section 6.
For a coherent sheaf F on a projective smooth variety X, it is known that the de-

formations of F are controlled by the sheaf of the DG-Lie algebra of endomorphisms
of any ûnite locally free resolution of F [6].

It is also known that if E is a locally free sheaf on a smooth variety X, then the
deformations of the pair (X ,E) are controlled by the DG-Lie algebra associated with
the sheaf of ûrst order diòerential operators on E with principal symbol [13, 20, 25].
For a general coherent sheaf F, the sheaf of diòerential operators on F is equally well
deûned [9, §16.8], but, in general, it isnot the right object controlling the deformations
of pairs.

_erefore, we ûrst introduce the right algebraic object associated with the defor-
mation problem; we shall call this object themodule of derivations of pairs. It extends
the sheaf of diòerential operators on F, involving a ûnite locally free resolution of F.
_is allows us to deûne a coherent sheaf of DG-Lie algebras over X controlling the
deformations of the pair (X ,F) (_eorem 7.11).

In particular, the cohomology groups T i
(X ,F)

of the associated DG-Lie algebra ût
into a long exact sequence:

⋅ ⋅ ⋅Ð→ ExtiX(F,F)Ð→ T i
(X ,F)

Ð→ H i(X ,ΘX)Ð→ Exti+1
X (F,F)Ð→ ⋅ ⋅ ⋅ ,

where ΘX denotes the tangent sheaf of X. In particular, we recover the well-known
fact that if Ext2X(F,F) = 0, then the natural transformation Def(X ,F) → DefX is
smooth, since it is surjective on tangent spaces (T 1

(X ,F)
→ H1(X ,ΘX)) and injective

on obstruction spaces (T2
(X ,F)

→ H2(X ,ΘX)).
_en we devote our attention to the natural transformations

Def(X ,F) Ð→ Def(X ,detF) Ð→ DefX .

In particular, we describe an extension of the trace maps to the DG-Lie algebra of
diòerential operators with principal symbol (_eorem 5.6).
Finally,we are able to prove the following result (_eorem 7.16),which is the analog

of_eorem 1.1, for deformations of pairs.
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_eorem 1.2 Let F be a coherent sheaf on a projective smooth variety X deûned over
an algebraically closed ûeld of characteristic 0. Consider the tracemaps

Tri ∶ExtiX(F,F)Ð→ H i(X ,OX).

(i) If the map Tr1 is surjective and the map Tr2 is injective, then the natural trans-
formation Def(X ,F) → Def(X ,detF) is smooth.

(ii) If Tr2 is injective andDef(X ,detF) is unobstructed, thenDef(X ,F) is unobstruc-
ted.

(iii) If H0(X ,ΘX) = 0 and Ext0X(F,F) = K , e.g., if F is simple, then Def(X ,F) is
pro-representable.

For instance, if F is a simple coherent sheaf [22, p. 101] of positive rank over a
surface S with trivial canonical bundle, then Tr1 is surjective, Tr2 is injective, and
therefore the natural transformation Def(X ,F) → Def(X ,detF) is smooth. When F is
locally free,_eorem 1.2was already proved in [13] by using transcendental methods,
and hence over the ûeld of complex numbers.

Our proof of_eorem1.2 is almost entirely algebraic and it relies on the the explicit
description of a DG-Lie algebra controlling the deformations of the pair (X ,F) and
the extension of the tracemaps.
Another derived extension of the determinant map was introduced in [24] from

the derived stack of perfect complex to the derived stack of line bundle.
_e paper is organized as follows. _e ûrst sections of this paper are devoted to

the introduction and the study of the ûrst properties of themodule of derivations of
pairs;we prove that it behaves verywellwith respect to all the canonical constructions,
injective and projective resolutions, de Rham complexes, and Fitting stratiûcations.
In Section 5,we deûne a coherent sheaf of DG-Lie algebras associatedwith derivations
of pairs and the extension of the tracemap (_eorem 5.6) that generalises the classical
one given in (1.1). Section 6 is included for the reader’s convenience; there we review
the relevant notions on deformation functors associated with diòerential graded Lie
algebras and with semicosimplicial DG-Lie algebras. In Section 7, we analyse the
inûnitesimal deformations of pairs, describing the DG-Lie algebra that controls these
deformations (_eorem 7.11), and we prove the main theorem (_eorem 1.2) about
the tracemap (_eorem 7.16).

2 Derivations and Automorphisms of Pairs

Let A → R be a morphism of unitary commutative rings and M ,N two R-modules.
We shall denote by HomA(M ,N) (resp.: HomR(M ,N)) the R-module of A-linear
(resp.: R-linear) maps M → N : the R-module structure on HomA(M ,N) is induced
by the R-module structure on N . We shall denote byDerA(R,N) = HomR(ΩR/A,N)
the R-module of A-linear derivations R → N . We shall refer to the R-module R ⊕M
as the trivial extensionwhenever R⊕M is considered as a commutative ring equipped
with the product (r,m)(s, n) = (rs, rn + sm) [25, p. 10].
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Deûnition 2.1 Let A → R be amorphism of unitary commutative rings and M an
R-module. _e R-module of A-derivations of the pair (R,M) is deûned as

DA(R,M) = {(h, u) ∈ DerA(R, R)×HomA(M ,M) ∣ u(rm) − ru(m) = h(r)m,
for every r ∈ R,m ∈ M } .

Remark 2.2 In the setup of the above deûnition we have the following.
• If r1 , r2 , . . . ∈ R generate R as an A-algebra and m1 ,m2 , . . . ∈ M generate M as

R-module, then every (h, u) ∈ DA(R,M) is uniquely determined by h(r1), h(r2), . . .
and u(m1), u(m2), . . . .
• If R ⊕M is the trivial extension of R by M, then a pair

(h, u) ∈ HomA(R, R) ×HomA(M ,M)
belongs to DA(R,M) if and only if themap R⊕M → R⊕M, (r,m)↦ (h(r), u(m))
is an A-derivation.

Lemma 2.3 _ere exists an exact sequence of R-modules

0Ð→ DA(R,M)Ð→ DerA(R ⊕M , R ⊕M) ΦÐ→ HomR(M , R)⊕DerA(R,M) ,
where the R-module structure on the derivations of the trivial extension R⊕M is induced
by the inclusion R → R ⊕M.

Proof Every element ofHomA(R⊕M , R⊕M) is represented by amatrix of A-linear
maps ( a b

c d ) , with

a ∈ HomA(R, R), b ∈ HomA(M , R), c ∈ HomA(R,M), d ∈ HomA(M ,M),
and then there exists a natural isomorphism of R-modules

HomA(R ⊕M , R ⊕M)
= HomA(R, R)⊕HomA(M , R)⊕HomA(R,M)⊕HomA(M ,M).

We have already noticed that (h, u) ∈ DA(R,M) if and only if

( h 0
0 u ) ∈ DerA(R ⊕M , R ⊕M).

_erefore, deûning Φ( a b
c d ) = (b, c), it is straightforward to see that if ( a b

c d ) is a
derivation, then b is R-linear and c is a derivation. It also easy to prove that the image
ofΦ is {b ∈ HomR(M , R) ∣ b(m)n+mb(n) = 0 for all m, n ∈ M}⊕DerA(R,M).

Lemma 2.4 In the setup of Deûnition 2.1, let us denote by

q∶DA(R,M)Ð→ HomA(M ,M) and α∶DA(R,M)Ð→ DerA(R, R),
the projection maps restricted to DA(R,M).

(i) If M is a faithful module, i.e., if ann(M) = 0, then q is injective and its image is
the submodule of diòerential operators of ûrst order with principal symbol.

(ii) _ere exists an exact sequence of R-modules

(2.1) 0Ð→ HomR(M ,M)Ð→ DA(R,M) αÐ→ DerA(R, R) .
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Proof _e only nontrivial statement is the one concerning the image of q. Recall
that amorphism v ∈ HomA(M ,M) is a diòerential operator of ûrst order if for every
r ∈ R the map [v , r]∶M → M, where [v , r](m) = v(rm) − rv(m), is a morphism of
R-modules. In this case the symbol σ(v) is deûned as themap

σ(v)∶R → HomR(M ,M), σ(v)(r) = [v , r],

and it is called principal if σ(v)(r) is a scalar multiple of the identity for every r ∈ R.
Notice that the symbol σ(v) is an A-derivation, since for every r, s ∈ R, we have

σ(v)(rs) = [v , rs] = [v , r]s + r[v , s].

If (h, u) ∈ DA(R,M), then for every r ∈ R, [u, r] = h(r) IdM ∈ HomR(M ,M). Con-
versely, let v ∈ HomA(M ,M) be a ûrst order diòerential operator such that σ(v)(R) ⊆
R IdM . Since M is faithful, for every r ∈ R there exists a unique h(r) ∈ R such that
σ(v)(r) = [v , r] = h(r) IdM . Since σ(v) is an A-derivation, h∶R → R is also an
A-derivation and therefore (h, v) ∈ DA(R,M).

_e restriction α∶DA(R,M) → DerA(R, R) of the projection on the ûrst factor
is called the anchor map of the pair. It is clear that DA(R,M) is a Lie subalgebra of
DerA(R, R) ×HomA(M ,M) and we have the relation

[x , ry] = α(x)(r)y + r[x , y], x , y ∈ DA(R,M), r ∈ R,

called Poisson identity. Note that the bracket onDerA(R, R), and then on DA(R,M),
is bilinear over A and not over R.

Example 2.5 (Lie derivative) Let A → R be a morphism of unitary commutative
rings. _en every h ∈ DerA(R, R) gives a canonical element (h, Lh) ∈ DA(R,ΩR/A)
uniquely determined by the equation Lh(dx) = d(h(x)), x ∈ R.

Recall thatwemay deûne themodule ofKähler diòerentials as ΩR/A = I/I2,where
I is the kernel of the multiplication map R ⊗A R → R, the diòerential dx is the class
of x ⊗ 1 − 1 ⊗ x in I/I2, and the R-module structure is induced by the morphism of
A-algebras R → R ⊗A R, r ↦ r ⊗ 1 [21, §25]. For every h ∈ DerA(R, R) we deûne
Lh ∶ I/I2 → I/I2 as the factorization to the quotient of the derivation

k∶R ⊗A R → R ⊗A R, k(x ⊗ y) = h(x)⊗ y + x ⊗ h(y).

_e equation Lh(dx) = d(h(x)) is trivially satisûed. For every r, s, x ∈ R, we have

Lh(rsdx) = k((r ⊗ 1)(sx ⊗ 1 − s ⊗ x))
= (h(r)⊗ 1)(sx ⊗ 1 − s ⊗ x) + (r ⊗ 1)k(sx ⊗ 1 − s ⊗ x)
= h(r)sdx + rLh(sdx),

and then (h, Lh) ∈ DA(R,ΩR/A).

_e deûnition of DA(R,M) extends naturally to DA(R,M●), where M● is a dia-
gramofR-modules over a small category I. Herewe aremainly interested in two cases.
_e former is when I is just a set, a diagram of R-modules is just a collection {M i},
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i ∈ I, and DA(R,M●) is the limit of the diagram of anchor maps α∶DA(R,M i) →
DerA(R, R). For later use, it is notationally convenient to deûne

∏
i

×DA(R,M i) = DA(R,M●) = lim
i
(α∶DA(R,M i)Ð→ DerA(R, R))

= {(h, . . . , u i , . . . ) ∣ (h, u i) ∈ DA(R,M i), for all i ∈ I} .

_e latter is when M● = {M1
fÐ→ M2} is a morphism of two R-modules. _en

DA(R,M●) is the set of triples (h, u1 , u2), with

(h, u1) ∈ DA(R,M1), (h, u2) ∈ DA(R,M2), f u1 = u2 f .

_erefore, there exists an exact sequence of R-modules

0Ð→ DA(R,M●)Ð→ DA(R,M1) ×DerA(R ,R) DA(R,M2)
ΦÐ→ HomR(M1 ,M2),

where Φ((h, u1), (h, u2)) = f u1 − u2 f .

Lemma 2.6 Let A→ R be amorphism of unitary commutative rings and M ,N two
R-modules. _en we have two natural R-linear morphisms of Lie algebras:

DA(R,M ⊗R N) Φ←Ð DA(R,M) ×DerA(R ,R) DA(R,N) ΨÐ→ DA(R,HomR(M ,N)),
(2.2)

Φ((h, u), (h, v)) = (h, u ⊗R IdN + IdM ⊗Rv),
Ψ((h, u), (h, v)) = (h, f ↦ v f − f u).

Proof Straightforward. Notice thatu⊗R IdN + IdM ⊗Rv iswell deûned, althoughu, v
are not R-linear and the two addends u ⊗R IdN , IdM ⊗Rv are not deûned. Similarly
v f − f u is amorphism of R-modules, although v f and f u are only A-linear.

As a particular case of Lemma 2.6 we obtain a natural R-linear morphisms of Lie
algebras (the transpose):

(2.3)
(−)T ∶DA(R,M)Ð→ DA(R,HomR(M , R)),

(h, u)z→ (h, u)T = Ψ((h, u), (h, h)) = (h, f ↦ h f − f u) .

Deûnition 2.7 _e Leibniz extension of a derivation of the pair (h, u) ∈ DA(R,M)
is the sequence (h, un) ∈ DA(R,∧n

RM), n ≥ 0, uniquely determined by the formulas

(2.4) u0 = h, un(m1 ∧ ⋅ ⋅ ⋅ ∧mn) =
n

∑
i=1

m1 ∧ ⋅ ⋅ ⋅ ∧ u(m i) ∧ ⋅ ⋅ ⋅ ∧mn .

_eLeibniz extension isproperlydeûned: by theuniversal propertyofwedgeprod-
ucts, (2.4) deûnes a sequence of A-linear maps ũn ∶ ∧n

AM → ∧n
AM. Now ∧n

RM is the
quotient of ∧n

AM by the A-submodule H generated by all the elements

m1∧⋅ ⋅ ⋅∧rm i∧m i+1∧⋅ ⋅ ⋅∧mn−m1∧⋅ ⋅ ⋅∧m i∧rm i+1∧⋅ ⋅ ⋅∧mn , r ∈ R,m j ∈ M; 0 < i < n,

and it is immediate to verify that ũn(H) ⊂ H and then that (h, ũn) factors to a deriva-
tion of the pair (h, un) ∈ DA(R,∧n

RM). _e Leibniz extension is functorial in the
following sense: given amorphism of R-modules f ∶M → N and (h, u) ∈ DA(R,M),
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(h, v) ∈ DA(R,N) such that v f = f u, then vn f ∧n = f ∧nun for every n. Moreover, for
every n, themap

DA(R,M)Ð→ DA(R,∧n
RM), (h, u)z→ (h, un),

is amorphism of Lie algebras. _is follows immediately from the fact that, for every
(h, u), (k, v) ∈ DA(R,M), we have

unvn(m1 ∧ ⋅ ⋅ ⋅ ∧mn) =
n

∑
i=1

m1 ∧ ⋅ ⋅ ⋅ ∧ uv(m i) ∧ ⋅ ⋅ ⋅ ∧mn

+∑
i< j

m1 ∧ . . . u(m i) ∧ ⋅ ⋅ ⋅ ∧ v(m j) ⋅ ⋅ ⋅ ∧mn

+∑
i< j

m1 ∧ . . . v(m i) ∧ ⋅ ⋅ ⋅ ∧ u(m j) ⋅ ⋅ ⋅ ∧mn .

Deûnition 2.8 IfM is a freemodule of rank n and (h, u) ∈ DA(R,M),we shall call
(h, un) ∈ DA(R,∧n

RM) the trace of (h, u).

_e name trace ismotivated by the fact that if h = 0, i.e., if u ∈ HomR(M ,M), then
un is themultiplication by the trace of u.

2.1 Automorphisms of Pairs

Let A→ R be amorphism of commutative unitary rings and let M be an R-module.
We shall denote by AutA(R) the group of A-linear automorphisms of R, i.e., the au-
tomorphism group of the A-algebra R, and by AutA(M) (resp. AutR(M)) the group
of A-linear (resp. R-linear) automorphisms of M.

Deûnition 2.9 _e group of A-linear automorphisms of the pair (R,M) is deûned
as the subgroupAutA(R,M) ⊂ AutA(R)×AutA(M) of pairs (θ , ϕ) such that ϕ(rm) =
θ(r)ϕ(m) for every r ∈ R, m ∈ M.

Let R ⊕M be the trivial extension of R by M. As in the proof of Lemma 2.3, there
exists a natural inclusion

HomA(R, R) ×HomA(M ,M) ⊂ HomA(R ⊕M , R ⊕M),

and it is immediate to see that an element of HomA(R, R) ×HomA(M ,M) is an au-
tomorphism of the pair (R,M) if and only if it is an automorphism of the A-algebra
R ⊕M.

_e analog of the anchor map is the group homomorphism

α∶AutA(R,M)Ð→ AutA(R), α(θ , ϕ) = θ ,

whose kernel is AutR(M).

1215

https://doi.org/10.4153/CJM-2018-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-027-8


D. Iacono andM. Manetti

_ere exists the analog of Lemma 2.6 and of the Leibniz extension for automor-
phisms of pairs. It is straightforward to verify that there exist two natural group ho-
momorphisms

(2.5) AutA(R,M) ×AutA(R) AutA(R,N)
Φ

tt

Ψ

++
AutA(R,M ⊗R N) AutA(R,HomR(M ,N))

Φ((θ , ϕ), (θ ,ψ)) = (θ , ϕ ⊗ ψ), Ψ((θ , ϕ), (θ ,ψ)) = (θ , f ↦ ψ f ϕ−1).
Similarly, every (θ , ϕ) ∈ AutA(R,M) gives a sequence (θ , ϕn) ∈ AutA(R,∧n

RM),
n ≥ 0, uniquely determined by the formulas

ϕ0 = θ , ϕn(m1 ∧ ⋅ ⋅ ⋅ ∧mn) = ϕ(m1) ∧ ⋅ ⋅ ⋅ ∧ ϕ(mn).
If M is free of rank n, we write (θ , ϕn) = det(θ , ϕ). When θ = Id, we recover the
usual notion of the determinant of an R-linear endomorphism.
Assume now that A contains the ûeldQ of rational numbers and let

(h, u) ∈ DA(R,M) ⊂ DerA(R ⊕M , R ⊕M)
be a nilpotent derivation of pairs. _en its exponential

exp(h, u) = (
∞

∑
n=0

hn

n!
,
∞

∑
n=0

un

n!
)

also preserves the direct sum decomposition R ⊕M and then

exp(h, u) ∈ AutA(R,M) ⊂ AutA(R ⊕M).
It is plain that the exponential commuteswith the anchor maps and the usual proper-
ties of the exponential imply that exp commutes with themorphisms (2.2) and (2.5).
_e exponential also commutes with Leibniz extensions of derivations and automor-
phisms. _is is immediate from the previous remark since the assumption Q ⊂ A
implies that ⋀n

R M is a direct summand of ⊗n
R M. In particular, the exponential of

the trace is the determinant of the exponential.

Lemma 2.10 Let R be a commutative unitary algebra over a ûeldK of characteristic
0, and let M be an R-module. _en for every local ArtinK -algebra Awith residue ûeld
K , the group exp(DK (R,M) ⊗ mA) is naturally isomorphic to the group of A-linear
automorphisms of the pair (R ⊗ A,M ⊗ A) li�ing the identity on (R,M).

Proof We have already noticed that via the diagonal inclusion

HomK (R, R) ×HomK (M ,M) ⊂ HomK (R ⊕M , R ⊕M),
a couple (h, u) ∈ HomK (R, R) ×HomK (M ,M) is a K -linear derivation (resp. au-
tomorphism) of the pair (R,M) if and only if it is a K -linear derivation (resp. au-
tomorphism) of the trivial extension R ⊕M. _us, the lemma is an immediate con-
sequence of the well-known fact [17, Proposition 5.44] that for every commutative
unitaryK -algebra S, the group exp(DerK (S , S)⊗mA) is naturally isomorphic to the
group of A-linear automorphisms of S ⊗ A li�ing the identity on S.
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3 Lifting to Resolutions

_roughout this section, A → R is a ûxed morphism of unitary commutative rings.
For every (h, u) ∈ DA(R,M), the derivation h preserves the annihilator ofM. In fact,
if r ∈ R and rm = 0 for every m ∈ M, then also h(r)m = u(rm) − ru(m) = 0, for
every m ∈ M.

_e above consideration shows that in general the anchor map

α∶DA(R,M)Ð→ DerA(R, R)

is not surjective. For instance, if M = R/I, with I an ideal of R, then the image of
α is the submodule of derivations preserving the ideal I. If (h, u) ∈ DA(R,M), we
have seen that h preserves the annihilator of M, which is precisely the ideal I. Con-
versely, any derivation h ∈ DerA(R, R) has a canonical li�ing (h, h) ∈ DA(R, R), and
if h(I) ⊂ I, then (h, h) factors to an element of DA(R,M).

Lemma 3.1 In the above setup, if f ∶ P → M is a surjective morphism of R-modules
with P projective, then every (h, u) ∈ DA(R,M) li�s to an element (h, v) ∈ DA(R, P)
such that f v = u f . In particular, we have the following.
(i) Every derivation of pairs li�s to any projective resolution.
(ii) If P is a projective R-module, then the anchor map α∶DA(R, P)→ DerA(R, R) is

surjective.

Proof Consider ûrst the case when P is a free R-module with basis {e i}. Choosing
elements v i ∈ P such that f (v i) = u( f (e i)) ∈ M for every i, then the A-linear map

v∶ P Ð→ P, v(∑
i
a i e i) =∑

i
a iv i + h(a i)e i ,

has the required properties. If P is not free, since every projectivemodule is a direct
summand of a freemodule, there exist a freemodule F togetherwith two morphisms
i∶ P → F, g∶ F → P such that gi = IdP . Since f g∶ F → M is surjective, there exists
(h,w) ∈ DA(R, F) li�ing (h, u) and it is suõcient to take

(h, v) = (h, gw i) ∈ DA(R, P).

If M = 0, then for every h ∈ DerA(R, R) we have (h, 0) ∈ DA(R, 0) and the above
computation gives the surjectivity of the anchormap α∶DA(R, P)→ DerA(R, R).

Lemma 3.2 In the above setup, if g∶M → J is an injective morphism of R-modules
with J injective, then every (h, u) ∈ DA(R,M) extends to an element (h, v) ∈ DA(R, J)
such that vg = gu. In particular, we have the following.
(i) Every derivation of pairs extends to any injective resolution.
(ii) If J is an injective R-module, then the anchor map α∶DA(R, J) → DerA(R, R) is

surjective.

Proof Let q∶ J → I be an injectivemorphism with I injective as an A-module. _en
the composition qg∶M → J → I is also injective. Consider theR-moduleHomA(R, I),
where the R-module structure is given by (tψ)(r) = ψ(tr) for any t, r ∈ R and any
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ψ ∈ HomA(R, I). _en themap

β∶ J Ð→ HomA(R, I), j z→ β( j)(r) = q(r j) ∈ I, ∀ r ∈ R,

is an injective R-linear morphism. Since J is injective as an R-module, there exists a
splitting γ∶HomA(R, I) → J, such that γβ = IdJ . Let (h, u) ∈ DA(R,M) be a ûxed
derivation of the pair; since I is injective as A-module and u is amorphismof A-mod-
ules, there exists amorphism w ∈ HomA(I, I) such that wqg = qgu:

M

u
��

qg // I

w
��

M
qg // I.

Consider now themap wh ∶HomA(R, I)→ HomA(R, I) deûned by

wh(ψ) = w ○ ψ − ψ ○ h,

for any ψ ∈ HomA(R, I). _en (h,wh) ∈ DA(R,HomA(R, I)) since wh is A-linear
and wh(tψ) = twh(ψ) + h(t)ψ, for any t, r ∈ R. Indeed, we have

wh(tψ)(r) = (w ○ tψ − tψ ○ h)(r) = w(ψ(tr)) − ψ(th(r)),

while

twh(ψ)(r) = t(w ○ ψ − ψ ○ h)(r) = w(ψ(tr)) − ψ(h(tr))
= w(ψ(tr)) − ψ(th(r)) − ψ(rh(t)).

_en we prove that (h,wh) extends (h, u), i.e., βgu = whβg. For every r ∈ R and
every m ∈ M, we have

(whβg(m))(r) = w(βg(m)(r)) − βg(m)(h(r)) = w(q(rg(m)) − q(h(r)g(m))
= w(q(g(rm)) − q(g(h(r)m)) = qgu(rm) − q(g(h(r)m))
= qg(ru(m)) + qg(h(r)m) − q(g(h(r)m))
= qg(ru(m)) = βg(u(m))(r) .

Finally, it is suõcient to take (h, v) = (h, γwhβ) ∈ DA(R, J). Item (i) is now clear and
item (ii) follows by considering the injectivemorphism 0→ J.

Corollary 3.3 Let 0 → K αÐ→ P
βÐ→ M → 0 be a short exact sequence of projective

R-modules, and denote by

L = DA(R,K
αÐ→ P) = DA(R, P

βÐ→ M) = {(h, u) ∈ DA(R, P) ∣ u(α(K)) ⊂ α(K)} .

_en the natural morphisms of Lie algebras

L = DA(R,K
αÐ→ P)→ DA(R,K), L = DA(R,K

αÐ→ P)→ DA(R, P),

DA(R, P
βÐ→ M)→ DA(R,M),
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ût in the following exact sequences of R-modules

0Ð→ L Ð→ DA(R, P)
pÐ→ HomR(K ,M)Ð→ 0,

0Ð→ HomR(P,K) jÐ→ L → DA(R,M)Ð→ 0,

0Ð→ HomR(M , P) hÐ→ L Ð→ DA(R,K)Ð→ 0,

where p(h, u) = βuα, j(v) = (0, αv), h(u) = (0, uβ).

Proof Since βα = 0, themorphism p is properly deûned and it is surjective because
M is projective, P ≃ K ⊕M, and therefore

HomR(P, P)Ð→ HomR(K ,M), u z→ βuα,

is surjective. _e surjectivity of L → DA(R,M) is given by Lemma 3.1 and therefore
the anchormap α∶ L → DerA(R, R) is also surjective. _e third exact sequence follows
by the snake lemma applied to the commutative diagram

0 // S

��

// L

��

// DerA(R, R) // 0

0 // HomR(K ,K) // DA(R,K) // DerA(R, R) // 0

where S = { f ∈ HomR(P, P) ∣ f (K) ⊂ K}.

Consider now a morphism of commutative unitary rings A → R and a cochain
complex C = {⋅ ⋅ ⋅ → C i dÐ→ C i+1 → ⋅ ⋅ ⋅} of R-modules. _en we can deûne DA(R,C)
as in Deûnition 2.1, by replacing HomA(M ,M) with the module of morphisms of
cochain complexes of A-modules. Equivalently DA(R,C) is deûned considering C as
a diagram of R-modules over the ordered set Z.

However, for the application we have in mind, it is more convenient to consider
the DG-Lie subalgebra

D∗A(R,C) = {(h, u) ∈ Der∗A(R, R) ×Hom∗

A(C ,C) ∣ u(rx) − ru(x) = h(r)x
for every r ∈ R, x ∈ C } .

For the deûnition and themain properties of Der∗A(R, R) andHom∗

A(C ,C), we refer
the reader to [15, §1]. Notice that the diòerential is the internal derivation δ = [d ,−]
and DeriA(R, R) = 0 for every i /= 0: this implies that D i

A(R,C) = Homi
R(C ,C) for

every i /= 0, andD0
A(R,C) =∏

× DA(R,C i) is the limit of the diagramof anchormaps
DA(R,C i)→ DerA(R, R). Finally, note that DA(R,C) = Z0(D∗A(R,C)).

In order to extend Lemma 3.1 and Corollary 3.3 to the diòerential graded case,
it is useful to work in the projective model structure on the category of unbounded
cochain complexes [12,_eorem 2.3.11]: with respect to this model structure, amor-
phism of cochain complexes M → N is a weak-equivalence if it is a quasi-isomor-
phism. It is a ûbration if it is degreewise surjective. It is a coûbration if it has the le�
li�ing property with respect to all the trivial ûbrations. Moreover, ifM → N is a coû-
bration, then for every i themap M i → N i is a split injectivewith projective cokernel;
the converse holds whenever N is bounded above.
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In particular, for every coûbrant complex P, since P i is projective for every i, there
exists a short exact sequence

(3.1) 0Ð→ Hom∗

R(P, P)Ð→ D∗A(R, P)Ð→ DerA(R, R)Ð→ 0.

Proposition 3.4 Let f ∶K → P be a trivial coûbration between coûbrant complexes of
R-modules. _en the two natural DG-Lie algebramorphisms

D∗A(R,K)←Ð D∗A(R,K
fÐ→ P)Ð→ D∗A(R, P)

are quasi-isomorphisms of complexes of R-modules. In particular, D∗A(R,K), D∗A(R, P)
are quasi-isomorphic DG-Lie algebras.

Proof By assumption f is a coûbration and then we have a short exact sequence of
coûbrant complexes

0→ K
fÐ→ P → M → 0.

SinceK i , P i ,M i are projectivemodules for every i, Corollary 3.3 gives two short exact
sequences of complexes

0Ð→ D∗A(R,K
fÐ→ P)Ð→ D∗A(R, P)Ð→ Hom∗

R(K ,M)Ð→ 0,

0Ð→ Hom∗

R(M , P)Ð→ D∗A(R,K
fÐ→ P)Ð→ D∗A(R,K)Ð→ 0.

Finally, since M is coûbrant acyclic, the natural map M → Cone(IdM) is a trivial
coûbration and then admits a le� inverse; hence the complexes M, Hom∗

R(M , P),
andHom∗

R(K ,M) are contractible.

Corollary 3.5 Let P and K be quasi-isomorphic coûbrant complexes of R-modules.
_en D∗A(R, P) is quasi-isomorphic to D∗A(R,K) as a DG-Lie algebra.

Proof By general facts of model category theory [12, Lemma 1.1.12], two coûbrant
complexes P and K are quasi-isomorphic if and only if there exists a span of trivial
coûbrations P → Q ← K. _erefore, the conclusion follows from Proposition 3.4.

Example 3.6 If P → M is a projective resolution of an R-module M, then Corol-
lary 3.5 implies that the graded Lie algebraH∗(D∗A(R, P)) depends only on M. More-
over, by (3.1) we have H i(D∗A(R, P)) = ExtiR(M ,M) for every i /= 0, 1 and, by (2.1) of
Lemma 2.4, there exists an exact sequence

0Ð→ Ext0R(M ,M)Ð→ H0(D∗A(R, P))Ð→ DerA(R, R)
Ð→ Ext1R(M ,M)Ð→ H1(D∗A(R, P))Ð→ 0.

In fact, ExtiR(M ,M) = H i(Hom∗

R(P,M)) = H i(Hom∗

R(P, P)) for every i. By Lem-
ma 3.1, the natural map Z0(D∗A(R, P)) → DA(R,M) is surjective; its kernel is given
by the R-linear morphisms of complexes P → P inducing the trivial map on M.
Since P is a projective resolution, these morphisms are exactly the ones homotopic
to 0, and then there exists a natural isomorphism H0(D∗A(R, P)) = DA(R,M). Since
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ExtiR(M ,M) = 0 for i < 0, the above equality is completely equivalent to the long
exact sequence

⋅ ⋅ ⋅Ð→ Hom−2
R (P, P) δÐ→ Hom−1

R (P, P) δÐ→ DA(R, P)Ð→ DA(R,M)Ð→ 0.

4 Anchor Invariance of Fitting Ideals

_e content of this section is not relevant for the remaining part of the paper, and it
is written as an application of the previous results that we consider of independent
interest.

Let A→ R be amorphism of unitary commutative rings andM an R-module. We
have seen that, unless M is either projective or injective, the anchor map

DA(R,M) αÐ→ DerA(R, R)
is generally not surjective.

_eorem 4.1 In the above setup, if M is ûnitely generated, then for every (h, u) ∈
DA(R,M), the derivation h preserves the Fitting ideals ofM.

Proof Recall [4,26] that the Fitting ideals of M, Fitt0(M) ⊂ Fitt1(M) ⊂ ⋅ ⋅ ⋅ ⊂ R, are
deûned by considering any free resolution F

fÐ→ Rm pÐ→ M → 0 and the exterior

powers ∧i
RF

f ∧iÐÐ→ ∧i
RRm . _en, for every i ≥ 0, the Fitting ideal Fittm−i(M) ⊂ R is

the ideal generated by the coeõcients of all elements in the image of f ∧i ,with respect
to the canonical basis of ∧i

RRm . _e deûnition is independent of the choice of the
resolution and then Fittm(M) = R whenever M is generated by m elements.
By Lemma 3.1, the derivation of the pair (h, u) li�s to a couple (h, v) ∈ DA(R, Rm)

and (h,w) ∈ DA(R, F) such that up = pv and fw = v f . Let us prove ûrst that the
ideal I = Fittm−1(M) is preserved by h. Let e1 , . . . , em be the canonical basis of Rm .
For every x ∈ F, we have

f (x) =∑ a i e i , f (w(x)) =∑ b i e i , a i , b i ∈ I,

and then

∑ h(a i)e i = v( f (x)) −∑ a iv(e i) =∑ b i e i −∑ a iv(e i) ∈ I ⋅ Rm ,

proving that h(a i) ∈ I for every i. As regards the invariance of the Fitting ideals
Fittm−r(M) for r > 1, it is suõcient to repeat the above argument to themaps

f ∧r ∶ ∧r
RF Ð→ ∧r

RRm

and to the Leibniz extensions of (h, v) and (h,w).

Corollary 4.2 Let A→ R be amorphism of noetherian rings and let M and N be two
ûnitely generated R-modules. If a derivation h ∈ DerA(R, R) li�s to DA(R,M) and to
DA(R,N), then h preserves the Fitting ideals of TorRi (M ,N) and ExtiR(M ,N).

Proof Let P → M be a projective resolution, then h li�s to an element of DA(R, P),
and by Lemma 2.6 h li�s also to DA(R,TorRi (M ,N)) and DA(R, ExtiR(M ,N)).
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Joining _eorem 4.1 and Example 2.5 we get a new proof of the following classical
result.

Corollary 4.3 (R. Hart [10]) Let A be a commutative ring and R a ûnitely generated
commutative A-algebra. _en every A-derivation of R preserves the Fitting ideals of
ΩR/A.

More generally, taking the Leibniz extension of the Lie derivative, we also obtain
that every A-derivation of R preserves the Fitting ideals of ∧n

RΩR/A for every n. No-
tice also that the Leibniz extension of the Lie derivative commutes with the de Rham
diòerential.

Example 4.4 Assume that R is a principal ideal domain and that M is a ûnitely
generated R-module. _en a derivation h ∈ DerA(R, R) li�s to DA(R,M) if and only
if h preserves the Fitting ideals of M. In fact, we have a cyclic decomposition

M = R
(a1)

e1 ⊕ ⋅ ⋅ ⋅ ⊕
R

(an)
en , a i ∣a i+1 ,

and therefore the Fitting ideals are (a1a2 ⋅ ⋅ ⋅ an) ⊂ ⋅ ⋅ ⋅ ⊂ (a1a2) ⊂ (a1). Assume that h
preserves all the Fitting ideals, then h(a i) ∈ (a i) for every i; this is clear if either i = 1
or a i = 0, while for i > 1 and a i /= 0, we have

h(a1 ⋅ ⋅ ⋅ a i−1) ∈ (a1 ⋅ ⋅ ⋅ a i−1), h(a1 ⋅ ⋅ ⋅ a i) ∈ (a1 ⋅ ⋅ ⋅ a i),
h(a1 ⋅ ⋅ ⋅ a i) = h(a1 ⋅ ⋅ ⋅ a i−1)a i + a1 ⋅ ⋅ ⋅ a i−1h(a i),

and then a1 ⋅ ⋅ ⋅ a i−1h(a i) ∈ (a1 ⋅ ⋅ ⋅ a i−1a i). Now themap

u∶M Ð→ M , u(∑ x i e i) =∑ h(x i)e i

gives a derivation of the pair (h, u).

5 Coherent Sheaves of DG-Lie Algebras and Trace Maps

Assume now that X → SpecA is a scheme over A, and denote by

ΘX/A =HomOX(ΩX/A,OX) =DerA(OX ,OX)
the relative tangent sheaf. Given a sheafF ofOX-modules,we can deûneDA(X ,F) as
the subsheaf ofΘX/A×HomA(F,F) of all the elements satisfying the same condition
of Deûnition 2.1. Similarly, for every morphism f ∶F → G of sheaves of OX-modules,
we can deûne the sheafDA(X ,F

fÐ→ G), for instance, by the exact sequence

0Ð→DA(X ,F
fÐ→ G)Ð→DA(X ,F) ×ΘX/A DA(X ,G)

ΦÐ→HomOX(F,G),

where Φ(h, u, v) = f u − v f .
If F is coherent and p∶Y → X is the aõnemorphismof schemes such that p∗OY =

OX ⊕F [11, Exercise II.5.17], then by Lemma 2.3we have an exact sequence of sheaves
of OX-modules

(5.1) 0Ð→DA(X ,F)Ð→ p∗ΘY/A Ð→HomOX(F,OX)⊕HomOX(ΩX/A,F).
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Proposition 5.1 In the above situation, if A is noetherian, X is of ûnite type over A,
andF andG are coherent sheaves, then alsoDA(X ,F),DA(X ,G), andDA(X ,F

fÐ→ G)
are coherent. For every open aõne subset U ⊂ X, we have

DA(X ,F)(U) ≅ DA(OX(U),F(U)),

DA(X ,F
fÐ→ G)(U) ≅ DA(OX(U),F(U) fÐ→ G(U)).

Proof According to the above assumptions, the scheme Y is also of ûnite type over
A and the morphism p is ûnite. In particular, both ΩX/A and p∗ΘY/A are coher-
ent sheaves and so DA(X ,F) is coherent, being the kernel of a morphism of co-
herent sheaves. Given an open aõne subset U ⊂ X, the proof that the natural map
DA(X ,F)(U) → DA(OX(U),F(U)) is an isomorphism follows by comparing the
exact sequences obtained by applying the functor Γ(U ,−) to (5.1) and the exact se-
quence of Lemma 2.3. _e statement about DA(X ,F

fÐ→ G) is proved in the same
way.

Example 5.2 LetF be a locally free sheaf on X, then the sheafDA(X ,F) is isomor-
phic to the sheaf of A-linear ûrst order diòerential operators on F with scalar symbol.
Via this isomorphism, the exact sequence

0Ð→HomOX(F,F)Ð→DA(X ,F)Ð→ ΘX/A Ð→ 0

corresponds, up to isomorphism, to the Atiyah extension of F [2], [20, Example 2.3],
[25, p. 145].

Deûnition 5.3 Let X → SpecAbe anoetherian scheme over anoetherian ringA. By
a (quasi)coherent sheaf of Lie algebras over X/Awemean a (quasi)coherent sheaf of

OX-modulesL, together anA-bilinear bracketL×L [ ⋅ , ⋅ ]ÐÐÐ→ L inducing a structure of
a Lie algebra over A on every stalk ofL. Note that the bracket is notOX-linear, so this
is not the same structure as a Lie algebra in themonoidal category of quasi coherent
modules. A morphism of (quasi)coherent sheaves of Lie algebras is a morphism of
sheaves of OX-modules commuting with the brackets.

For instance, if F is a coherent sheaf on X, then the anchor map

α∶DA(X ,F)→ ΘX/A

is amorphism of coherent sheaves of Lie algebras over X/A. If F → G is amorphism
of coherent sheaves, then the natural maps

DA(X ,F Ð→ G)Ð→DA(X ,F), DA(X ,F Ð→ G)Ð→DA(X ,G),
aremorphisms of coherent sheaves of Lie algebras over X/A.

Recall that a diòerential graded (DG) Lie algebra over a commutative ring A is
the data of a cochain complex (L, d) of A-modules, together with an A-bilinear map
[ ⋅ , ⋅ ]∶ L × L → L (called a bracket) of degree 0, such that the following conditions are
satisûed.

● (graded skew symmetry) [x , y] = −(−1)i j[y, x] ∈ L i+ j , for every x ∈ L i and
y ∈ L j .
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● [x , x] = 0 for every x ∈ L2i , and [x , [x , x]] = 0 for every x ∈ L2i+1, with i ∈ Z.
● (graded Jacobi identity) [x , [y, z]] = [[x , y], z]+ (−1)i j[y, [x , z]], for every x ∈

L i , y ∈ L j , and z ∈ L.
● (graded Leibniz rule) d[x , y] = [dx , y] + (−1)i[x , dy], for every x ∈ L i and
y ∈ L j .

Amorphismof diòerential graded Lie algebras χ∶ L → M is amorphismof cochain
complexes that commutes with brackets.

Deûnition 5.4 Let X → SpecA be a noetherian scheme over a noetherian ring A.
By a quasi-coherent sheaf of DG-Lie algebras over X/A, we mean a complex L∗ of
quasi-coherent sheaves of OX-modules, together with an A-bilinear bracket

L∗ ×L∗
[ ⋅ , ⋅ ]ÐÐÐ→ L∗

inducing a structure of DG-Lie algebra over A on every stalk of L. A quasi-coherent
sheaf of DG-Lie algebras L∗ is coherent if ⊕Li is a coherent sheaf. A morphism
of quasi-coherent sheaves of DG-Lie algebras is a morphism of complexes of OX-
modules commuting with the brackets.

Example 5.5 Let X → SpecA be a noetherian scheme over a noetherian ring A,
and let E∗ be a bounded complex of coherent sheaves of OX-modules. For every
index i, the sheaf Homi

OX(E
∗ ,E∗) = ∏ j HomOX(E j ,E j+i) is coherent, and then

Hom∗

OX(E
∗ ,E∗) is a coherent sheaf of DG-Lie algebras.

As in Section 3, we can deûne the complex of OX-modulesD∗

A(X ,E∗) as the sub-
sheaf of Der∗A(OX ,OX) ×Hom∗

A(E∗ ,E∗), whose elements are the pairs (h, u) such
that u(rm) − ru(m) = h(r)m, for every r ∈ OX ,m ∈ E∗. For every i /= 0, we have
Di
A(X ,E∗) = Homi

OX(E
∗ ,E∗), while D0

A(X ,E∗) is the limit of the set of anchor
maps D0

A(X ,E j) αÐ→ DerA(OX ,OX) = ΘX/A. _us D∗

A(X ,E∗) is a coherent sheaf of
DG-Lie algebras and there exists a short exact sequence of coherent sheaves of DG-Lie
algebras over X/A:

(5.2) 0Ð→Hom∗

OX(E
∗ ,E∗)Ð→D∗

A(X ,E∗)
αÐ→ ΘX/A.

According to Lemma 3.1, the anchor mapD∗

A(X ,E∗)
αÐ→ ΘX/A is surjectivewhenever

every sheaf E j is locally free. Analogously to Remark 5.1, for every open aõne subset
U ⊂ X, we haveDA(X ,E∗)(U) ≅ DA(OX(U),E∗(U)).

It iswell known that, for every bounded complex E∗ of locally free sheaves,we can
deûne the tracemap

(5.3) Tr∶Hom∗

OX(E
∗ ,E∗)Ð→ OX ,

which is a surjectivemorphism of complexes of coherent sheaves: given

f ∈Homi
OX(E

∗ ,E∗),
Tr( f ) = 0 for i /= 0. If i = 0, then f is the datum of a ûnite sequence ofmorphisms of
locally free sheaves f j ∶E j → E j , and Tr( f ) = ∑ j(−1) j Tr( f j), where

Tr∶HomOX(E j ,E j)→ OX
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is the usual tracemap.
It is easy to verify that Tr is also amorphism of sheaves of DG-Lie algebras where

OX is equipped with the trivial bracket. Since the diòerential on Hom∗

OX(E
∗ ,E∗) is

an adjoint operator, it is suõcient to prove that Tr([ f , g]) = 0 for every

f ∈Homi
OX(E

∗ ,E∗) and g ∈Hom j
OX

(E∗ ,E∗).

_is is clear if i + j /= 0, and so it is not restrictive to assume i = − j. Since the trace
is OX-linear, we can reduce this fact to the following statement from linear algebra:
let Vi , i ∈ Z, be a sequence of ûnite-dimensional vector spaces, with Vi /= 0 for at
most ûnitelymany indices i. _en for every integer p and any two sequences of linear
maps,

f i ∶Vi Ð→ Vi+p , g i ∶Vi Ð→ Vi−p ,

we have∑i(−1)i Tr( f i−p g i−(−1)p2 g i+p f i) = 0. In fact, by a basic fact of linear algebra
we have Tr( f i−p g i) = Tr(g i f i−p) for every i, and then

∑
i
(−1)i Tr( f i−p g i − (−1)p2 g i+p f i) =∑

i
(−1)i Tr( f i−p g i) − (−1)i+p Tr(g i+p f i)

=∑
i
(−1)i Tr( f i−p g i) − (−1)i Tr(g i f i−p) = 0.

Denoting by Hom∗

OX(E
∗ ,E∗)0 the sheaf of traceless endomorphisms of E∗, i.e.,

the kernel of (5.3), and by ExtiX(F,F)0 its hypercohomology groups, there exists a
long exact sequence

(5.4) ⋅ ⋅ ⋅Ð→ Ext1X(F,F) TrÐ→ H1(X ,OX)Ð→ Ext2X(F,F)0

Ð→ Ext2X(F,F) TrÐ→ H2(X ,OX)Ð→ ⋅ ⋅ ⋅ .

By the results of Section 2,we can extend the tracemapTr∶Hom0
OX(E

∗ ,E∗)→ OX
to a Lie algebramorphism

(5.5) Tr∶D0
A(X ,E∗)Ð→DA(X , detE∗).

Assume that the ûnite complex E∗ is nonzero only for degrees between n andm; then
by deûnition, an element ofD0

A(X ,E∗) is given by a sequence (h, un , . . . , um),where
h ∈ DerA(OX ,OX) and (h, u i) ∈ DA(X ,Ei) for every i. Taking the trace of every
pair (h, u i) (Deûnition 2.8) we obtain a ûnite sequence of derivations of pairs

(h, v i) ∈DA(X , detEi), v i = Tr(u i), i = n, . . . ,m.

_en for every odd index i, we consider the transpose (2.3):

(h, v i)T ∈DA(X , (detEi)−1).
Since

[(h, v0), (h, v1)T] ∈DA(X , detE0) ×DerA(OX ,OX) DA(X , (detE1)−1),
we can apply the Liemorphism Φ of Lemma 2.6 in order to obtain an element

Tr(h, u0 , u1) ∈DA(X , (detE0)⊗ (detE1)−1).
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It is now clear that, with a ûnite number of constructions as above, we have a well-
deûned element

Tr(h, un , . . . , um) ∈DA(X , detE∗) =DA(X ,
m
⊗
i=n

(detEi)(−1)i ).

Moreover, we have also proved that all themaps considered above,

DA(X ,Ei)Ð→DA(X , detEi), ∏
i

×DA(X , detEi)Ð→DA(X , detE∗),

aremorphisms of sheaves of Lie algebras. Keeping in mind that

D0
A(X ,E∗) =∏

i

×DA(X ,Ei), D
j
A(X ,E

∗) =Hom j
OX

(E∗ ,E∗), j /= 0,

we can glue together (5.5) and (5.3) and obtain a morphism of sheaves of DG-Lie
algebras

(5.6) Tr∶D∗

A(X ,E∗)Ð→DA(X , detE∗) .

_e following theorem is now clear.

_eorem 5.6 For every bounded complex of locally free sheaves E∗ on a scheme X of
ûnite type over a noetherian ring A, there exists a commutative diagram of morphisms
of coherent sheaves of DG-Lie algebras

0 // Hom∗

OX(E
∗ ,E∗)

Tr
��

// D∗

A(X ,E∗)

Tr
��

α // ΘX/A // 0

0 // OX // DA(X , detE∗) α // ΘX/A // 0

6 A Short Review of Deformation Theory via DG-Lie Algebras

_emain references for this section are [6,8,17–19]. From this section, and throughout
the rest of the paper,wework over a ûxed algebraically closed ûeldK of characteristic
zero. We denote by Set the category of sets and by ArtK the category of Artin local
K -algebras with residue ûeld K , and by DGLA = DGLAK the category of DG-Lie
algebras over K . Unless otherwise speciûed, for every local algebra A ∈ ArtK , we
denote bymA its maximal ideal.

Given a DG-Lie algebra L over K , we can deûne two functors of Artin rings. _e
Maurer–Cartan functor MCL ∶ArtK → Set is deûned by

MCL(A) = {x ∈ L1 ⊗mA ∣ dx + 1
2 [x , x] = 0} ,

where theDG-Lie structure on L⊗mA is obtained by scalar extension from theDG-Lie
structure on L. _e deformation functor Def L ∶ArtK → Set is

Def L(A) =
MCL(A)
gauge

=
{x ∈ L1 ⊗mA ∣ dx + 1

2 [x , x] = 0}
exp(L0 ⊗mA)

,
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where the gauge action ∗∶ exp(L0 ⊗mA) ×MCL(A) → MCL(A) may be deûned by
the explicit formula

ea ∗ x ∶= x +∑
n≥0

[a,−]n
(n + 1)!([a, x] − da).

A quasi-isomorphism of DG-Lie algebras is a morphism that induces an isomor-
phism in cohomology. TwoDG-Lie algebras L andM are said to be quasi-isomorphic
or homotopy equivalent if they are equivalent under the equivalence relation gener-
ated by quasi-isomorphisms.
By standard facts about deformation functors [18, 19], it is known that the tangent

space to Def L is isomorphic to H1(L) and that H2(L) is an obstruction space.

Remark 6.1 Everymorphism L → M of DG-Lie algebras induces anatural transfor-
mation of the associated deformation functorsDef L → DefM . A basic result [19,_o-
erema 1.5] asserts that if H0(L)→ H0(M) is surjective, H1(L)→ H1(M) is bijective,
and H2(L)→ H2(M) is injective, then Def L → DefM is an isomorphism.

Lemma 6.2 Let L be a DG-Lie algebra over a ûeld of characteristic 0 with H1(L)
ûnite-dimensional. If the natural map

N0 = {x ∈ L0 ∣ dx = 0, [x , L1] = 0}Ð→ H0(L)
is surjective, then Def L is pro-representable.

Proof Notice ûrst that N0 is a Lie subalgebra of L0. _en deûne N i = L i for every
i ≥ 2 and choose a vector subspace N 1 ⊂ L1 such that L1 = d(L0)⊕N 1. _e inclusion
of DG-Lie algebras N = ⊕i≥0 N i ↪ L satisûes the condition of Remark 6.1 and then
Def L = DefN . On the other side, the gauge action on MCN is trivial and thenDefN =
MCN is pro-representable by Schlessinger’s theorem [23,_eorem 2.11].

Let ∆mon be the category whose objects are ûnite ordinal sets and whose mor-
phisms are order-preserving injective maps between them. A semicosimplicial dif-
ferential graded Lie algebra is a covariant functor ∆mon → DGLA. Equivalently, a
semicosimplicial DG-Lie algebra g∆ is a diagram

g0
//// g1

////// g2
//////// ⋅ ⋅ ⋅ ,

where each gi is a DG-Lie algebra, and for each i > 0, there are i + 1 morphisms of
DG-Lie algebras ∂k , i ∶gi−1 → gi , k = 0, . . . , i, such that ∂k+1, i+1∂ l , i = ∂ l , i+1∂k , i , for any
k ≥ l . Here we use the non-standard notation of lower indexes for a semicosimplicial
object, since the upper indexes are already used to denote degrees.

We denote by Tot(g∆) the image of a semicosimplicial diòerential graded Lie al-
gebra g∆ via the _om–Whitney totalization functor Tot∶DGLA∆mon → DGLA. We
refer to [3, §], [6, §3.2], [7, §3] and [15, §3] for an explicit description of the DG-Lie
algebra Tot(g∆) and its properties. Here, we remind only that there exists a quasi-
isomorphism of complexes of vector spaces between Tot(g∆) and the total complex
associated with the cochain complex C(g∆) (considering any g∆ as a semicosimpli-
cial object in the abelian category of DG-vector spaces). As a consequence of this fact,
if f ∶g∆ → h∆ is amorphism of semicosimplicial diòerential graded Lie algebras such
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that f ∶gi → hi is a quasi-isomorphism of DG-Lie algebras for every i, then the image
Tot( f )∶Tot(g∆)→ Tot(h∆) is a quasi-isomorphism.
Considering theDG-Lie algebraTot(g∆),we cannaturally associatewith any semi-

cosimplicial DG-Lie algebra g∆ the functor of Artin rings DefTot(g∆)∶ArtK → Set.
According to [6, Deûnition 3.1, Deûnition 3.3], we can also associate with g∆ two
other functors of Artin rings. _e former Z1

sc(expg∆)∶ArtK → Set is deûned, for any
A ∈ ArtK, by

Z1
sc(expg∆)(A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(l ,m) ∈ (g1
0 × g01 )⊗mA

RRRRRRRRRRRRRRRRRRR

d l + 1
2 [l , l] = 0, ∂1,1 l = em ∗ ∂0,1 l ,

∂0,2m ● −∂1,2m ● ∂2,2m
= dn + [∂2,2∂0,1 l , n]

for some n ∈ g−1
2 ⊗mA

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

_e latter H1
sc(expg∆)∶ArtK → Set is deûned, for any A ∈ ArtK, by

H1
sc(expg∆)(A) = Z1

sc(expg∆)(A)/∼ ,
where two elements (l0 ,m0) and (l1 ,m1) ∈ Z1

sc(expg∆)(A) are equivalent under the
relation ∼ if and only if there exist elements a ∈ g00 ⊗mA and b ∈ g−1

1 ⊗mA such that

ea ∗ l0 = l1 , −m0 ● −∂1,1a ●m1 ● ∂0,1a = db + [∂0,1 l0 , b].

_eorem 6.3 Let g∆ be a semicosimplicial DG-Lie algebra such that H j(gi) = 0 for
all i ≥ 0 and j < 0. _en there exists an isomorphism of functors of Artin rings

(6.1) DefTot(g∆) Ð→ H1
sc(expg∆) .

Proof See [6,_eorem 4.10].

Remark 6.4 If each gi is concentrated in degree zero, i.e., g∆ is a semicosimplicial
Lie algebra, then the functor H1

sc(expg∆) has an easier explicit description [7, §1]:

H1
sc(expg∆)∶ArtK → Set

H1
sc(expg∆)(A) =

{x ∈ g1 ⊗mA ∣ e∂0x e−∂1x e∂2x = 1}
∼ ,

where x ∼ y if and only if there exists a ∈ g0 ⊗mA, such that e−∂1aex e∂0a = e y .

Let L be a coherent sheaf of DG-Lie algebras over an algebraic variety X and U =
{U i} an aõne open cover of X. In this case, the Čech (double) complex C(U,L) of
L is exactly the total cochain complex associated with the semicosimplicial DG-Lie
algebra

L(U) ∶ ∏i L(U i) //// ∏i , j L(U i j)
////// ∏i , j,k L(U i jk)

//////// ⋅ ⋅ ⋅ ,

where the face operators ∂h ∶∏i0 , . . . , ik−1
L(U i0 ⋅⋅⋅ik−1)→∏i0 , . . . , ik L(U i0 ⋅⋅⋅ik) are given by

∂h(x)i0 . . . ik = x i0 . . . îh ⋅⋅⋅ik ∣U i0 ⋅⋅⋅ik
, for h = 0, . . . , k.

For notational convenience, we denote by Tot(U,L) the_om–Whitney totaliza-
tion of the semicosimplicial DG-Lie algebra L(U). Note that in this case

(6.2) H i(Tot(U,L)) = H i(C(U,L)) = Ȟi(U,L) = Hi(X ,L).
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Remark 6.5 For any coherent sheaf of DG-Lie algebras L, the quasi-isomorphism
class ofTot(U,L) does not depend on the choice of the aõne open cover [6]. IfL→ G

is a morphism of coherent sheaves of DG-Lie algebras that is a quasi-isomorphism
at every stalk, then for any aõne open cover U, the induced morphism of DG-Lie
algebras Tot(U,L)→ Tot(U,G) is a quasi-isomorphism of DG-Lie algebras.

_is motivates the following deûnition.

Deûnition 6.6 Let L be a (quasi) coherent sheaf of DG-Lie algebras over an al-
gebraic variety X. Suppose that, for an open aõne cover U of X (and so for all),
the DG-Lie algebra Tot(U,L) controls a given deformation problem. _en we also
say that L controls the deformation problem. Note that in this case H1(X ,L) is the
tangent space and H2(X ,L) is an obstruction space for the controlled deformation
problem.

7 Deformations of Pairs (Scheme, Coherent Sheaf)

Henceforth, unless otherwise speciûed, we denote by X a scheme of ûnite type over
the ûeldK .

Deûnition 7.1 Let F be a coherent sheaf on X. An inûnitesimal deformation of the
pair (X ,F) over A ∈ ArtK is the data (XA,FA), where

● XA is an inûnitesimal deformation of X over A, i.e., a pullback diagram

X //

��

XA

π
��

SpecK // SpecA,

where π is �at;
● FA is a coherent sheaf of OXA-modules on XA, �at over A, and a morphism
FA → F, inducing an isomorphism FA ⊗OXA

OX → F.

Deûnition 7.2 Let F be a coherent sheaf on a scheme X. Two inûnitesimal de-
formations (XA,FA) and (X′

A,F
′

A) of the pair (X ,F) over A are isomorphic if there
exist an isomorphism of deformations f ∶XA → X′

A and an isomorphism FA → f ∗F′A
of coherent sheaves of OXA-modules.

We recall that the trivial inûnitesimal deformation of (X ,F) over A ∈ ArtK is
given by the pair (X × SpecA,F ⊗OX

OX×SpecA = F ⊗K A).
An inûnitesimal deformation of (X ,F) is locally trivial if it is locally in X isomor-

phic to the trivial inûnitesimal deformation.

Deûnition 7.3 Let F be a coherent sheaf on a scheme X. _e functor of inûnites-
imal deformations of the pair (X ,F) is the functor Def(X ,F) ∶ ArtK → Set, where
Def(X ,F)(A) is deûned to be the set of isomorphism classes of deformations of the
pair (X ,F) over A. _e functor of locally trivial inûnitesimal deformations of the
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pair (X ,F) is the functor Def lt
(X ,F)

∶ ArtK → Set, where Def lt
(X ,F)

(A) is deûned to
be the set of isomorphism classes of locally trivial deformations of the pair (X ,F)
over A.

Remark 7.4 If X is a smooth variety, then any inûnitesimal deformation of X is
locally trivial. If F is a locally free sheaf over a variety X, then any inûnitesimal de-
formation of the sheaf is locally trivial. _en there exists an isomorphism of functors
Def lt

(X ,F)
≅ Def(X ,F), for a locally free sheaf F on a smooth variety X.

7.1 Locally Trivial Infinitesimal Deformations

Let us analyse the data that deûne a locally trivial inûnitesimal deformation (XA,FA)
of (X ,F) over A. Let U = {U i}i∈I be an aõne open cover of X. _e deformation
XA of X is trivial over every aõne open subset; thus for any i ∈ I, there exists an
isomorphism α i ∶OX(U i)⊗ A→ OXA(U i). On every U i × SpecA, we have the sheaf
F∣U i ⊗ A of OX(U i)⊗ A-modules. Since α i is an isomorphism, we can view F∣U i ⊗ A
as a sheaf ofOXA(U i)-modules; theOXA(U i)-modules structure on F∣U i ⊗A is given
by s ⋅ x = α i

−1(s)x, for any s ∈ OXA(U i) and x ∈ F∣U i ⊗ A.
To give a locally trivial deformation FA of the sheaf F over XA,we need to glue the

sheaves F∣U i ⊗ A of OXA(U i)-modules over double intersections. _e isomorphisms
α i ∣U i j ∶OX(U i j) ⊗ A → OXA(U i j) and α j

∣U i j
∶OX(U i j) ⊗ A → OXA(U i j) induce a

structure of sheaf of OXA(U i j)-module on the sheaves F∣U i ⊗ A∣U i j
and F∣U i ⊗ A∣U i j

,
respectively. To glue these sheaves, we need an isomorphism

ψ i j ∶ F∣U i ⊗ A∣U i j
Ð→ F∣U i ⊗ A∣U i j

of OXA(U i j)-modules, i.e., for all s ∈ OXA(U i j), ψ i j(s ⋅ x) = s ⋅ ψ(x). By the explicit
deûnition of OXA(U i j)-modules structures, we have

ψ i j(s ⋅ x) = ψ i j(α i
−1
∣U i j

(s)x) and s ⋅ ψ i j(x) = α j
−1
∣U i j

(s)ψ i j(x).

Since α i ∣U i j is an isomorphism, there exists t ∈ OX(U i j) ⊗ A such that s = α i ∣U i j(t).
_erefore, the linearity reads as follows: ψ i j(tx) = α j

−1
∣U i j
α i ∣U i j(t)ψ i j(x), for any

t ∈ OX(U i j)⊗ A and x ∈ F∣U i j ⊗ A.

In conclusion, in order todeûne a locally trivial inûnitesimaldeformation of (X ,F)
over A, it is enough to give, for any U i j , an automorphism θ i j = α j

−1
∣U i j
α i ∣U i j of

OX(U i j)⊗ A
satisfying the cocycle condition on the triple intersections, an automorphism ψ i j ∈
HomK (F∣U i j⊗A,F∣U i j⊗A) satisfying the cocycle condition on the triple intersections
and such that ψ i j(tx) = θ i j(t)(x), for any t ∈ OX(U i j)⊗ A and x ∈ F∣U i j ⊗ A.

Since we are in characteristic zero, according to Lemma 2.10, we can take the log-
arithm and conclude that (θ i j ,ψ i j) = ex i j , where x i j ∈ DK (X ,F)(U i j) ⊗ mA; the
condition of gluing on triple intersections is equivalent to

ex jk e−x ik ex i j = 1 ∈ exp(DK (X ,F)(U i jk)⊗mA), ∀ i , j, k ∈ I.
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As regards the isomorphisms, suppose that (XA,FA) and (X′

A,F
′

A) are locally triv-
ial isomorphic inûnitesimal deformations of the pair (X ,F) over A. _en there exist
an isomorphism of deformations f ∶XA → X′

A and an isomorphism ϕ∶FA → f ∗F′A of
coherent sheaves of OXA-modules.

Let U = {U i}i∈I be an aõne open cover of X. _en for each i ∈ I, there exists an
induced automorphism of OX(U i)⊗ A:

b i = α′i
−1 f −1

∣U i
α i ∶ OX(U i)⊗ A

α iÐÐ→ OXA(U i)
f −1
∣U iÐÐ→ OX′A(U i)

α′i
−1

ÐÐ→ OX(U i)⊗ A.

_erefore, α′ib i = f −1
∣U i
α i , and so on U i j we have

(α′ib i)−1(α′jb j)∣U i j = α i
−1 f∣U i j f

−1
∣U i j
α j = α i

−1α j
∣U i j

.

_is implies b i
−1θ′jib j = θ ji i.e., θ i j = b j

−1θ′i jb i , where θ i j = α j
−1α i and θ′i j = α′j

−1α′i
are the automorphisms of OX(U i j) ⊗ A corresponding to the deformations XA and
X′

A, respectively.
As regards the sheaves, ϕU i ∶ FA∣U i → f ∗F′A∣U i

is an isomorphism of OXA(U i)-
modules for any i. _e structure of OXA-modules on FA∣U i is given by α i , while the
structure on f ∗F′A∣U i

is given by s ⋅x = α′i
−1 f −1(s)x, for every s ∈ OXA(U i). _erefore,

ϕU i must satisfy ϕU i (sx) = sϕU i (x), for all s ∈ OXA(U i), where

ϕU i (sx) = ϕU i (α i
−1(s)x) and sϕU i (x) = α′i

−1 f −1(s)ϕU i (x).
Since α i is an isomorphism, there exists t ∈ OX(U i)⊗A such that s = α i(t). _erefore,
we have ϕU i (tx) = α′i

−1( f −1(α i(t)))ϕU i (x) = b i(t)ϕU i (x), for any t ∈ OX(U i)⊗ A
and x ∈ F∣U i j ⊗ A. Moreover, let

ψ i j ∈ HomK (F∣U i j ⊗ A,F∣U i j ⊗ A) and ψ′i j ∈ HomK (F∣U i j ⊗ A,F∣U i j ⊗ A),
the automorphism ofOXA(U i j)-modules corresponding to the deformations FA and
F′A, respectively. _en the following diagram must commute:

F∣U i ⊗ A∣U i j

ϕ i ∣U i j //

ψ i j

��

F∣U i ⊗ A∣U i j

ψ′i j
��

F∣U j ⊗ A∣U i j

ϕ j ∣U i j // F∣U j ⊗ A∣U i j

i.e., ψ′i jϕ i ∣U i j
= ϕ j

∣U i j
ψ i j , that is ϕ j

−1
∣U i j

ψ′i jϕ i ∣U i j
= ψ i j .

In conclusion, let (XA,FA) and (X′

A,F
′

A) be two locally trivial isomorphic defor-
mations of the pair (X ,F) over A, corresponding to the elements {(θ i j ,ψ i j)} and
{(θ′i j ,ψ′i j)}. _e isomorphism given by f ∶ XA → X′

A and ϕ ∶ FA → f ∗F′A corre-
sponds to the elements (b i , ϕ i) ∈DA(OX(U i)⊗ A,F(U i)⊗ A) , for any i, such that
b i
−1θ′i jb j = θ i j and ϕ i

−1ψ′i jϕ j = ψ i j , for any i and j.
Since we are in characteristic zero according to Lemma 2.10, we can take the log-

arithms and write (b i , ϕ i) = ea i , where a i ∈ DK (X ,F)(U i) ⊗ mA. _e condition
of gluing is equivalent to e−a i ex i j ea j = ex

′
i j , where {ex i j = (θ i j ,ψ i j)} and {ex

′
i j =

(θ′i j ,ψ′i j)}.
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_eorem 7.5 Let F be a coherent sheaf on a scheme X of ûnite type over the ûeldK .
_en the coherent sheaf of Lie algebrasDK (X ,F) controls the problem of locally trivial
inûnitesimal deformations of the pair (X ,F).

Proof According to Deûnition 6.6, we must prove that for any aõne open cover
U = {U i} of X, there exists an isomorphism of functors of Artin rings

DefTot(U,DK (X ,F)) Ð→ Def lt
(X ,F)

.

_is follows from the previous consideration and from the explicit description of the
functor DefTot(U,DK (X ,F)) given in Remark 6.4: for every A ∈ ArtK , we have

DefTot(U,DK (X ,F))(A) =
{{x i j} ∈∏i , j DK (X ,F)(U i j)⊗mA ∣ ex jk e−x ik ex i j = 1}

∼ ,

where x ∼ y if and only if there exists {a i} ∈ ∏i DK (X ,F)(U i) ⊗ mA such that
e−a i ∣U i j ex i j ea j ∣U i j = e y i j .

Example 7.6 Let Z be a closed subscheme of an algebraic scheme X and denote
by ΘX(− log Z) ⊂ ΘX the subsheaf of tangent vector ûelds that are tangent to Z. It is
known that the sheaf of Lie algebras ΘX(− log Z) controls the locally trivial inûnitesi-
mal deformations of the pair (X , Z) [14]. By the same argument used at the beginning
of Section 3, we have two morphisms of sheaves of Lie algebras

ΘX(− log Z) ∆Ð→DK (X ,OZ)
αÐ→ ΘX(− log Z), α ○ ∆ = Id .

Indeed, the image of the anchor map α preserves the annihilator of the sheafOZ and,
conversely, every derivation h preserving the ideal sheaf of Z induces a derivation of
pair (h, h).

_e geometrical interpretation of thesemorphisms is clear: themorphism ∆ con-
trols the natural transformation that associates with a locally trivial deformation of
(X , Z) the corresponding locally trivial deformation of (X ,OZ). _e anchor map α
associates a locally trivial deformation of the pair (X ,OZ) with the corresponding
locally trivial deformation of (X , SuppOZ).

7.2 Infinitesimal Deformations

Nextwe analyse all the inûnitesimal deformations of a pair (X ,F). We assume that X
is smooth and projective, so that every inûnitesimal deformation of X is locally trivial
and every coherent sheaf on X has a ûnite locally free resolution.

Let E∗ → F be a ûnite locally free resolution of F, i.e., an exact sequence

0Ð→ E−m dÐ→ E−m+1 dÐ→ ⋅ ⋅ ⋅ dÐ→ E−1 dÐ→ E0 Ð→ F Ð→ 0,

where E j is a locally free sheaf for any j. According to Example 5.5, we can consider
the sheaf of DG-Lie algebras D∗

K (X ,E∗) associated with the complex E∗.

Lemma 7.7 LetF be a coherent sheaf on a smooth projective variety X and f ∶E∗ → F

and g∶G∗ → F two ûnite locally free resolutions of F. _en for any open aõne cover
U = {U i} of X, the DG-Lie algebras Tot(U,D∗

K (X ,E∗)) and Tot(U,D∗

K (X ,G∗)) are
quasi-isomorphic.
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Proof Since the variety is smooth and projective, by the Hilbert Syzygy _eorem,
there exist two bounded complexesH∗ andN∗ of locally free sheaves and a commu-
tative diagram of complexes

0 // E∗ ⊕ G∗ //

f+g
$$

H∗

h
��

// N∗ // 0

F

such that h ∶ H∗ → F is a quasi-isomorphism; in particular, the inducedmorphisms
E∗ →H∗ and G∗ →H∗ are quasi-isomorphisms.

Let U be an aõne open subset of X. Since the sections of a locally free sheaf of an
OX-module over U is a projective OX(U)-module, the injection

E∗(U)⊕ G∗(U)Ð→H∗(U)
is a coûbration, sinceH∗ ,N∗ are bounded complexes and thereforeH∗(U),N∗(U)
are coûbrant complexes of OX(U)-modules. Since U is aõne, themaps

E∗(U)⊕ G∗(U)Ð→ F(U) and H∗(U)Ð→ F(U)
are quasi-isomorphisms and then the inducedmaps

E∗(U)Ð→H∗(U) and G∗(U)Ð→H∗(U)
are trivial coûbrations.

_en we have the following diagram ofmorphisms of coherent sheaves of DG-Lie
algebras:

D∗

K (X ,E∗)←ÐD∗

K (X ,E∗ fÐ→H∗)Ð→D∗

K (X ,H∗)

←ÐD∗

K (X ,G∗ gÐ→H∗)Ð→D∗

K (X ,G∗).
According to Propositions 5.1 and 3.4, for every open U i ∈ U, we have a diagram of
quasi-isomorphisms of DG-Lie algebras

D∗

K (X ,E∗ fÐ→H∗)(U i)

))��

D∗

K (X ,G∗ gÐ→H∗)(U i)

uu ��
D∗

K (X ,E∗)(U i) D∗

K (X ,H∗)(U i) D∗

K (X ,G∗)(U i)

Finally, applying the Tot functor, we conclude that

Tot(U,D∗

K (X ,E∗)) and Tot(U,D∗

K (X ,G∗))
are quasi-isomorphic DG-Lie algebras.

Deûnition 7.8 Let F be a coherent sheaf on a smooth projective variety X.
For any i ∈ Z, we deûne the coherent sheaves T i

(X ,F)
to be the cohomology

sheaves of D∗

K (X ,E∗) for a ûnite locally free resolution E∗ → F of F: T i
(X ,F)

∶=
Hi(D∗

K (X ,E∗)). Similarly, we deûne the hyper-cohomology groups T i
(X ,F)

=
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Hi(X ,D∗

K (X ,E∗)). Lemma 7.7 implies that the sheavesT i
(X ,F)

and the groupsT i
(X ,F)

are well deûned, since they do not depend on the choice of the resolution.

_e short exact sequence (5.2) of complexes of coherent sheaves

0Ð→Hom∗

OX(E
∗ ,E∗)Ð→D∗

K (X ,E∗)Ð→ ΘX Ð→ 0

gives a hypercohomology long exact sequence
(7.1)
0Ð→ Ext0X(F,F)Ð→ T0

(X ,F)
Ð→ H0(X ,ΘX)Ð→ Ext0X(F,F)Ð→ T 1

(X ,F)
Ð→ ⋅ ⋅ ⋅ .

By the hypercohomology spectral sequence, we have

E p,q
2 = Hp(X ,Tq

(X ,F)
)⇒ T p+q

(X ,F)
.

According to Example 3.6, we have that T i
(X ,F)

= ExtiOX(F,F), for i ≠ 0, 1, and we
have an exact sequence of sheaves

0Ð→HomOX(F,F)Ð→ T0
(X ,F)

Ð→ ΘX Ð→ Ext1OX(F,F)Ð→ T1
(X ,F)

Ð→ 0.

In particular, the sheaf T i
(X ,F)

vanishes in the locus where F has projective dimen-
sion < i.

7.3 Local Case

First,we analyse the inûnitesimal deformations of the pair (X ,F) in the local case. Let
X = SpecR be smooth and aõne over K and F = M̃, where M is a ûnitely generated
R-module. Let (E∗ , d) be a ûnite complex of projective R-modules such that the
sequence

0Ð→ E−m dÐ→ E−m+1 dÐ→ ⋅ ⋅ ⋅ dÐ→ E−1 dÐ→ E0 Ð→ M Ð→ 0

is exact. Finally, consider the DG-Lie algebra D∗K (R, E∗).

Proposition 7.9 In the notation above, the DG-Lie algebra D∗K (R, E∗) controls the
inûnitesimal deformations of the pair (X ,F), i.e., there exists an isomorphism of defor-
mation functors DefD∗K (R ,E∗) ≅ Def(X ,F).

Proof _e variety X = SpecR is smooth and aõne and so it has only trivial inûnites-
imal deformations [25,_eorem 1.2.4]. _erefore, for any A ∈ ArtK , any inûnitesimal
deformation of the pair (X ,F = M̃) over A is of the form (X × SpecA, FA = M̃A),
whereMA is an R⊗A-module, that is, A-�at, togetherwith amorphism π ∶ MA → M,
inducing an isomorphism MA ⊗A K → M [6, §1].

_e �atness condition allows us to li� the relations; therefore, any deformation MA
of M over A corresponds to an exact sequence E∗ ⊗ A→ MA that reduces to

E∗ Ð→ M

when tensored with K , i.e., any deformation MA of M over A corresponds to a de-
formed complex (E∗⊗A, dA) and any of these complexes is of the form (E∗⊗A, d+x),
for x ∈ MCD∗K (R ,E∗)(A) = MCHom∗

K (E∗ ,E∗)(A).
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Two deformations (X × SpecA,FA = M̃A) and (X × SpecA,F′A = M̃′

A) of (X , M̃)
over A are isomorphic if there exist an isomorphism of deformations

f ∶X × SpecA→ X × SpecA

and an isomorphism FA → f ∗F′A of R ⊗ A-modules.
In particular, the isomorphism of the modules li�s to an isomorphism of the de-

formed complexes and vice versa. _en an isomorphism is given by a pair (θ ,ψ)
where θ ∶ R ⊗ A→ R ⊗ A is an isomorphism that li�s the identity of R and

ψ∶ (E∗ ⊗ A, d + x)Ð→ (E∗ ⊗ A, d + x′)

is an isomorphism li�ing the identity, such thatψ(rm) = θ(r)ψ(m), for any r ∈ R⊗A
and any m ∈ E∗ ⊗ A.
As in Lemma 2.10, for any A ∈ ArtK the group exp(D0

K (R, E∗)⊗mA) is naturally
isomorphic to the group of A-automorphisms of the pair (R ⊗ A, E∗ ⊗ A) li�ing the
identity on (R, E∗); therefore, it corresponds to the group of the isomorphisms of
deformations.

Example 7.10 (cf. [5, Proposition A3]) Assume that X is a smooth surface, D ⊂ X a
reduced divisor, andF a sheaf ofOD-modules. Assume that for every point p ∈ D, the
stalk Fp is a torsion-freeOD ,p-module. _en by the Auslander–Buchsbaum _eorem
[21,_eorem 19.1], the projective dimension of every stalk of the sheaf F is at most 1.
In particular, T i

(X ,F)
= ExtiOX(F,F) = 0, for every i ≥ 2.

If X is aõne, we have Ext2X(F,F) = H0(Ext2OX(F,F)) = 0, and so the pair (X ,F)
has unobstructed deformations.

7.4 Global Case

Finally, we analyse all the inûnitesimal deformations of a pair (X ,F). Essentially, we
must glue together the computations about the locally trivial inûnitesimal deforma-
tions (_eorem 7.5) and the deformations in the local case (Proposition 7.9).

_eorem 7.11 Let F be a coherent sheaf on a projective smooth variety X and let
E∗ → F be a ûnite locally free resolution of F. _en the coherent sheaf of DG-Lie alge-
brasD∗

K (X ,E∗) controls the problem of deformations of the pair (X ,F). In particular,
T 1
(X ,F)

is the tangent space and T2
(X ,F)

is the obstruction space for Def(X ,F).

Proof _e proof follows the general lines already used in [6]. According to Deûni-
tion 6.6, we need to prove that for any aõne open cover U = {U i} of X, there exists
an isomorphism of functors of Artin rings DefTot(U,D∗

K (X ,E∗)) → Def(X ,F).
According to the isomorphism given in (6.1), it is enough to show that there ex-

ists an isomorphism H1
sc(exp(D∗

K (X ,E∗)(U))) → Def(X ,F). _erefore, for any
A ∈ ArtK , we need to prove that every element in Z1

sc(exp(D∗

K (X ,E∗)(U)))(A)
corresponds to an inûnitesimal deformation of the pair (X ,F) over A and that two
elements are equivalent if and only if the corresponding deformations are isomor-
phic. _is follows from the local study analysed in Proposition 7.9 and a gluing pro-
cedure as in_eorem 7.5. Indeed, an element (l ,m) ∈ Z1

sc(exp(D∗

K (X ,E∗)(U)))(A)
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gives a deformation of the pair (X ,F) as gluing of deformations on each U i . We only
stress the fact that the gluing condition on the isomorphisms involves an element in
∏i , j,k Hom−1

OX(E
∗ ,E∗)(U i jk) ⊗ mA; this is due to the fact that we do not need to

glue the deformed complexes but rather their cohomology to get a sheaf (see [6, §2]
for more details about this). As regards the equivalence relation ∼, the ûrst condition
is the isomorphism of the induced deformation on each open set, the second condi-
tion gives the gluing of the local isomorphism to obtain a global isomorphism of the
induced deformations.

More explicitly, an element (l ,m) ∈ Z1
sc(exp(D∗

K (X ,E∗)(U)))(A) is given by the
sequences

l = {l i} ∈∏
i
Hom1

OX(E
∗ ,E∗)(U i)⊗mA,

m = {(h i j , u i j)} ∈∏
i , j
D0

K (X ,E∗)(U i j)⊗mA

such that

(1) for any i, the element l i satisûes theMaurer–Cartan equation, i.e., d l i+ 1
2 [l i , l i] =

0,
(2) for any i and j, the restriction of l i and l j toU i j are gauge equivalent under m i j ,

i.e., l i ∣U i j = em i j ∗ l j ∣U i j ,
(3) for any i, j, and k, we have the condition:

h jk ∣U i jk ● −h ik ∣U i jk ● h i j ∣U i jk = 0,
u jk ∣U i jk ● −u ik ∣U i jk ● u i j ∣U i jk = [d + l j ∣U i jk , n i jk],

for some n = {n i jk} ∈∏i , j,k Hom−1
OX(E

∗ ,E∗)(U i jk)⊗mA.

According to the local study, conditions (1) and (2) imply that every l i deûnes a de-
formation of the pair (X ,F) on U i and that the deformations induced by l i and l j on
U i j are isomorphic. Finally, the third condition implies that we can glue together the
local deformations to get a global deformation of the pair (X ,F) over A. Indeed, the
former condition is the gluing of the locally trivial deformation ofU i over the double
intersections to obtain a deformation of X over A; the latter regards the gluing of the
local deformations of the sheaf F. We only stress the fact that the isomorphisms that
glue the restrictions of the deformed complexes (E∗U i

⊗A, d+ l i) and (E∗U j
⊗A, d+ l j),

for any i and j, satisfy the cocycle condition only up to homotopy. Indeed, we do not
need to glue the restriction of the deformed complexes of sheaves together but rather
their cohomology. _erefore, the gluing isomorphism must satisfy the cocycle con-
dition only up to homotopy.
As regards the equivalence relation, suppose that

(l0 = {l0, i},m0 = {(h0, i j , u0, i j)}),

and

(l1 = {l1, i},m1 = {(h1, i j , u1, i j)}) ∈ Z1
sc(exp(D∗

K (X ,E∗)(U)))(A)
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are equivalent under the relation ∼. _enwe need to prove that the induced deforma-
tions are isomorphic. _e equivalence implies the existence of

a = {g i , v i} ∈∏
i
D0

K (X ,E∗)(U i)⊗mA

b = {b i j} ∈∏
i , j
Hom−1

OX(E
∗ ,E∗)(U i j)⊗mA

such that

ea ∗ l0 = l1 , −m0 ● −a i ∣U i j ●m1 ● a j
∣U i j

= db + [l0, j
∣U i j

, b].

_e ûrst condition implies that the deformations of the pair induced by l0 and l1 are
isomorphic locally on U i ; the second condition provides the gluing of the isomor-
phisms along double intersections. (We have a strict cocycle condition for the iso-
morphisms of the deformations of X and, as before, we have a homotopy cocycle
condition for the gluing of the deformed complexes.)
As regards the tangent and obstruction spaces for Def(X ,F), we have that

H1(Tot(U,D∗

K (X ,E∗)))
is the tangent space andH2(Tot(U,D∗

K (X ,E∗))) is an obstruction space. According
to Deûnition 7.8 and to equality (6.2), we have that

H i(Tot(D∗

K (X ,E∗)(U))) ≅ Hi(X ,D∗

K (X ,E∗)) = T i
(X ,F)

.

Remark 7.12 In the situation of _eorem 7.11, consider the sheaf of truncated
DG-Lie algebras

σ≤0D∗

K (X ,E∗) =DK (X ,E∗)⊕
i<0

Homi
OX(E

∗ ,E∗) ⊂D∗

K (X ,E∗).

We have seen in Example 3.6 that the natural mapDK (X ,E∗)→DK (X ,F) induces
a surjective quasi-isomorphism of coherent sheaves of DG-Lie algebras

σ≤0D∗

K (X ,E∗)→DK (X ,F).
_erefore, the sheaf of truncated DG-Lie algebras σ≤0D∗

K (X ,E∗) also controls the
locally trivial deformations of the pair, and the obvious natural transformation

Def lt
(X ,F)

Ð→ Def(X ,F)

is induced by the inclusion σ≤0D∗

K (X ,E∗) ⊂D∗

K (X ,E∗).

We are now ready to prove the last item of_eorem 1.2.

Proposition 7.13 Let F be a coherent sheaf on a projective smooth variety X. As-
sume that H0(X ,ΘX) = 0 and Ext0X(F,F) = K . _en the functor Def(X ,F) is pro-
representable.

Proof Let E∗ → F be a ûnite locally free resolution of F. According to (7.1) the
vector space T0

(X ,F)
is one-dimensional generated by the identity on the complex E∗.

_erefore, for every open aõne cover U the vector space H0(Tot(U,D∗

K (X ,E∗))) is
one-dimensional and generated by the identity on E∗

∣U i0 ⋅⋅⋅ik
for every k ≥ 0 and every
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i0 , . . . , ik . In particular the DG-Lie algebra Tot(U,D∗

K (X ,E∗)) satisûes the condi-
tion of Lemma 6.2 and the conclusion follows by _eorem 7.11.

Let X be a projective smooth variety, F a coherent sheaf on X, and E∗ → F a ûnite
locally free resolution. By deûnition detF = detE∗, and we have deûned amorphism
of sheaves of DG-Lie algebras (see equation (5.6)):

Tr∶DK
∗(X ,E∗)Ð→DK (X , detF) .

By_eorem 7.11, the sheafDK
∗(X ,E∗) controls the deformations of the pair (X ,F),

while the sheafDK (X , detF) controls the deformations of the pair (X , detF).
We can interpret this morphism as a natural transformation of deformation func-

tors. Some deformations of the pair (X ,F) correspond to deformations of X and of
the complexE∗; thenwith these deformationswe can easily associate a deformation of
the pair (X , detF = detE∗), considering the determinant of the deformed complex.
In general, not all the deformations of F correspond to deformations of the complex,
but this is true only locally on X and the deformations of the complex glue only in
cohomology. Anyway, we can still deûne a deformation of the pair (X , detF), as we
see in the following lemma.

Lemma 7.14 Let X be a projective smooth variety and F a coherent sheaf on X. _en
there exists a commutative diagram of deformation functors

Def(X ,F)

Tr //

$$

Def(X ,detF)

yy
DefX

where the diagonal arrows are the forgetful natural transformations, and the natural
transformation Tr is induced by the trace map Tr∶D∗

K (X ,E∗) → D∗

K (X , detF), for
any ûnite locally free resolution E∗ → F.

Proof Let U = {U i} be an open aõne cover for X such that every sheaf Ek is free
on every U i . Fix A ∈ ArtK and consider a deformation (XA,FA) ∈ Def(X ,F)(A).
According to _eorem 7.11, this deformation corresponds to an element

(l ,m) ∈ Z1
sc(exp(D∗

K (X ,E∗)(U)))(A),
where

l = {l i} ∈∏
i
Hom1

OX(E
∗ ,E∗)(U i)⊗mA,

m = {(h i j , u i j)} ∈∏
i , j
D0

K (X ,E∗)(U i j)⊗mA.

In particular, for any i, j, and k, we have the following conditions:

u jk ∣U i jk ● −u ik ∣U i jk ● u i j ∣U i jk = [d + l j ∣U i jk , n i jk],

for some n = {n i jk} ∈ ∏i , j,k Hom−1
OX(E

∗ ,E∗)(U i jk)⊗mA. Applying the tracemor-
phisms to m, for any i and j, we have

Tr(h i j , u i j) = (h i j ,Tr(u i j)) ∈D0
K (X , detF)(U i j)⊗mA
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such that

Tr(u jk ∣U i jk) ● −Tr(u ik ∣U i jk) ● Tr(u i j ∣U i jk) = Tr([d + l j ∣U i jk , n i jk]) = 0.

_is implies that the element

Tr(m) = {(h i j ,Tr(u i j)} ∈∏
i , j
D0

K (X , detF)(U i j)⊗mA

satisûes the cocycle condition on triple intersections and so, by_eorem 7.5, it deûnes
a deformation of the pair (X , detF) over A.
An analogous computation shows that the isomorphism class of the induced defor-

mation of (X , detF) does not depend on the isomorphism class of the deformation of
(X ,F). Indeed, let (XA,FA) and (X′

A,F
′

A) be isomorphic deformations correspond-
ing to the elements (l0 = {l0, i},m0 = {(h0, i j , u0, i j)}) and

(l1 = {l1, i},m1 = {(h1, i j , u1, i j)}) ∈ Z1
sc(exp(D∗

K (X ,E∗)(U)))(A).

According to _eorem 7.11, the isomorphism corresponds to the existence of

a = {g i , v i} ∈∏
i
D0

K (X ,E∗)(U i)⊗mA

b = {b i j} ∈ tsl∏
i , j

Hom−1
OX(E

∗ ,E∗)(U i j)⊗mA

such that

ea ∗ l0 = l1 , −m0 ● −a i ∣U i j ●m1 ● a j
∣U i j

= db + [l0, j
∣U i j

, b].

In particular, applying the tracemorphisms for any i and j, we have

−Tr(m0) ● −Tr(a i ∣U i j) ● Tr(m1) ● Tr(a j
∣U i j

) = 0 ∈D0
K (X , detF)(U i j)⊗mA .

By _eorem 7.5, this implies that the induced deformations of (X , detF) are isomor-
phic.

Remark 7.15 As a particular case, ifwe only consider the deformations of a coherent
sheaf F on a ûxed projective variety X, then trace induces amorphism of functors

DefF → DefdetF .

In this case, the induced morphisms in cohomology are the ones already analysed
in [27,_eorem 3.23].

_eorem 7.16 Let X be a projective smooth variety and E∗ a locally free ûnite reso-
lution of a coherent sheaf F. Consider the linear maps Tri ∶ExtiX(F,F) → H i(X ,OX)
induced by themorphism of sheaves of DG-Lie algebras Tr∶Hom∗

OX(E
∗ ,E∗) → OX .

If the map Tr1 is surjective and the map Tr2 is injective, then the induced natural
transformation Def(X ,F) → Def(X ,detF) is smooth. If Tr2 is injective and Def(X ,detF)

is unobstructed, then Def(X ,F) is unobstructed.

By the exact sequence (5.4), the above assumptions on Tr1 and Tr2 are equivalent
to assuming Ext2X(F,F)0 = 0.
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Proof By _eorem 5.6, there exists a commutative diagram with exact rows and
columns ofmorphisms of coherent sheaves of DG-Lie algebras

0

��

0

��
Hom∗

OX(E
∗ ,E∗)0

��

Hom∗

OX(E
∗ ,E∗)0

��
0 // Hom∗

OX(E
∗ ,E∗)

Tr
��

// D∗

K (X ,E∗)

Tr
��

α // ΘX // 0

0 // OX

��

// DK (X , detE∗)

��

α // ΘX // 0

0 0 .

_e hypothesis on themorphisms Tr∶Hom∗

OX(E
∗ ,E∗) → OX implies that the same

holds for the morphisms induced by Tr∶DK
∗(X ,E∗) → DK (X , detF). _en it is

enough to apply the Standard Smoothness Criterion [19,_eorem 4.11] to the corre-
sponding morphism of functors Tr∶Def(X ,F) → Def(X ,detF).

If Def(X ,detF) is unobstructed, then Tr2∶T2
(X ,F)

→ T2
(X ,detF)

annihilates all the
obstructions and its injectivity implies that also Def(X ,F) is unobstructed.
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