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Abstract. For each d > 2 there exists a polynomial p with real coefficients such that
the associated Newton function z-[p(z)/p'(z)] has 2d-2 distinct attracting
periodic orbits in the complex plane. According to a theorem of G. Julia, this is the
maximal number of attracting orbits that any rational function of degree d can
possess.

1. Introduction
Perhaps the most common example of iteration of a rational function defined on
the complex plane is the use of Newton's method to find the roots of a polynomial.
It is widely known that Newton's method may fail to produce a root under certain
circumstances. Among the causes of non-convergence, the most robust occurs when
the initial point lies in the basin of attraction of an attracting periodic orbit of the
Newton function, for this situation is stable under small perturbations of both the
initial point and the polynomial. A fundamental problem is to determine if the
Newton function of a given polynomial has any such attractors, and if so, how
many. If the degree of the polynomial is d, then a classical theorem of G. Julia
gives an upper bound of Id - 2 on the number of attracting periodic orbits (including
attracting fixed points) of the Newton function. The main result of this paper is
that this upper bound is precise.

THEOREM. / /rf>2, then there is a polynomial of degree d with the property that the
Newton function of this polynomial has 2d — 2 distinct periodic attractors in the complex
plane. The polynomial can be chosen to have only real coefficients.

The theorem is proved by making a series of perturbations to a polynomial that has
a repeated critical point of high multiplicity. Each perturbation reduces the multi-
plicity of the degenerate critical point by one and at the same time increases the
number of attracting periodic orbits of the associated Newton function by one. The
multiplicity of the critical points being dealt with is important; because of it, small
changes in the coefficients of the polynomial lead to (locally) large changes in the
Newton function. This, combined with the local stability of attracting periodic orbits,
enables one to introduce a new attracting orbit without destroying any of the periodic
attractors that had been created at previous stages in the construction.
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2. Basic facts about Newton functions
If p(z) is a polynomial over the complex numbers, then the Newton function of p,
Np(z), is defined by

Np(z) = z-[p(z)/p'(z)] (p'(z)*0).

The derivative of Np is pp"/[p']2- Thus, if the degree of p is d, then Np is a rational
function with Id-2 critical points. A periodic orbit

y = {z0, Np(z0), (Np)2(z0),..., (Np)k(z0) = z0}

is attracting if

dz

For example, every root of p is an attracting fixed point of Np. If y is an attracting
periodic orbit, its basin of attraction is an open set and is defined as

{w|dist ((Np)J(w), y)-»0 as7'-»oo}.

Basic to the study of attracting orbits in Newton's method for polynomials is the
following result of G. Julia [J], [Bla].

JULIA'S THEOREM. If F is a rational mapping of the complex plane, of degree at least
2, then the basin of attraction of any periodic attractor of F contains a critical point
ofF. Consequently the number of attracting periodic orbits is no more than the number
of critical points.

In the case of Newton's method for a polynomial of degree d, this means that there
can be at most 2d -2 attracting periodic orbits.

In what follows, the polynomials under consideration will have only real
coefficients, so the real line will be an invariant set for the corresponding Newton
functions. In this situation, define a band for Np to be a connected component of
R-{critical points of p}. When p is a polynomial, then Np will have unbounded
bands. Certain features of the dynamics of Np on an unbounded band will be
relevant to the following discussion. We summarize these features in the following
simple lemma, whose proof is an easy calculation. See [HM], [H] for more details.

LEMMA 1. Suppose p is a real polynomial of degree d.
(a) (Np)'(x)-*(d-\)/d as x^oo.
(b) Suppose that B is an unbounded band for Np whose closure contains no roots

of p. Then Np(B) = U. IfB ¥• U then under iteration by Np any point ofB will eventually
leave B.

More complete descriptions of the dynamics of Newton functions on the real line
can be found in a number of recent papers, including [SaU], [CoM], [W], [HM],
[H], as well as in the original papers of Barna [B1]-[B4]. A numerical study of
Newton functions on the complex plane is contained in [CuGS].

3. Statement of results
THEOREM. Given any positive integer d, d>2, there is a polynomial p with real
coefficients and degree d such that Np has 2d-2 distinct periodic attractors in the
complex plane.
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In giving a proof of the theorem we will consider the set of polynomials g satisfying
the following properties:

(3.1) All of the coefficients of g are real.
(3.2) g has no repeated roots.
(3.3) All of the roots of g' are real and lie in [0, oo); 0 is a repeated root of g',

but none of the other roots of g' is repeated.

Let Sf denote the set of all polynomials satisfying (3.1)-(3.3). The theorem will
follow from the following two propositions. In each of them assume that p is a
polynomial of the form

(3.4) />(z) = ao + L t u ajzj, with ao>0, ad * 0 , and fc>2.

PROPOSITION 1. Suppose p satisfies (3.1)-(3.4) and that
(la) k is odd;
(lb) afc+1>0;
(lc) p(x) >0 for all JC>0;

(Id) Np is monotonic on each of its unbounded bands.
Let 8 > 0 be given. Then there is a constant ak e (-5,0) such that iff(z) = p{z) + akz

k,
then Nf has one more attracting periodic orbit than Np, and f has the following
properties:

(l(ii)) f{x)>0forallx>0;
(l(iii)) fhas the same number of real roots as p;
(l(iv)) Nf has two unbounded bands, and is monotonic on each.

PROPOSITION 2. Suppose p satisfies (3.1)-(3.4) and that
(2a) k is even;
(2b) ak + 1<0;
(2c) p(x)>0forallx<0;
(2d) Np is monotonic on each of its unbounded bands.

Let 8 > 0 be given. Then there is a constant ak e (0, 8) such that iff(z) = p(z) + akz
k,

then Nf has one more attracting periodic orbit than Np, and f has the following
properties:

(2(0) /G^;
(2(ii)) /(x)>0/ora//x<0;
(2(iii)) f has the same number of real roots as p;
(2(iv)) Nf has two unbounded bands, and is monotonic on each.

Proof of the theorem in the case d is even. Use the two propositions inductively; in
order to satisfy both of the assumptions (lc) and (2c) it is necessary that the degree
of p be even. The case d = 2 is trivial, so assume that d is at least 4. Define
po(z) = zd +1 and note that Np0 has d distinct attracting fixed points, none of which
is real. Let P\{z) =/(z) where / i s obtained by using proposition 1 with p = p0. Npl

has d + \ distinct periodic attractors and no real roots. Now let p2=f where/ is
obtained by using proposition 2 with p = p\, so Np2 has d + 2 distinct periodic
attractors and no real roots. Repeating this process, we eventually obtain Pd-i such
that Npd-2 has 2d -2 distinct periodic attractors. •
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RemarL The polynomial constructed in this proof satisfies the properties (3.1)-(3.3)
and has no real roots.

4. Proof of propositions 1 and 2
The proof of the following lemma is straightforward.

LEMMA 2. Suppose p(z) is a polynomial and that L is a compact subset of the complex
plane that is disjoint from the set of zeros of p'. Let fa(z)=p(z) + azk. Then Nfa

converges C1 uniformly on L to Np as a tends to 0.

Proof of proposition 1. For p as in the statement of the proposition let fa(z) =
p(z) + azk, a in R. For a close to 0 the roots of fa,f'a, and/£ will be close to those
of p, p', and p" respectively, so (l(ii)-(iv)) will hold. By lemma 2 and the persistence
of periodic attractors under local C1 perturbations, for a sufficiently close to 0, Nfa

will have an attracting periodic orbit corresponding to each periodic attractor of
Np, and of the same period. Additionally, if a is not only close to zero but is also
negative, then the assumption that p is in 9* will ensure that/a is in &1 as well: that
(3.1) and (3.2) will be satisfied is obvious; to see that (3.3) is also satisfied we argue
as follows. Note that

^ V ^ where b^ (j +k)(aj+k),

so 0 is a root of f'a of multiplicity k — 1. Each of the remaining d — k roots of/a
has multiplicity 1; as a increases to 0 one of these roots converges to 0 and the
others converge to the non-zero roots of p'. The assumptions that a < 0 and b^ > 0
ensure that for a close enough to 0 all of the roots of/a are real and non-negative.
Thus for such a fa will belong to if.

All that remains to show is that a can be chosen so that Nfa has an attracting
periodic orbit not corresponding to any of the periodic attractors of Np. Let <50>0
be less than S and small enough that the preceding arguments hold. For the remainder
of the proof consider only values of a satisfying — 5 0 < a < 0 . Let xa denote the
smallest positive root of f'a. The argument in the preceding paragraph shows that
xa tends to 0 as a increases to 0. The restriction of Nfa to R has vertical asymptotes
at 0 and at xa. Between these asymptotes fa is positive and f'a is negative, so that
Nfa(x) > x. Consequently Nfa is bounded below on (0, xa) and has a turning point
inside this interval. In fact, it is easy to check that

(4.1) inf{JV/0(x)|0<Jc<xa}-»oo

as a tends to 0 from below. Let ya denote the smallest positive critical point of
Nfa. By (l(ii)) and the fact that (NfJ'= fJ"J'(f'a)

2 it follows that ya is the least
positive root of/£. Since f"a is given by

and Cj>0, the map a-»ya is smooth for —8j s a < 0 for some 5, chosen to satisfy
0< 5, < So, and ya -»0 as a increases to 0.
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Claim. There are values of a in (-5,, 0) for which ya lies on an attracting periodic
orbit of Nfa.

Since (Nfa)'(ya) = 0, a periodic orbit containing ya is necessarily attracting.

Proof of claim. Let qa denote the largest real root of f'a (so qa^xa> ya>0). The
graph of Nfa for x near 0 is depicted in figure 1. By (l(iv)) and lemma 1, Nfa is

FIGURE 1

monotonic on (qa, oo) and maps {qa,°o) onto the real line. Thus there is a unique
inverse image of ya under Nfa that lies in {qa,°o). We will show that for certain
values of a this pre-image of ya is also a forward iterate of ya. Note that as a
approaches 0 from below the number of consecutive iterates of Nfa(ya) that are
greater than qa tends to infinity. This holds because Nfa(ya)-» oo as a increases to
0 (by (4.1)) and \Nfa(x)-(d -\)x/d\ has a constant limit as x-»oo (and these limits
are uniform for a in a compact set). Choose a0 in (-5,,0) and m> 1 so that for
a = a0, Nfa{ya)>qa and (Nfa)

m(ya) <qa. Define

a(m) = inf {/3 <0\{Nfa)
J(ya) > qa for all 1 < j< m and /3 < a < 0}.

for
map

For some j{m)<m we have N/i(
(
m

m
)
)(ya(m)) = qa(m) and 7V/Ja

<m)(ya)> g
a{m)<a <0. Let T=7'(m) + 1. The construction ensures that the
G(a) = (Nfa)

T(ya) is continuous on (a(m), 0), and

G(a)-> -oo as a decreases to a(m)

G(a) -» oo as a increases to 0.

Since the curve a^ya is continuous and bounded on ( — 5,,0), this curve and the
graph of G(a) must intersect (see figure 2). At a point of intersection we have
(Nfa)

T(ya) = ya. •

The proof of proposition 2 is analogous to that of proposition 1. In it there is a
critical point of Nfa that is positive, near 0, and which is mapped toward -oo as
a -»0. The graph of Nfa in this situation is shown in figure 3.
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a(m)

FIGURE 2

FIGURE 3

5. Proof of the theorem when d is odd
Suppose that d is odd and at least 3. Use the construction of § 4 to obtain a real
polynomial p satisfying

(5.1) degree {p) = d-\.
(5.2) p satisfies (3.1)-(3.3).
(5.3) p(x)>0for all x in R.
(5.4) Np has 2d-4 distinct attracting periodic orbits in the complex plane.

Consider polynomials of the form

(5.5) ga(z)=p(z) + azd, a>0.

https://doi.org/10.1017/S0143385700003692 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003692


Multiple attractors in Newton's method 567

Each ga has a single real root, which is negative, and this root tends to —oo as a
decreases to 0. By lemma 2, if a > 0 is small enough, Nga will have 2d — 3 distinct
attracting periodic orbits: orbits corresponding to each of the periodic attractors of
Np as well as an attracting fixed point at the real root of ga. To see that there are
small positive values of a for which Nga has 2d — 2 distinct attractors, consider the
graph of Nga (see figure 4).

\. x - 0
V

FIGURE 4

By (3.3) p' has no roots on the negative real axis, so using (5.5) it is an easy
argument to show that g'a(0) = 0 and that g'a has exactly one negative root at a point
that we label xa. Thus the negative real axis contains two bands for Nga, an
unbounded one (-co, xa) that contains the negative root of ga, and a bounded one
(xa,0) with the property that Nga(x)>x whenever xa<x<0. Nga is bounded
below on (xa, 0) and has a minimum on this band, which occurs at a point ya that
is a root of g'^. (For a small the other roots of g"a are near those of p", so a counting
argument shows that ya is the only turning point of Nga in the band (xa, 0).) Note
that both xa and ya tend to -oo as a decreases to 0.

Because g'a(0) = 0 there is an unbounded band for Nga that lies in the positive
half-line; call this band Ba. Since the only real root of ga is negative, lemma 1
shows that Nga maps Ba onto R. We will show that for certain small values of a
the orbit of ya is periodic and is contained in the union of Ba and (xa, 0).

Define

Claim. K(a) goes to infinity as a decreases to 0.

This claim follows from the following facts.
(5.6) Nga has its minimum on (xa,0) at ya.
(5.7) Nga converges uniformly to Np as a decreases to 0 on compact subsets of

the negative real axis.
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(5.8) Np(x) tends to -oo as x-»-oo.
(5.9) \Np(x)-[(d-l)/(d-2)]x\ has a finite limit as x->-oo.

Now choose 8 > 0 small enough that if 0 < a < 5, then Nga has the features described
above. Pick some a^ in (0, S) and let m0 be a fixed integer greater than K(at). Define

ao = inf {0< a < S\ K(a) < m0}.

For any j satisfying 0<j '<m0+l , the map a-*(NgJ
a)(ya) is continuous on 0 < a

< a0, and there is an integer m< m0 such that (iVga)
m(_ya) tends to 0 from below

as a tends to a0 from below. Consequently, (Nga)
m+i(ya) goes to infinity asa->a0

from below. On the other hand, (5.6)-(5.9) combine to show that (Nga)
m+\ya)

goes to —oo as a tends to 0 from above.
Now consider inverse images of ya. For each small positive a there is a point ra

in Ba defined by Nga (ra) = ya. It is not hard to check that for 0 < a < a0 the function
a-+ra is continuous (and nearly constant if a0 is small). One concludes that if the
two curves a -> ra and a -»(Nga)

m+1(ya) are graphed in the (a, x)-plane, then the
two graphs must intersect, as shown in figure 5. If {a, x) = (A, X) is the point of
intersection, then

(NgAr+2(yA) = NgA((NgA)m+l(yA)) = NgA(X) = yA.

Thus NgA is a rational function of degree d with 2d — 2 distinct attracting periodic
orbits. •

FIGURE 5
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