ON «-HARMONIC FUNCTIONS
MASAYUKI ITO

Chapter 1. Introduction and Preliminaries

M. Riesz [8] introduced the notion of a-superharmonic functions in #(=1)-
dimensional Euclidean space R™ in connection with the potential of order «.
In this paper, we shall first define the a-superharmonic and a-harmonic func-
tions in a domain D. In case a =2, they coincide with ones in the usual sense.
Next we shall introduce generalized Laplacians P%(x) and P%(x) of order a,
which are, in the case « =2, equal to the well-known generalized Laplacians

except for a universal constant. Then we shall prove the following equivalences.

1. A Lebesgue measurable function f(% + ) in R" is a-superharmonic in
a domain D if and only if f is lower semicontinuous and Py(x) <0 in D.

2. A Lebesgue measurable function f in R" is a-harmonic in a domain D
if and only if f is finite continuous in D and PHx) =0 in D.

Finally we shall prove Ninomiya’s domination principle as an application
of the above results.

In R”, the potential of a given order a, 0<a <#, of a measure ¢ in R"
is defined by

Uh(x) = Slx—y!“’"d,u(y),

provided the integral on the right exists. @ We shall say that a measure x in
R" is a-finite if the potential Uk (x) is finite p.p.p. in R™. Here a property is
said to hold p.p.p. on a subset X iz R”, when the property holds on X except
for a set E which does not support any measure » % 0 with finite a-energy
Sjlx—yl"'”dy(y)dy(x). M. Riesz [8] proved that every a-finite measure can
be balayaged to every closed set if 0<a<2, 0<a<2 or 0<a <1 according to
n>3, n=2o0r n=1. This paper is based on this result. Let F be a closed

set in R” and x be a point in ¥F. We shall denote the balayaged measure
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of a unit measure e, at x to F by u%. Let B(x ; ) be an open ball with

center x, and radius ». If a2, for any x in B(x ; ),

A e niz 1 (9) = Aear (2, PNy
with
a. (7= 2= %)y — 2" — )"y - x2|™" in E€Bx ; 7)

Aro,r( y )=
5= 0 in Bz ; D,

‘where

e et B . an
Ay = I(——)sm .
o =T \z2 /5 =3

-1t ‘holds -that
Sdui”,”;él and Sx',,f,( Ndy =1,

where
Kxpr y)»stands' for Az, r (%, ». For a given real-valued function f Lebesgue
measurable in R", we shall denote

'fo(y)rczo,r(y)dy
by M.(xo ; £, 7). This is a generalization of Gauss’ mean value.

Chapter 2. a-harmonic functions
Throughdut this chapter, we assime that 0<a <2 or 0<a <1 according to
n=2 or n=1. A measure with density f, measurable in R”, will be called the
measure f. First we shall define a-superharmonic functions and a-harmonic

functions.

§2.1. Definitions
Dermnvition 1. Let D be a :domain_ in R" ‘We shall say that a f‘uncti_o_n/ f
defined in R" is a-superharmonic in D if f satisfies the following three condi-

tions :

1) The notion of a-superharmonicity was first introduced by M. Riesz [8]. According
to him, a function f is a-superharmonic in R~ if f satisfies the following conditions:

(1) fix)=0 and flx)E+oo in R~

(2) f is .lower semicontinuous in R»,

(3) for each x in R» and each open ball B(x; r), f(2)=Me(x; f, 7).
Another kind of a-superharmonicity was introduced by Frostman [4]. .
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(8.1) . f is Lebesgue measurable in R",
(S.2) fis lower semicontinuous in D,
(S.3) for each x in D and each open ball B(x; ) contained with its

closure in D, M.(x ; f, r) exists and
f(x)zmu(x ; f, r).
DeriniTion 2. Let D be a domain in R". © We shall say that a function f
defined in R”™ is «-harmonic in D if f satisfies the following three conditions :

(H.1) f is Lebesgue measurable in R”,
(H.2) f is finite continuous in D,
(H.3) for each x in D and each open ball B(x; ») contained with its

closure in D, M.(x ; f, ») exists and
F@) =Mz ; £, 7).

It is easily seen that the potential U%(x) of an «-finite positive measure z

is a-superharmonic in R™ and a-harmonic in €'S..*

§2.2. Elementary properties

ProperTY 1. Let f.and f' be a-harmonic in a domain D. If f(x) = f'(x) in
D, then f(x) = f'(x) almost everywhere in R". In fact, for any open ball B(x;

7y) contained with its closure in D and any. x.in B(x, ; 7)), it holds that

f( F() = 1) Reury (%, Ddy

=a,(rf~— lx—xo!’)“’z\‘ (F (D =1 Uy —=xl® = 7)) "y~ x| "dy
YEB(xy 7o)
=f(x) - f1(x)=0

by Lemma 4 which we shall be given in §2.3. Put

)’ O in B(x’) ; fo)

(x) =
£ =) (F () = F1 N (Ux =22 = 7D ™2 on CB(x 3 7).

Then the potential of order 0 of the measure g is equal to 0in B(x ; 7). By
the unicity theorem of M. Riesz”, g(x) =0 almost everywhere in R". Hence

f(x) = f'(x) almost everywhere in G B(x, ; 7). This completes the proof.

2 Cf, [8], n°20.
3 Cf. [8], n°1l.
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PropErTY 2. If f is harmonic in the usual sense in R", it is a-harmonic
there. In fact, let x, be a point in R” and r be a positive number. Using the

polar coordinate (p, ¢) with center at x,, we have
Moo 5 £, 7) =@ r“§ (- rz)'“"""_‘(g f,,,,,da)a'p,
r v 8(xe; 1)

where S(x, ; 1) is a unit sphere with center x,. Since f is harmonic in the

usual sense in R”,

Flx) = _Lj ey frrd:

wn
where w» denotes the area of the unit sphere. Hence
Flxg) =Malxo 5 f, 7.

ProPERTY 3. If f is a-harmonic and bounded from below in R", then it is
constant.  In fact, without loss of generality we may assume that f is non-
negative. By M. Riesz's decomposition theorem®, there exist a-finite positive

measure » and a non-negative constant C such that
f =03 +C -~

in R". Suppose that f is non-constant. Then there exist a point x, in R” and
a positive number 7, such that »(B(xo ; 7)) >0. Let s’ be the balayaged measure

of » to EB(xy ; ). For any x in Blxy ; 7o),
Ul (x) = j.U;(y)/Ix.,,ro(x, Ndy = yly = z2|* M Ae0 ro (%, ) dydy(2)
<[vs(nduy = viw.
In particular,
Uit > (U0 keoro Dy = Mo 5 UL, 70

This contradicts our assumptions.

ProrERTY 4. Let f be harmonic in the usual sense in R™. If it is bounded

from below, it is constant. This follows from Properties 2 and 3.

ProrErTY 5. Let f be a-harmonic in R". If there exist an a-finite positive

4 Cf. [8], #n°31 and »°32.
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measure v and a positive constant C such that
lf(D <UL +C

in R", then f is constant. In fact, for any %, in R” and any positive number 7,

If(x‘))! = ljg}z(r .r)f(y)/m.r(y) dylésgm .”!f(y) !fcxo,r(y) dy

<

(U2 + O kg r (P dy =Molxo 5 Uz, 1 +C.

Si;’B(xo:f)
Since lim Mq(xo ; Uy, » =0", | f(x) 1<C.

By Property 3, f is constant.

PrROPERTY 6. Let f be harmonic in the usual sense in R". If there exist an

a-finite positive measure » and a non-negative constant C such that
lf) Uz +C

in R”, then f is constant. This follows from Properties 2 and 5.

§2.3. Four Lemmas

Let D be a domain in R” and a function f defined in R” be uy'sp-integrable
for any x in D. We denote by Ey, »(x) the following function

f(x) in €D
{7 dusents) in D.
Lemma 1. Let Blxy ; 7o) be an open ball and f be a Lebesgue measurable and
bounded function in R™. Then Ef pieyry{®) is a-harmonic in B(x ; 7).

Proof. Evidently Ef, px;ro(x) is finite continuous in Bfx, ; 7). Hence it
is sufficient to prove the condition (H. 2). By Lusin’s theorem, there exists a
sequence (fm) of functions of class C* with compact support such that fm(x)

- f(x) almost everywhere in R" as m - «~, and
| fn() <M, | f(0) <M in R",

where M is a positive constant. Since f,, is of class C* with compact support,

Ful®) = \ 12 =y "em( ) dy

5 Cf. [8], #°31,
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km(y) = fly -z l(z-ﬂ;-ndfm(Z) dz.

Let um be the balayaged measure of the measure k, to G B(x ; 7). Then

fm(x) on EB(x ; 1)

m =
Uena) { yfm(y)l,,,,.(x, Ndy in B(xy; 7).
By Lebesgue’s bounded convergence theorem,

Ue™(%) - Ef, pixy; ro (%)

almost everywhere in R” as m > . On the other hand, being

51:.,7,(1', y) dyS 1,

it holds that
U™ |<M in R".

Hence by Lebesgue’s bounded convergence theorem,
S‘Utm(y) le,r(y) dy -> SEf, B(xv; fo)(y) ‘xl.f(y) dy

as m—> o for any open ball B(x; ; ) contained with its closure in B(xo ; 7).
Since S,., S B(xy ; 7)) CEB(x; : 1),

Ut (1) = (UL (D ke, (9) .
Consequently
Ef, Bxyi o0 (1) = Wa(%1, Ef, Bixgirars ¥).
This completes the proof.

Lemma 2. Let B(xy; 7)) be an open ball and a function f be Lebesgue
measurable in R™. If f is Ky, r,-integrable, for any fixed x in B(%y ; 7o) f iS Az,

(%, y)-integrable and Ef, px,:ry (%) is a-harmonic in B(x, ; 7).

Proof. First we shall show that in B(% ; 7o)
flf(y)!lro.ro(x, y)dy< + oo,

In fact, for any fixed x in B(x, ; 7), there exists a positive constant M such
that

https://doi.org/10.1017/50027763000011752 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011752

ON a-HARMONIC FUNCTIONS 211

ly—x2]""<Mly —x|"

for any y in ¥B(x ; 7). Now

j‘lf(y) IAXQ, rg(xy y) dy
= aq (75— lx—xolz)“’zj IfF DIy = %l = 7D "2y — x| "dy
EB(xy; 7o)

< M(r =15 = 5575 [| £ (D) ks (9 dy < + ».

Similarly as Lemma 1, Ef, px;ry(#) is finite continuous in B(x ; 7). Put
fm(x) =inf (F (@), m), fm®) =inf (f~(x), m),

where
fH@) =sup (f(®), 0), f (x) = —inf (f(x), 0).

By Lemma 1, Ef}, puryiro(®) and Ef;, six,;ry (%) are a-harmonic in B(x, ; 70).
Hence

Ert, Bm;m(x) =Ml 5 Eff Bixgirgy 1)
and

Eyx,, B(x.,;r.,)(x) =Ma (% 5 Efm, Bizyirors 7,

for any open ball B(x; ») contained with its closure in B(x; 7). Since

(Ef}, pixys roy) tends increasingly to Ef+, s ros
Me(x 5 Efh pixoiros 1) >Ma(X 5 Eft, pixg; 715 7)
as m—> o, Consequently
Ef+, pizyire) (%) = Ma(x 5 Ef+, pixg;rors 7)

for any x in B(x, ; 7o) and any open ball B(x; ») contained with its closure

in B(% ; 7). Similarly we obtain that
Ef‘,B(xo;ro)(x) =M. (x ; Ef‘, B(Xp:70)s ).
Therefore

Ef, Bz 0 (%) = Ef+, pixgi 7o) () = Ef=, Bzg; 7q) (%)
=Me(x ;5 Ef+ Bize: ry)s 7) =Ml 5 Ef-, pxyire, 7)
=M% 5 Ef. pixgirars 7).

This completes the proof,
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For a general domain D, we get in the same way the following

Lemma 2. Let D be a domain in R" and a function f be Borel measurable

in R™. If is u'gn-integrable for any x in D, Ef,p(x) is a-harmonic in D.

Lemma 3. Let a function f be a-harmonic in a bounded domain D. If f is

Sinite continuouus on D and f(x) =0 almost everywhere in €D, then f(x) =0 in
D.

Proof. Let x, be a point in D such that
fix) = max {f(x) ; x= D}.
Suppose that f(x) >0. Then x, is not on the boundary of D. Let B(x ; #)

be an open ball contained with its closure in D. Then

Malxo 5 £, 7) =_‘.f(y)/c,,,,r(y)dy

= FO e Ddy<| F(50) Kxgr () dy

Y EB(xyi T)AD EB(xy:1r)AD

<V F ) ka9 dy = f (0.

This contradicts the a-harmonicity of . Therefore f(x)<0 in D. Similarly
we obtain f(x)=0 in D, and hence f(x) =0 in D.

Lemma 4. Let f be a-harmonic in a domain D. For each open ball contained

with its closure in D,

flx) = ff(y) Az r(x, ) dy

in B(xo ; ) and f is analytic in D.

Proof. Similarly as Lemma 2, for any x in B(x ; 7),
§17 0 dur @, Yy < 0.

By Lemma 2, Ef, r:r(x) is a-harmonic in B(x, ; 7). Put
g(x) =f(x) —Ef, B(zo;r)(X).

Then g(x) =0 in B(x, ; ). Consequently in B(x, ; 7),

£ = [£(3) ke (5, 3 dy.
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Hence by M. Riesz’s theorem®, f is analytic in B(xe; 7). Blx,; ) being

arbitrary, f is analytic in D. This completes the proof.

§2.4. Extension of generalized Laplacian

Now we shall introduce another mean value of a function. Let f be a

Lebesgue measurable function in R". If
rro'“‘(o’ - DR (x 5 f, 70) dp
exists for a positive nember r, we denote it by .« +(x ; f, 7). Since
Tj?p”‘l(pz -1 'dp =1,

ol x(x ; f, ) is considered as a kind of mean values of /. By M. Riesz’s

formula,
ol a (x5 fo 1)
=Co,r, nr"f Ux—ylP= )22y — 377" F (9) dy,

€B(x;7)

where

(2 r(1+ L
Ca,T.n = < 2 ) 2 ) .

r(5)r(1+4)

We denote the mean value corresponding to r=a by .«/u(x ; f, 7). Thus

sl o (%3 f, r =2 lx =317 f(y) dy

0n Jgpix;r)

We denote

lim “’e'f. (Lolx 5 fr8) = fx))

5—00: 24

by P%(x). In particular, when
Hm-2% (o(x 5 £, €) = f (X))
€0 QAE

exists, we denote it by P%(x). For a =2, P%(x) coincides with the generalized

Laplacian except for a universal constant”’,

& Cf. [8], #°26.
) Cf. [11, pp. 17-18,
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§2.5. Inverse distribution of »*~"
We consider the distribution D, such that
Dxr* "= =34,
where & is Dirac’s distribution. By Deny’s theorem®,
D, =C, npf.r "

where

g
(5)r(- )

and the distribution pf. 7 ™" is defined as follows:

Co n=T

»

pf. r *7"(¢) = pf. Slxl""”?(x) dx®
for a function ¢ of class C*® with compact support.

LeMMA 5. Let f be a measurable function defined in R"™, and x, be a point in
R™. If f is a function of class C* in a neighborhood of x, and

S (917" f (%o - y)dy < +
EB(Xg; &)
for a positive number ¢, then P}(xo) exists and

Pyx) = pt. §I3177"f (x0 — ) .

Proof. Without loss of generality we may assume that xy=0. By our
assumptions, for any y in some neighborhood of 0,

= Sy o 1, 9
f =10+ ; 0+ 5 ‘Ely,yj 559 0) + ¢y,
where ¢(y) =o(|»*]) and y= (1, %2, . . . , ¥»). Hence
f ¢NyI™"dy < + o
B(0; €)
for any sufficiently small positive number e. Hence

» Cf. [2], p. 153.
9 Cf. [9], p. 42.
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pf.\f (=2 1yl "dy

exists, and

pf. Sf( =|y|"* "dy = pf. jf(y)!yl'“'"dy

lim(S
€0 €B(0;¢€)

1 & of -
+ ‘z‘,,% sy (O 18 (s)).

PTGy + F OV + S 1)

where IV, I and I{¥ are functions in r(r=|y|) satisfying the following con-

ditions:

1
%) UL ) =0ur,

(2)
(2) % (P =r! sy,~ds,

@) -
3 ‘Z—’; (r) = r‘““SSy;yfds,

1

4 their integral constants are 0,

where S; is the unit sphere with center 0 and ds is the area-element on S;.

Since y; and y;y;(i %) are harmonic in the usual sense in R”",
\ yids=0 and | yiysds=0Gixj.
8y 8

On the other hand

2ge = L[ 2ge_ @Onyp2
fnly‘ds— nj‘s‘y ds= n 'yl'

Therefore

pf. Slyl'“"‘f (y)dy

= 1im ({ Iy 17 £ () dy — -2 £ (0) +_°"'_)3'“4f(0))

e>0 Y gBO;E) ac”® n(2—a

o — On
- IHR (.\gls(a;e)lyl f(y) dy ae® f(O))
= lim % (efa(0 5 £, ) — £(0)).

€0

Consequently

PO = pt. {5177 (= ) dy.
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This completes the proof.

§2.6. Main theorems

TueoreM 1. Let f be a Lebesgue measurable function defined in R"™ and D
be a domain in R". Assume that

(1) f is lower semicontinuous and f(x)> — o in D,

(2) f is k. r-integrable for any x in D and any open ball B(x ; r) contained
with its closure in D.  Then f is a-superharmonic in D if and only if P%(x)<0
in D.

Proof. First suppose that f is a-superharmonic in D. For any x in D and
any open ball B(x ; ) contained with its closure in D,

(=D dy< + o,
EB(x;1)

In fact,
S |f(y)‘xx,r(y) dy
EB(x; 1)
—-a,r"S Lf Uy %P =) """ lx - y|™"dy
B(x;7)
> a, r“j [f( |y —x]7* "dy.
EB(x;7)
Hence

f lx=y[7*7 F (P ldy < + .
EB(x ;1)

f being a-superharmonic in D, there exists a positive number 7, such that
fF@O=WMe(x 5 f, 7)

for any 0<7<r,. We take an arbitrary positive number ¢ such that e<7,.

Then
Aol £, = f @)
= “f"'“_l‘f‘ D (Malx 5 f, ) — £ (1)) dp
< “S;,E"_“"(Pz = DN Ralx 5 £, e0) = £ () dp.
Now

alf T DR, e0) = @)
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2,e/2-1

r,/s -“- 2— ’;") ) lm"'(x , f’ EP) - f(x)]dp.

3\

s S’ -“_l(p )4/2 1‘9}?4(-’” fy eP) f(x) 1dp

Putting r = rip, we obtain
x

af;/sp_“-‘<p2— (Z2) )1t 5 £, ) = £ )1 do
=a<—-)2g T = DM (x5 f, 1) — f (@) dr
<a( 2) [t = DT WG U, ) 4 LD dr
< (T,) (e 5 1], 7 +1F D,
Since we may assume that f(x) is finite, M. (x ; |f|. 72) + | f (®)] is finite. Hence

Pj() < lim =~ "”'e M5 1], 0 @) =

In order to prove the converse, suppose that P%(x) <0 in D, and let B(xo;
7) be an open ball contained with its closure in D. Then it is sufficient to
prove the following inequality :

FO=[ O s, ) dy

B(xy; rp)

in B(x, ; 7). By the condition (2),
Slf(y)lxx,,,f.,(x, Ndy< + 0.

We take an open ball B(x, ; n) such that B(m ; 7,) € B(x, ; ) € B(%; 1) < D.
Since f is lower semicontinuous and f(x) > — o in D, there exists a sequence
(¢m) of continuous functions with compact support in R” which tends increasing
to f on B(m ; r1). Put

{ Cm(x) in Blx ; 71)

m )-—-
Fmla f(x) on €B(x ; ).

Then (Efm nixiry) tends increasingly to Ef su,:rp as m- . Hence it is
sufficient to prove that f(¥)=Ef,. pix;r (%) in Blxo ; 7o) for any m. Now let
¢ be a function of class C* with compact support in R” such that ¢(x)=0 in

R”™ and ¢(x) =1 in B(xo; o). And let z, be the balayaged measure of the
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measure ¢ to €B(x, ; 7). Put
g = a0 () dy = [12 =31 ", (5).
Then g(x) is finite continuous in R"” and g(x) =0 on ¥B(x% ; ). Moreover
for any x in B(x, ; 7)), Pg(x) exists and
P3(x) = Do (r*"+¢) (x) — P¥s ().
Since S,, is contained in ¥B(% ; 7). Pi*e(x) =0 in B(x ; 7). Hence
D,xg(x) = —¢(x)

in B(x ; 7). Now for any positive number ¢, we denote Ey,,, ix,;r —f — €€ by
h. The function % is upper semicontinuous and %(x) < + o in B(x, ; 71), and
it is equal to 0 on FB(% ;\rx). By Lemma 2, Ejf,, pz:r,) iS a-harmonic in
B(x, ; 7). Suppose that there exists a point %, in B(x, ; #,) such that 2(x) >0
and

h(x) =sup {h(x) ; xeB(%0 ; 70)}.

Then for any open ball B(x; ; r) contained with its closui-e in B(x ; 7)),

-
Az by ) = 2
@Wn YER(x;10)

L2 =917 "h() dy

[% =7 "h(») dy

ar’® j‘
Wn Y EBx i r)NB(Xy; Ty)
ar

<

| % —917* " h(x,) dy

o
<)
Wn Y EB(X1; 7)NB(Xp; 7p)
a
<2 S |2 =317 () dy = h(x).
Dn JeBxy;7)

Hence

Tim "’e'; (ol s b,y 8) —h(xm)) <O.

g»0

On the other hand
PLx)< —ep(x) = —¢
in B(xo ; 7). This is a contradiction. Consequently £(x) <0 in B(x, ; n), i.e.,
Efm. Bixe; ro (%) < £ (%)
in B(xo ; 7). Therefore

f(x)ZEf, R(xp; m(x)
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in B(x ; 7). In particular
F)=Mo(x0 5 £, 7),
ie., f is a-superharmonic in D. This completes the proof.

TueoreMm 2. Let D be a domain in R™ and a function f defined in R" be
finite continuous in D.  Then f is a-harmonic in D if and only if P%(x) exists
in D and PHx) =0 in D.

Proof. Suppose that P3(x) =0 in D. Since

[ dz=yl s (Dldy< + o
EB(x:71)

for any in D and any positive number 7, it holds that

S Lf (D ke, () dy <+
EB(x;71)

for any x in D and any open ball B(x ; ) contained with its closure in D.
Consequently, by Theorem 1, f is a-harmonic in D. The converse is evident

by Theorem 1.

Chapter 3. Ninomiya’s dominarion prineciple

In this chapter, we assume that 0 <a<2, 0<a<2 or 0<a<1 according

ton=3, n=2o0r n=1.

Tueorem 3.1 Let p be a positive measure with compact support such ihat
Hlx -y17"du(y) dp(x) < + «,

and let v be a positive measure. If

Ui(x)<Uz(%)
on S,, then
U(x)<U;s (%)
in R™ for any B such that a<p<n.
Proof. By Ninomiya’s theorem', it is sufficient to prove the following
10) N. Ninomiya [7] proved this when #=>3. An alternate proof of this theorem was

given in [5].
) Cf. [6], p. 142.
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assertion. Let « and B be the same as Theorem 3, let A be a positive measure
with compact support, and let p be a point in ¥S,. If
Uam) <z =pl""
in S, then
Us® <z -p|*™"

in R™®. To exclude the trivial case, we may assume that a <fp. First we shall

show that |x — p!*~" is a-superharmonic in R". In fact, by M. Riesz’s formula™’,

2= pP "= gt—{lz=y1" "y~ pI" "y,

where

T (A5 (58

+oz)r(

N——

g
|
o
SN—
™~
N
N
|
Y
nfw

3

Since the measure 7 |y = p|® " is an a-finite positive measure, |x—
a, f—a

p1*"" is a-superharmonic in R”. On the other hand, Uj(x) is a-harmonic in

‘58)‘. Put
fx)=|x—pl> "= Ulx).

Then f is a-superharmonic in €S,. Next we shall show that f is non-negative
at infinity. In fact, let ¢ be a positive number. Then S, being compact, there
exists a positive number p such that

[x-y]* "< (1 +e)|x—p|*"
for any x in ¥B(O ; p) and any y in S». Hence for any x in ¥B(0 ; p),
Ulx)<(1+e) ARM|x—p|* ™

Since 8> a, there exists a positive number R, such that Ry=p, S\ is contained
in B(O ; Ry) and

l2=pI* "> (14 ) MRM|x—p|*"

for any in ¥B(O ; R). Finally put

1) Cf. [2], p. 151.
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Fi) = | fx) in AS,,

n->r

VELSA

Frostman’s theorem'®,
f(x)=0

on 3%S,. Hence there exists x, in €S, N B(O ; R, such that f(x1) attains the

minimum of 7(¥) on €S,NB(O ; R). Assume that 7(x,) is negative. Then

x; is contained in ¥'S,. For any ball B(x, ; ) contained with its closure in
gs}«)

Malz 5 £,7) = (£ (9 ke e () dy

F s (D dy=| F @) k() dy

25
BS\ABO; Ry) EISANB(0; Ry)

> ff(xﬂ kxnr(P)dy = f(x).

This contradicts the a-superharmonicity of f. Consequently
Uin<lz -p™™"
in R”. This completes the proof.
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