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UNSTABLE NEUTRAL FUCTIONAL DIFFERENTIAL EQUATIONS 

BY 

ALAN FELDSTEIN AND ZDZISLAW JACKIEWICZ 

ABSTRACT. Let y be the solution of the equation 

y'(z) = Ay(z) + By(Xz) + Cy'irjz), z £ C, 

where A, B, C, X and 77 aie complex numbers and 0 < | À | < 1, 0 < 1771 < 
1. It is shown that y has exponential order equal to one if A ^ 0 and if y is 
not a polynomial; otherwise, y has exponential order equal to zero. In the 
latter case, y and all of its derivatives are unbounded on any ray. 

1. Introduction. This note investigates the exponential order of the solutions to the 
neutral functional differential equation 

(1) y(z) = Ay(z) + By(Xz) + Cy'^z), z G C, 

where A,B, C, A and r\ are complex parameters and 0 < |A| < 1, 0 < |T/| < 1. 
Special cases of this equation (that is, C = 0) have been considered by Feldstein and 
Grafton [4], by Kato and McLeod [7], by Fox, Mayers, Ockendon and Tayler [5], and 
by Morris, Feldstein and Bowen [8], as well as second order variations by Waltman f 10] 
and by Bélair [1]. 

The existence of stable or unstable solutions to Eqn. (1 ), while of considerable interest 
in its own right, is of particular importance in numerical analysis because of its applica­
bility to the development of stiffly stable numerical methods for neutral equations. See, 
for example, Dahlquist [3], Gear [6], and Bellen, Jackiewicz and Zennaro [2]. 

2. Representation of solutions. We seek solutions of Eqn. (1) in the form of the 
power series 

00 

(2) y{z)=Y,*nf. 

There are several cases to consider, depending upon whether or not 1 — Cr\k = 0 for 
some non-negative integer k. Theorem 1 gives y(z) for the case where there is no such 
k. Theorem 2 covers the alternative and is divided into several special sub-cases. The 
results are obtained by substituting Eqn. (2) into Eqn. (1) and then equating coefficients 
of successive powers of z. The ratio test readily shows that the resulting powers series 
are absolutely convergent on the whole complex plane. The details of all those proofs 
are omitted. Throughout this paper, empty products are equal to one. 

The research of the second author was partially supported by an NSF Grant DMS-8520900. 
Received September 23, 1988, revised March 20, 1989.. 
AMS subject classification: 34K05, 34K15. 
©Canadian Mathematical Society 1990. 

428 

https://doi.org/10.4153/CMB-1990-070-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-070-5


FUNCTIONAL DIFFERENTIAL EQUATIONS 429 

THEOREM 1. Assume that 1 — Crjk ^ 0 for any k — 0 , 1 , . . . . Then Eqn. (I) has an 
entire solution given by 

°° / " - 1 A + BXj\ f 

yw = ÛO E II r~Fi K > z e c 

where ao is an arbitrary constant. Every non-trivial solution reduces to a polynomial if 
and only if there exists an integer / > 0 such that A + BX1 — 0. 

THEOREM 2. Let r\ ^ 0. Assume there exists some fixed integer k > 0 swc/z J/zfltf 
1 - Crç* = 0. 

(I) Suppose A and BX do not both vanish. 
a) If A + BXm ^ Ofor all m = 0,1,..., then Eqn. (I) has an entire solution given by 

y(z) = (k+1)1 ak+l £ n f 1 ^/ £ T ' z € C ' 
n=k+\ \j=k+\ l-CriJ/ no­

where ajc+i is an arbitrary constant. 
b) Assume that there exists some fixed integer I, where 0 < I < k, such thatA+BXl = 

0. Then the solution of Eqn. (I) is given by 

•«••>.«« Ë (ÏÏ p g ) £ < e c 
n=k+\ \j=k+\ [ Cr1J I nl 

where ai and ak+\ are arbitrary constants. 
c) Assume that there exists some fixed integer I, where I > k+1, such thatA+BXl — 0. 

Then Eqn. (I) has a polynomial solution given by 

l I n-\ £ +BXj\ 7n 

y(z) = (k+l)lak+l £ n r ^ j ) h > z e C > 
n=k+\ \j=k+\ l ~CrlJ / n\ 

where ak+\ is an arbitrary constant. 
(II) Suppose that A — BX = 0. 

a) IfB ^ 0 and k ^ 0 (that is, C ^ 1), then X = 0 and 

y(z) = a0 f 1 + Y~CZ) + ak+izk+l ' 

b) IfB ^ 0 and k = 0 (that is, C = 1 ) , then X = 0 and 

y(z) = a\z. 

c) IfB = 0, then 
y(z) = a0 + ak+izk+l. 

Here, ao,a\, andak+\ are arbitrary constants, and z G C. 

Theorem 2 gives conditions which ensure that Eqn. (1) has polynomial solutions. For 
the equal delay case, the following corollary codifies and summarizes such results in 
terms of a necesssary and suffficient condition on the parameters A, B, C, and À. 
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COROLLARY 1. Let X — 77. Suppose that there are non-negative integers k and I such 
that 0 = 1 — CXk — A + B\l (which implies that \C\ > \). Then Eqn. (1) has a 
polynomial solution that is not identically zero if and only if 

\AC\ <\BX\. 

PROOF. Since 0 = 1 — CXk = A + BXl for some non-negative integers k and /, it 
follows from Theorem 2 that Eqn. (1) has nontrivial polynomial solutions if and only if 
/ > k + 1 or A = BX = 0. If A = BX = 0, then clearly \AC\ = \BX\ = 0, and the 
conclusion follows. If BX ^ 0, then A + BXl — 0 implies that 

l_l=\n\AlB\\ 

ln|A| 

Similarly, 1 — CX k = 0 implies that 

In 11 / C| 
k 

In IAI 

It follows from these two expressions for k and / — 1 that the condition / > k + 1 is 
equivalent to 

\n\A/BX\ < l n | l / C | . 

The desired conclusion follows from this inequality. 
It is interesting to contrast Corollary 1 with some results from Kato and McLeod [7], 

where they proved (in the notation of this paper) that if C = 0, then for real t, 

\A\ < \B\ implies \y(t)\ —> 00 as t —^ 00, 

|A| > \B\ implies y(t) —> 0 as t —> 00. 

3. Exponential order of solutions. To investigate the exponential order of solutions 
to Eqn. (1), recall that the order p of an entire function/(z) is defined for z G C by 

p = inf { w:f(z) = 0(exp(| z\W)), | z\ -^ 00} ; 

see Titchmarsh [9], p. 248. Then 

THEOREM 3. A solution y(z) of Eqn. (1), and all of its derivatives, have finite order p 
equal to 

a) zero, if A = 0 or ify(z) is polynomial, 
h) one, if A ^ 0 and ify(z) is not polynomial. 

PROOF. Assume first that 1 - Crfm ^ 0 for any m = 0 , 1 , . . . and that A + BXl ^ 0 for 
any / = 0 ,1 , . . . . Apply Theorem 1. Then the kth derivative of a solution y(z) of Eqn. ( 1 ) 
is given by 

00 /n+k-1 A 4. 7? \ j \ vn 

y*)(z) = a „ E ( n ^j)-rz€C,k = 0,l,2..... 
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It is known (see Titchmarsh [9], p. 253) that an entire function/(z) = £ ^ 0 anf has a 
finite order p if and only if 

. ln(l/K|) 1 
liminf ——— = —, 
m->oo m In m p 

where In denotes the natural logarithm. Applying this criterion to the function y{k)(z) 
yields - = L\ + L2 — L3, where 

. ln(ro!) 
L\ = liminf — = 1, 

m-̂ 00 mm m 
I^So-1 In 11 — Cfy>| 

L2 = lim inf — , 
m^oo m mm 

Z?=£~lln\A + B\J\ 
L3 = lim inf — m In m 

Consider L^. Given 0 < e < 1. Since |ry| < 1, there exists an integer \i such that 

\Crjj\ < e, for y > / i , 

and 
1 - e < 1 - I Cr]j\ < 11 - C^'l < 1 •+ I C\, for j > /x. 

Hence, 

(m + fc-//)ln(l-g) E ^ - ' l n l l - C V l (m + fc-/z)ln(l + |C|) 
m In m ~~ m In m ~ m In m 

and if follows that 

^ t o l l - C i ^ l + E ^ - ' l n l l - C i ^ l 
L2 = liminf — —— = 0. 

m-̂ 00 m mm 
To compute L3 one must distinguish two cases: A — 0 and A ^ 0. If A — 0, then 

BX ^ 0 and (recall that | A | < 1) 

m+£-l 

E (ln\B\+j\n\\\) 
L3 = lim inf — 

m-^00 m mm 
,. . r ( m + ik) ln | f i |+(m + it)(/n + i t - l ) ( l n IA 1)/2 

= lim inf !—! !——— 
m-+oo m mm 

= —00. 

Consider L3 when A ^ 0. Given 0 < e < \A\. Since | A | < 1, there exists an integer 
/x such that 

\BXj\ <e, for j > /x, 
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and 
|A| -e < \A\ -\BXj\ < \A+BXj\ < \A\ + |£ | , for y > /i. 

Hence, 

m+k— 1 

, , £ \n\A+B\J\ , , , , 
(m + / : -M) ln(lA| - g) < y= / i < (m + * -/x)ln(|Aj + |fl|) 

m In m ~ m In m — m In m 

and it follows for A ^ 0 that 

/ i - i 
£ lri|A + £A '̂| + E£+*~ lln|A+AV'| 

L3 = lim inf = 0. 
m—>oo mm m 

A summary of the above discussion is the following: If 1 — Cr\m ^ 0 for any m — 
0 ,1 , . . . , and if A + BXl ^ 0 for any / = 0 ,1 , . . . , then the order p of the kth derivative 
y*)(z),forifc = 0, l , . . . , i s 

0, if A = 0, 
H

 U-YLÏ-L^ \ 1 , i fA^O. 

On the other hand, if 1 — Crjm ^ 0 for any m = 0 ,1 , . . . , yet A + BX1 = 0 for some 
integer / > 0, then by Theorem 1 y(z) is a polynomial and clearly has order p — 0. 

Finally, if 1 — Cr\m — 0 for any m > 0, then Theorem 2 may be applied, and, with 
slight modifications in the proof, it yields the same conclusions about the order p. 

Applying the Phragmén-Lindelôf principle to a sector of opening 2n (see Titchmarsh 
[9] p. 273), yields the corollary below, which is a generalization of Theorem 5 in Morris, 
Feldstein and Bowen [8]. However, that paper also contains results about the oscillation 
of unbounded solutions when A = C = 0 (pure delay equations). The situation con­
cerning the possible oscillation of unbounded solutions when C ^ 0 (neutral equations) 
is much more complicated and cannot be addressed here. 

COROLLARY 2. IfB ^ 0, then every solution of the equation 

y'(z)--=By(Xz) + Cy'(r1zl zGC, 

0 < IA I < 1,0< 1771 < 1, and all of its derivatives, are unbounded on any ray. 

Various numerical experiments suggest the following conjecture. 

CONJECTURE. Suppose that the parameters A, B, C, X, and 77 are all real. Suppose fur­
ther that A = 0 and - 1 < C < 1. 

a) If B < 0, then every nontrivial solution to Eqn. (1) oscillates (unboundedly). 
b) If B > 0, then every nontrivaial solution ot Eqn. (1) is monotonie. 
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