
ON ORDERS IN SEPARABLE ALGEBRAS 
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Introduction. The present note began from the observation that the 
arguments produced by J-M. Maranda in developing his very interesting 
theory of representations of groups by automorphisms of modules over 
Dedekind rings (4, 5) were applicable without essential change to arbitrary 
orders, instead of just group rings, provided that a suitable generalization of 
Theorem 1 of (4) could be supplied. We prove that when the ring of integers 
is a Dedekind ring a certain integral ideal /(©) vanishes if and only if © is 
an order in a separable algebra, thus extending Maranda's results to these 
orders and indicating that an essential change can be expected in going beyond 
this case. 

The author is indebted to Professor Maranda for the opportunity of studying 
(5) before its publication. 

Notations. The following notations will be fixed throughout. 
Q = Dedekind ring. 

K = quotient field of Q. 
A = (finite dimensional linear associative) algebra over K with identity 

element e. 
© = g-order in A. 

1. The ideal / (©). By a two-sided G-module we shall understand a module 
T having © both as a ring of left and right operators such that 

(r«)i? = r(«^)i eu = ue = u (f, rj 6 G, u 6 T), 

which is finitely generated over g. 
For such a two-sided ©-module T we shall denote by Z(T) the g-module of 

all g-homomorphisms <j> of © into T such that 

(i) *(fr) = w w + *(r)* (r, ^ ® ) , 
and by B(T) the submodule of 0 € Z(T) for which there exist elements 
u Ç T such that 

(2) 0(co) = œu — uo) (w Ç ®). 

We shall use H(T) to denote the quotient module Z{T)/B(T). 
In the language of cohomology theory Z(T) and B(T) are modules of 

1-dimensional cocycles and coboundaries respectively, and H(T) is the 1-dimen-
sional cohomology group for T. 
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A right &-module, or simply a &-module will be understood to be a module 
having © as a ring of right operators such that e acts as the identity operator, 
which is finitely generated over g. If M and N are ©-modules, the module 
Hom(ikf, N) of all çj-homomorphisms of M into N can be turned into a two-
sided ©-module by defining 

(/«)(*) = <*(f(u)), («/)(«) = / (««) (co 6 ©). 

Taking T = Hom(Af, N)/aHom(M, N), where a is an integral ideal of g, 
we obtain the module Z(T) of a-modular binding systems of M and N and the 
submodule of a-modular binding systems strongly equivalent to 0 (4). 

We shall be particularly concerned with the annihilators I(T) of the g-mod-
ules Z(T), and the intersection for all two-sided ©-modules T of the ideals 
I(T), which intersection we shall denote by / (©) . From the above we see that 
a theorem to the effect that / (©) 9e 0 would be a "suitable" generalization of 
Maranda's Theorem 1 in (4). In §3 we shall prove that /(©) ^ 0 if and only 
if A is separable. In §4 we shall show how to construct /(©) from an invariant 
bilinear form on A ; in particular, if © is the group ring of a finite group of 
order N then /(©) is the principal ideal generated by N. 

2. Separable algebras. In order to obtain the results mentioned in §1 
we shall make use of a characterization of separable algebras which we estab
lished as a corollary to general results in (2). For the convenience of the 
reader we include a direct proof here. 

Assume that A is an algebra over a field K with identity element e. Assume 
furthermore that there exists an invariant bilinear form / on A, that is, / is a 
non-singular bilinear form defined on A with values in K such that 

(3) f(xy, z) = f(x, yz) (x,y,z € A). 

This is equivalent to the assumption that A is a Frobenius algebra (2). 
If g is a second invariant bilinear form on A, then 

(4) g(x,y) =f(x,yc) 

with c a unit of A (2). 
Let ai, . . . , an be a basis of A over K, then 

(5) f(ait dj) = Ôij = f(âJt a^ 

defines two dual bases ai, . . . , ân and au . . • , ân of A which coincide if and 
only if A is symmetric. Simple computation using (3) shows that, for a Ç A > 

(6) did — J^Sij dj, Sij G K, if and only if aâj = ^âjSjU 

while 
(6') aat = ^ajtji, tJt Ç K, if and only if ât a = X) hj âj-

Using (5), (6) and (6r) we verify that, for a Ç A, 

Cf{a) = JloZjaaj = J^ajaaj 
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is an element of the center Z oL4, independent of the choice of basis ai, . . . , an, 
and that cf is a Z-homomorphism of A into Z. In particular cf(A) is an ideal 
of Z. C/ can be referred to as the Casimir operator determined b y / (2). 

If g is an invariant bilinear form related to f by (4) then clearly 

Cf(a) = cg(ca) (a £ A). 

Hence cf(A) is independent of the choice of invariant bilinear form/, and we 
can write cf(A) = c(A). 

THEOREM 1. Each of the following conditions is necessary and sufficient for 
an algebra A with identity element e to be separable. 

(i) A is a Frobenius algebra such that c(A) = the center of A. 

(ii) Corresponding to a basis au • • . , o>nofA there is a set of elements au . . . ,an 

of A such that 

(7) Yfi&i = e 

and such that, for a Ç A, 

(8) ata = "JLtSijaj, stj £ K, implies aat = Y^a^a-

We note that some time ago Hochschild (3, Theorem 5) established the 
equivalence with separability of a slightly different form of Condition (ii). 

Proof of Theorem 1. Separability implies (i) : If A is separable, there exists a 
finite extension E of K such that AE is isomorphic with a direct sum of full 
matrix rings over E, 

AE~Z°En(a). 

For a basis of AE over E choose the matrix units ea
ij of the EnM. Then 

/ * ( e ° W W = àaPôuôjk 

defines a symmetric invariant bilinear form/* on AE. In fact/*(x, y) = S Cry), 
where S is the reduced trace on AE (1, p. 33). For the dual basis of AE deter
mined by /* we have 

Setting &* = X) ^a w e can verify that 

C/*(b*) = T,ë^7jb*ea
ij = 7. 

Now /* induces an invariant bilinear form / on A. The existence of an element 
b £ A such that cf(b) = e is seen to be equivalent to the existence in K of a 
solution of a system of linear equations with coefficients in K. What we have 
proved above implies that these equations have a solution in E, hence they 
already have a solution in K, proving that such an element b Ç A exists. 
Since cf(A) is an ideal of Z, this proves that c(A) — cf(A) = Z. 

It is clear that (ii) is a consequence of (i). 
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(ii) implies separability. Let E be a representation of A in an extension F 
of K (with 3(e) — P), and consider a reduction 

L A J 

of H. Here T and A are representations of A in F and <f> is a linear mapping 
of 4 into the vector module over K of all n X m matrices with coefficients 
in F, where m, n are respectively the degrees of Y and A, and <j> satisfies the 
identity 

(9) <j>(xy) = T(x) 4>(y) + <t>(x) A(y) (x, y G A). 

Let au • • • , an be a basis of ^4, and assume the existence of a set of elements 
ai, . . . , an as in (ii). From (9) we have 

(10) T(at) 4>(aj) = </>(a#,-) - 4>(at) A (a,). 

Multiplying (10) on the left by r(a*), summing over i, and making use of 
(7) and (8) we obtain <t>(aj) = T(aj) T — TA(aj)J (j = 1, . . . , n), where 
T = 'ET(at)<t>(ai). It follows that 

'-['Til1 ~>Hrs 
proving that 3 is completely reducible, and consequently that A is separable 

3. The generic cocycle. In order to study the ideal /(©) of g defined in 
§1 we adapt a method of Hochschild (3, §4). By P = P(@) we denote the 
product © ®g ®, with operators defined as follows 

(cof ® 77) = « f ® 77 

( f ® 17) co = ( f ® 97C0) - (fry ® co) (co G @). 

P is a two-sided ©-module as we are using the term except for the fact that e 
does not act as the identity operator on the right. But we may of course 
define Z(P), B(P), H(P) and I(P) as for ordinary two-sided ©-modules. 
The generic 1-cocycle is the element F G Z(P) defined by 

P(co) = e ® co (co G © ) . 

LEMMA 1. 1(G) = 7(P) = 1(F), where 1(F) = {X G g|XP G P ( P ) } . 

Proof. Clearly I(P) C 7(P). If now P is any two-sided ©-module and 
/ G Z(T)} the g-homomorphism ^/ of P into T defined by 

M/: ( f ® 17) = f ./(17) 

is seen to commute with the operators of © on the left and on the right, and 
furthermore F/j,f = / . Consequently for X G g, XP G P ( P ) implies X/ G P ( P ) , 
that is, 7(P) C 7(P). Since this holds for all P, 1(F) Ç / (©) . On the other 
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hand, Pr = Pe is an ordinary two-sided ©-module so that /(©) C I(Pf), 
and, since H(P) ~ H(Pf), I(P) = I(P'). We have 

I(P) C 1(F) C /(©) C 7(P) 

proving the lemma. 

Using this characterization of /(©) it is straightforward to verify 

LEMMA 2. If o = K or o = the ring of all elements of K regular with respect 
to a given finite set of prime ideals of o then 7(o@) = o/(@). 

Moreover we can prove 

LEMMA 3. If © has a linearly independent %-basis coi, . . . , con, then I(&) = 
the totality of elements X Ç Q which can be written in the form X = 22co^ where 
the elements àt £ © are such that for co Ç © 

(11) côco = ^2iiijUjy o)j Ç X implies coco* = ^ûjUji. 

Proof. By Lemma 1, X G I(@) if and only if XF G B(P) , that is, if and 
only if there exists an element u £ P such that \F(co) = œu — uo) for all 
co £ ®. We can write w uniquely in the form 2/ = X)5< ® o)U o)t £ ®, and 
hence 
( 1 2 ) X (g) CO = ]T)C0C0Z- ® COi — ^CÔj ® CÔCO + X ) ^ z ^ i 0 CO. 

Putting co = e in (12) we obtain X = IC^co*, hence (12) reduces to 

^œûi ® Wi = J^coi 0 coico 

from which we readily deduce (11). 
Now we obtain the theorem which is our generalization of Maranda's 

Theorem 1 in (4), namely 

THEOREM 2. /(©) 7* 0 if and only if A is separable. 

Proof. Taking © = A in Lemma 3 and applying (iii) of Theorem 1 we have 
that A is separable if and only if 1(A) = K. But by Lemma 2,1(A) = KI(®), 
so that the theorem follows. 

The reader of Maranda's papers (4) and (5) will now see that it is only 
necessary to replace the ideal generated by the group order N by the ideal 
/(©) in order to carry over Maranda's results to orders in separable algebras. 

4. Construction of /(©). Let us assume that there exists an invariant 
bilinear form / o n A. In order to construct /(©) we proceed as follows. We 
denote by ©/ the inverse different corresponding t o / , 

(13) © / = {a £A\f(®,a) C B } . • 

The different Sf(G) is defined by 

(14) .//(©) = {a £ i | @ / a Ç ® | . 
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Notice that in case © has a linearly independent g-basis coi, . . . , co„, and 
f(a)i} cbj) = ôij, the elements coi, . . . , côn constitute a g-basis of ©/, so that 
a e ^/(®) if and only if « ^ 6 @ (i = 1, . . . , »). 

If now o = K or o = the ring of all elements of K regular with respect to a 
finite set of prime ideals of o we can readily verify that (o@)/ = o®/, and 
hence 

LEMMA 4. «/,(<>©) = o^(@) . 

We remark that (13) and (14) are not symmetric. Using our assumption 
that g is a Dedekind ring, it is easy to prove that when / is symmetric the four 
possible definitions obtained by interchanging left and right in (13) and (14) 
produce the same -^/(@). 

Now we obtain / (©), namely, putting 

D,m = cf(S,m) 
we can prove 

THEOREM 3. Iff is an invariant bilinear form on A then 

/ (©) = Df(®) r\ g. 

LEMMA 5. Df(®) C\ g 9^ 0 if and only if A is separable. 

Proof. By (i) of Theorem 1 and the definition of Df, A is separable if and 
only if Df(A) = Z, i.e., Df(A) C\ K = K. By Lemma 4, Df(A) H K = 
K[Df(®) H g], so that the lemma follows. 

Proof of Theorem 3. We proceed first under the assumption that G has a 
linearly independent g-basis coi, . . . , con. In this case it is clear from the defini
tion of Df and from Lemma 3 that £>/(©) H g C / (©) . 

If on the other hand X Ç I(®), then X = ^Tĉ co* as in Lemma 3. Consider 
the linear endomorphism a of A defined by a: cô* ® <£*, where/(w i f œj) = ôtj. 
For co 6 ®, COJCO = YsVijUj with M*y 6 £• Then by (6), coco* = Y^^J^JU hence 
by (11), a : wo) i—> J^œ JIJL j i = coco* = co(côiO-), proving that tr is a ©-endomor
phism, and hence an A -endomorphism, of A considered as a left A -module. 
Thus o- is effected by right multiplication by an element c Ç A, and cô* = cô* 
c G G so that c Ç ~^_1/(®)- Hence X = X^co* = J^ûf c œt Ç Df(®), proving 
that / (©) CI Df(®). The desired equality is now proved in this case. 

We now drop the assumption of the existence of a linearly independent 
g-basis for ©. By Theorem 2 and Lemma 5, /(©) = £>/(©) H g = 0 if 4 is 
not separable, while if yl is separable, /(©) ^ 0 and Df(®) O g ^ 0. In the 
latter case let us denote by o the ring of all elements of K regular with respect 
to all the prime divisors of /(©) and Df(®) O g. Since o is a principal ideal 
domain the o-order has a linearly independent o-basis. Hence, by Lemmas 2 
and 4 and the case of our theorem proved above 

o/(@) = I(o®) = Df(o®) r\ o = o[Df(®) n g]. 
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It follows from the choice of o that /(©) = Df(®) H g, completing the proof 
of our theorem. 

For an example, let us suppose that ® is the group ring of a finite group of 
order N. An invariant bilinear form f on A is defined by 

f(gi h'1) = ôgh (g, h group elements). 

Then ®, = ®, J(@) = Df(®) H g = cf(®) H g = iVg. 
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