A GENERALIZED COMPARISON TEST

BY
ELGIN JOHNSTON

Let $\sum c_{j}$ and $\sum d_{j}$ be, respectively, convergent and divergent series of positive terms and let $\sum a_{j}$ be a third series of positive terms. It is well known, [1, pg. 275] that $\sum a_{j}$ converges if $\lim \sup \left(a_{j} / c_{j}\right)<+\infty$, but diverges if $\lim \inf \left(a_{i} / d_{j}\right)>0$. In this note we prove a generalized version of this comparison test that relies not on term-by-term comparison of the series, but on the relative densities of the terms of the series.

Definition 1. Let $\left\{a_{j}\right\}_{j=1}^{\infty}$ be a null sequence of positive terms, let $x>0$ and define

$$
D(a, x)=\#\left\{j: a_{j} \geq x\right\} .
$$

If $\left\{b_{j}\right\}_{j=1}^{\infty}$ is also a null sequence of positive numbers, we define

$$
\bar{D}(b ; a)=\varlimsup_{x \rightarrow 0^{+}} \frac{D(b, x)}{D(a, x)}
$$

to be the upper density of $\left\{b_{j}\right\}$ relative to $\left\{a_{j}\right\}$. We take

$$
\underline{D}(b ; a)=\lim _{x \rightarrow 0^{+}} \frac{D(b, x)}{D(a, x)}
$$

to be the lower density of $\left\{b_{j}\right\}$ relative to $\left\{a_{j}\right\}$.
Theorem 2. Let $\sum c_{j}$ and $\sum d_{j}$ be, respectively, convergent and divergent series of positive terms (with $\left.d_{k} \rightarrow 0\right)$ and iet $\sum a_{j}$ be a series of positive terms. Then
(i) if $\bar{D}(a ; c)<+\infty$, then $\sum a_{j}$ converges.
(ii) if $\underline{D}(a ; d)>0$, then $\sum a_{j}$ diverges.

Proof. We prove only (i) since the proof of (ii) is similar. We may assume, without loss of generality, that $\left\{a_{j}\right\}$ and $\left\{c_{j}\right\}$ are nonincreasing sequences. Let $\bar{D}(a ; c)=d$. Then there is a positive number ϵ such that $0<x<\epsilon$ implies $D(a, x) \leq([d]+1) D(c, x)$. Let $c_{k_{0}}$ be the first element of $\left\{c_{j}\right\}$ that does not exceed ϵ. Then

$$
\begin{equation*}
D\left(a, c_{k_{0}}\right) \leq([d]+1) D\left(c, c_{k_{0}}\right) . \tag{1}
\end{equation*}
$$

If strict inequality holds in (1), alter $\left\{a_{j}\right\}$ as follows. Let $A_{n_{0}}$ be the set of the first $([d]+1) D\left(c, c_{k_{0}}\right)=n_{0}$ elements of $\left\{a_{j}\right\}$. If $a_{j} \in A_{n_{0}}$, and $a_{j} \geq c_{k_{0}}$, do not alter
a_{ij} if $a_{\mathrm{j}}<c_{k_{0}}$ replace a_{j} by $c_{k_{0}}$. This procedure gives a new sequence $\left\{a_{j}^{0}\right\}$ that differs from $\left\{a_{j}\right\}$ in at most finitely many places. (If equality holds in (1), then no alterations take place and $\left\{a_{j}^{0}\right\}=\left\{a_{j}\right\}$).

It is easy to verify the following facts concerning $\left\{a_{j}\right\}$:

$$
\begin{gather*}
\sum_{j=1}^{n_{0}} a_{j} \leq \sum_{j=1}^{n_{0}} a_{j}^{0} \leq \sum_{a_{j}>c_{k_{0}}} a_{j}+n_{0} c_{k_{0}} \tag{2}\\
D\left(a^{0}, c_{k_{0}}\right)=([d]+1) D\left(c, c_{k_{0}}\right) \tag{3}\\
a_{j}^{0}=a_{j}<c_{k_{0}} \quad\left(j>n_{0}\right) \tag{4}\\
D\left(a^{0}, x\right) \leq([d]+1) D(c, x) \quad\left(0<x<c_{k_{0}}\right) \tag{5}
\end{gather*}
$$

We now describe an induction step. Assume that for non-negative integer r we have produced a sequence $\left\{a_{j}^{(r)}\right\}$ and three sequences of non-negative integers $0<k_{0}<k_{1}<\cdots<k_{r} ; 0<n_{0}<n_{1}<n_{2}<\cdots<n_{r}$ and $0=m_{0}, m_{1}, \ldots, m_{r}$ so that, analogous to (2)-(5) we have

$$
\begin{gather*}
\sum_{j=1}^{n_{r}} a_{j} \leq \sum_{j=1}^{n_{r}} a_{j}^{(r)} \leq \sum_{a_{j}>c_{k_{0}}} a_{j}+n_{0} c_{k_{0}}+([d]+1) \sum_{j=0}^{r} m_{j} c_{k_{j}} \tag{6}\\
D\left(a^{(r)}, c_{k_{r}}\right)=([d]+1) D\left(c, c_{k_{r}}\right) \tag{7}\\
a_{j}^{(r)}=a_{j}<c_{k_{r}} \quad\left(j>n_{r}\right) \tag{8}\\
D\left(a^{(r)}, x\right) \leq([d]+1) D(c, x) \quad\left(0<x<c_{k_{r}}\right) \tag{9}
\end{gather*}
$$

We take $c_{k_{r+1}}$ to be the first element in $\left\{c_{j}\right\}$ that is less than $c_{k_{r}}$. By (9),

$$
D\left(a^{(r)}, c_{k_{r+1}}\right) \leq([d]+1) D\left(c, c_{k_{r+1}}\right)
$$

Since $D\left(c, c_{k_{r+1}}\right)-D\left(c, c_{k_{r}}\right)=m_{r+1}=$ number of occurrences of $c_{k_{r+1}}$ in $\left\{c_{j}\right\}$, we have by (7) and (9)

$$
\begin{equation*}
D\left(a^{(r)}, c_{k_{r+1}}\right)-D\left(a^{(r)}, c_{k_{r}}\right) \leq([d]+1) m_{r+1} \tag{10}
\end{equation*}
$$

By (7), (8) and (9), the only terms of $\left\{a_{j}^{(r)}\right\}$ counted in (10) are those, if any, with $a_{j}^{(r)}=c_{k_{r+1}}$. We form $\left\{a_{j}^{(r+1)}\right\}$ by altering $\left\{a_{j}^{(r)}\right\}$. If $j \leq n_{r}$ or $j>n_{r+1}=$ $n_{r}+([d]+1) m_{r+1}$, then $a_{j}^{(r+1)}=a_{j}^{(r)}$. If $n_{r}<j \leq n_{r+1}$, then $a_{j}^{(r+1)}=c_{k_{r+1}}$. The result is that (6)-(9) now hold with r replaced by $r+1$.

Now since m_{j} is the number of occurrences of $c_{k_{j}}$ in $\left\{c_{j}\right\}$, (6) implies that for each positive integer r,

$$
\sum_{j=1}^{n_{5}} a_{j} \leq \sum_{a_{i}>c_{k_{0}}} a_{j}+n_{0} c_{k_{0}}+([d]+1) \sum_{j=1}^{n_{5}} c_{j} .
$$

Thus $\sum a_{j}$ converges.
The hypotheses of Theorem 2(i) say there is an $\epsilon>0$ so that for $0<x<\epsilon$, " $\left\{a_{j}\right\}$ has about d times as many terms as $\left\{c_{j}\right\}$ " in $[x,+\infty)$. The theorem is not
valid if this relation between the distribution of the terms of the sequences holds only on a sequence $\left\{\left[x_{k},+\infty\right)\right\}$ of intervals, with $x_{k} \rightarrow 0^{+}$. In particular, we can have $\underline{D}(a, c)<+\infty$ with $\sum a_{j}=+\infty$. For example, take $c_{j}=j^{-2}(j=1,2, \ldots)$ and define $\left\{a_{j}\right\}$ as follows. Let $a_{1}=1, a_{2}=a_{3}=a_{4}=a_{5}=\frac{1}{2^{2}}, a_{6}=a_{7}=\cdots=$ $a_{41}=\frac{1}{6^{2}}$; having defined $a_{n}=a_{n+1}=\cdots=a_{n^{2}+n-1}=\frac{1}{n^{2}}$, we then define $a_{n^{2}+n}=$ $a_{n^{2}+n+1}=\cdots=a_{\left(n^{2}+n\right)^{2}+n^{2}+n-1}=\frac{1}{\left(n+n^{2}\right)^{2}}$. We then have $\sum c_{j}=\frac{\pi^{2}}{6} \sum a_{j}=+\infty$ and $\underline{D}(a, c)=1$.

Reference

1. K. Knopp, Theory and Application of Infinite Series, Hafner Publishing Company, New York, 1947.

Department of Mathematics
Iowa State University
Ames, Iowa 50011

