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Arithmetic on elliptic threefolds

Rania Wazir

Abstract

In a recent paper, Rosen and Silverman showed that Tate’s conjecture on algebraic cycles
implies a formula of Nagao, which gives the rank of an elliptic surface in terms of a weighted
average of fibral Frobenius trace values. In this article, we extend their result to the case of
elliptic threefolds. The main ingredients of our argument are a Shioda–Tate-like formula
for elliptic threefolds, and a relation between the ‘average’ number of rational points on
singular fibers and the Galois action on those fibers.

1. Introduction

Let K be a function field of transcendence degree n− 1 over Q, and consider an elliptic curve E/K
given by the Weierstrass equation

E : y2 = x3 +Ax+B, with A,B ∈ K, (1)

and with discriminant ∆ := 4A3+27B2 �≡ 0. A smooth n-dimensional variety E → Pn−1 with generic
fiber E is called an elliptic n-fold over Q. By the Mordell–Weil theorem, the set E(K) of rational
points on E is a finitely-generated abelian group; its rank has been an object of intense study and
speculation, yet many of its properties, and the relation to the underlying geometry of E, remain
elusive. Some progress in this direction was made by Rosen and Silverman [RS98] in the case of
elliptic surfaces (i.e. n = 2), based on a conjectural formula of Nagao [Nag97] relating the rank of an
elliptic surface to an average of its fibral Frobenius trace values.

To be more specific, define, for each t ∈ Pn−1(Fp) and each prime p,

ap(Et) :=

{
Trace(Frobp|H1

ét(Et/Q̄,Ql)) if Et has good reduction at p,
0 otherwise,

where Frobp denotes the Frobenius morphism over Fp, and let

Ap(E) :=
1
pn

∑
t∈Pn−1(Fp)

ap(Et).

Then in the case n = 2, Nagao [Nag97] conjectured that

lim
X→∞

1
X

∑
p�X

−Ap(E) log p = rankE(Q(T )).

Assuming Tate’s Conjecture for E , Rosen and Silverman [RS98] were able to prove the following
analytic version of Nagao’s formula for non-split elliptic surfaces E :

res
s=1

∑
p

−Ap(E)
log p
ps

= rankE(Q(T )).
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The aim of this paper is to generalize this result to the case of elliptic threefolds.

Theorem 1.1. Let k be a number field, p a prime in k, and qp its norm. Let E → S be a non-split
elliptic threefold with section σ, defined over k, and assume E(k) �= ∅. Then Tate’s conjecture for
E/k and S/k implies

res
s=1

∑
p

−Ap(E)
log qp
qs
p

= rank E(S/k).

We refer the reader to § 2 for more precise definitions of elliptic n-folds, and their basic properties.
Section 3 is dedicated to generalizing two important theorems from the theory of elliptic surfaces
to non-split elliptic n-folds of arbitrary dimension: an isomorphism in cohomology H1

ét(S/k̄,Ql) ∼=
H1

ét(E/k̄,Ql) and a Shioda–Tate-type isomorphism, describing the Galois-module decomposition of
the Neron–Severi group of E . In § 4, we find a geometric interpretation for the Galois action on the
singular fibers of an elliptic threefold E , and, in the final section, reinterpret our results in terms of
L-series, which, together with Tate’s conjecture, leads to a proof of Theorem 1.1.

2. Basic definitions and notation

Let k be a number field with ring of integers Ok, and for a prime p ∈ Ok, let Fp be its residue field
and qp its norm. For a field F , let F̄ denote its separable algebraic closure. If X and Y are varieties
defined over k, we write morphism (respectively section, rational section) for maps f : X → Y
defined over k̄, and k-morphism (respectively k-section, rational k-section) for maps defined over k.

An elliptic n-fold defined over k is a smooth, projective variety E/k of dimension n, together with
a proper, flat k-morphism π : E → S to a smooth projective (n− 1)-dimensional variety S/k, such
that the generic fiber is a smooth elliptic curve E defined over K := k(S), the function field of S/k;
let K̂ := k̄(S). Furthermore, we take the elliptic n-fold E/k to be non-split, with k-section σ : S → E .
Denote by (O) the image of the section σ in E , and by O the corresponding point on E. Assume
also that E(k) �= ∅; because of the k-section σ, this is equivalent to S(k) �= ∅. This assumption is
made in order to ensure that Pic0

E and Pic0
S are defined over k (see § 2).

The closed subset ∆ := {s ∈ S | Es is not regular} is called the discriminant locus of E . Note that
∆ is a divisor on S, and is also defined over k.

We briefly observe some basic properties of the elliptic n-fold E . Let (τ,B) be the K̂/k̄-trace of
the generic fiber E of E (see [Lan83, p. 138] for definitions and details). Then the requirement that
E be non-split is equivalent to saying that B is trivial; this description will be particularly useful
in proving the isomorphism of Picard varieties in § 3. Moreover, note that since π is proper and
faithfully flat, with reduced, connected generic fiber, it follows that π∗(OE ) is isomorphic to OS ,
and hence the fibers Es are connected, by Stein factorization. Finally, [GD66, Proposition IV.15.4.2]
implies that π is flat if and only if the dimension of the fibers is locally constant.

By the Mordell–Weil theorem for function fields [Lan83, Theorem 6.1], the group E(K) of
K-rational points on E is a finitely generated Abelian group; since there is a natural isomorphism
between E(K) and the group of rational k-sections E(S/k) [Sil94, Proposition III.3.10], we will refer
to either indiscriminately as the Mordell–Weil group of E , and to their rank as the Mordell–Weil
rank of E . This defines one side of the equation in Theorem 1.1, so we now address the terms on the
other side of the equation, and make our notion of ‘average’ of fibral Frobenius trace values more
precise.

Let R ⊂ Ok be a finite set of primes in the ring of integers of k, and let OR ⊂ Ok be the
subring of R-integers. By [GD66, Section IV.8], all algebraic constructions over k can be made over
OR for R sufficiently large. In particular, we choose R such that there are proper, flat morphisms
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πR : ER → SR of smooth, projective OR-schemes, which induce π by base change. All sums
∑
p,

products
∏
p, and reductions mod p will henceforth be taken with respect to prime ideals p ⊂ OR,

where we recall that, given any variety V/k, and an integral model VR → SpecOR, reduction mod
p for some p ⊂ OR means taking the fiber over p: Ṽ := V ×OR

p. We denote by Ṽ/F̄p the variety
Ṽ ×Fp F̄p. In the following, we will have several occasions for enlarging R; this introduces ambiguity
for finitely-many primes p, but will have no effect on the order of vanishing computation of the
various L-series we are interested in.
Definition 2.1. For any smooth, projective variety V/k and any p ⊂ OR, let

ap(V) := Trace(Frobp|H1
ét(V/k̄,Ql)),

bp(V) := Trace(Frobp|H2
ét(V/k̄,Ql)),

cp(V) := Trace(Frobp|H3
ét(V/k̄,Ql)),

where cohomology is taken with l-adic coefficients such that gcd(l, qp) = 1.

Returning to the case of our elliptic n-fold E , we also define, for a given point x ∈ S̃(Fp),

ap(Ex) := 1−#Ẽx(Fp) + qpmx,

where mx is the number of Fp-rational components of the fiber Ẽx. These ap(Ex) will be called the
fibral Frobenius trace values of Ẽ . Note that by the Lefshetz fixed-point theorem, when the fiber
Ẽx is smooth, this definition agrees with Definition 2.1. Finally, we define the ‘average’ of fibral
Frobenius trace values Ap(E), which is given by

Ap(E) :=
1

q
(n−1)
p

∑
x∈S̃(Fp)

ap(Ẽx).

3. Picard varieties

The goal of this section is to generalize results from the geometric theory of elliptic surfaces, to the
case of elliptic n-folds of arbitrary dimension. The two main theorems will be an isomorphism of
the Picard varieties of E and S, and a Shioda–Tate-type formula for elliptic n-folds. The proofs are
based on the work of Shioda and Raynaud for elliptic surfaces [Shi99, Theorems 1 and 2].

Let F be a field, and X/F be a smooth projective variety. The Picard scheme PicX of X can
be realized as the group scheme representing the Picard functor from the category of F -schemes to
the category of Abelian groups. Its group of F̄ -points is Pic(X), the group of divisors on X modulo
linear equivalence. Its identity component is an Abelian group scheme Pic0

X, whose F̄ -points are the
group of divisors onX algebraically equivalent to zero, modulo linear equivalence. Denote this group
by Pic0(X). When F is of characteristic zero, Pic0

X is an abelian variety, called the Picard variety
of X. The Neron Severi group of X is defined by NS(X ) = Pic(X)/Pic0(X). We let Pic(X/F ),
Pic0(X/F ) and NS(X /F ) denote the Galois-invariant subgroups of Pic(X), Pic0(X) and NS(X ),
respectively. Note that if X(F ) �= ∅, then PicX and Pic0

X are defined over F . For a brief account of
definitions and properties, see [Mum82, Section 0.d].

Definition 3.1. The trivial part of NS(E)⊗Q, denoted T , is the subspace generated by the image
of the zero section (O), and by all geometrically irreducible components of the fibral divisors. Let
F be the subspace of T generated by the non-identity components of the fibral divisors, where the
identity component of a fibral divisor is the component intersecting (O).

Note that T is generated by (O), π∗NS(S), and F . Furthermore, for all but finitely many primes
p, the trivial part of NS(Ẽ/F̄p)⊗Q is isomorphic to T̃ , the subspace obtained by taking the generators
of T and reducing modulo (p). Thus, enlarging the set of bad primes R if necessary, we can assume
that this holds for all p ⊂ OR.

569

https://doi.org/10.1112/S0010437X03000381 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000381


R. Wazir

3.1 A non-degenerate pairing

In the case of an elliptic surface E , the proof of the isomorphism between the Picard varieties of E
and S relies on a non-degenerate bilinear pairing

Div(E)×Div(E)→ Z

given by intersection theory on surfaces [Sil94, Section III.8]. In the case of higher-dimensional
varieties, it is no longer possible to get a pairing into Z; however, we will show that it suffices to
have a pairing with a notion of ‘positivity’.

For the rest of § 3.1, assume that all varieties are smooth and projective over an algebraically
closed field F . If Γ is a cycle on an n-dimensional variety X, then cl(Γ) denotes its cycle class
modulo rational equivalence. The group of codimension-r cycles modulo rational equivalence is
denoted Ar(X), and A(X) :=

⊕n
r=0A

r(X). Recall that the intersection pairing on X makes A(X)
into a commutative, associative graded ring, such that for any morphism f : X → W , the induced
map f∗ : A(W )→ A(X) is a ring homomorphism. Furthermore, if f is proper, f∗ : A(X)→ A(W )
is a degree-shifting map of graded groups, and both f∗ and f∗ preserve algebraic equivalence [Ful80,
Example 19.3.9 and Proposition 10.3]. Note also that if W is an (n−1)-dimensional variety and C,D
are in A1(X), then the intersection C.D has dimension n−2, and so by definition, f∗(C.D) ∈ A1(W ).
These observations allow us to define the following pairing on E .

Definition 3.2. We have a symmetric, bilinear pairing

〈·, ·〉 : Pic(E)× Pic(E)→ Pic(S)

given by

〈Λ,Υ〉 := π∗(Λ.Υ)

for any Λ,Υ ∈ Pic(E). If C,D are divisors in Div(E), set 〈C,D〉 := 〈cl(C), cl(D)〉.

Definition 3.3. We say an irreducible divisor C on E is fibral if C ⊂ π−1(G) for some G ∈ Div(S).
A fibral divisor on E is a divisor D such that D =

∑
aiCi, where the Ci are fibral. We say a divisor

D is horizontal if π(D) = S.

The following proposition shows that the pairing defined above has the same properties as the
intersection pairing on elliptic surfaces. We sketch the proof below, and refer to [Sil94, Proposition
III.8.2] for details. Recall first that a cycle class α ∈ Ar(X) is non-positive, written α � 0, if there
is a codimension-r cycle Γ =

∑
ai[Vi] such that ai � 0 for all i, and with cl(Γ) = α. Analogous

definitions hold for α < 0, α � 0, and α > 0.

Proposition 3.1. Let D ∈ Div(E) be a fibral divisor, and G ∈ Div(S). Then:

a) 〈D,π∗(G)〉 = 0;

b) 〈D,D〉 � 0;

c) if 〈D,D〉 = 0, then D ∈ π∗(Div(S)).

Proof. a) This follows from the projection formula, once we note that π∗(D) = 0 for any fibral
divisor D:

〈D,π∗(G)〉 = π∗(cl(D). cl(π∗G)) = π∗(D).G = 0.

b) Suppose that D ⊂ π−1(G), where G has irreducible decomposition G = G1 +G2 + · · ·+Gm.
Then we can write

D = D1 +D2 + · · · +Dm,
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where Di ⊂ π−1(Gi). Since Di ∩Dj ⊂ π−1(Gi ∩Gj), dim(Gi ∩Gj) = 0 and dim(Di ∩Dj) = 1, this
implies that 〈Di,Dj〉 = 0 for i �= j. Therefore,

〈D,D〉 = 〈D1,D1〉+ 〈D2,D2〉+ · · ·+ 〈Dn,Dn〉.

Thus, it suffices to prove the theorem for each Di separately, and we can assume that D ⊂ π∗G, for
some irreducible G ∈ Div(S). Let

H := π∗G =
t∑

i=0

niΓi

be the irreducible decomposition of H. Note that ni � 0 for all i, and (assuming Γ0 is the component
intersecting the k-section σ) n0 = 1. Furthermore, since D ⊂ H, D can be written as

D =
t∑

i=0

aiΓi =
t∑

i=0

(
ai

ni

)
niΓi.

Define a second divisor by D′ =
∑t

i=0(ai/ni)2niΓi. Then 〈D′,H〉 = 0 by part a, and a simple
computation on

〈D,D〉 = 〈D′,H〉 − 2〈D,D〉+ 〈H,D′〉
as in [Sil94] completes the proof.

c) By [Sil94], we have ai/ni = a0 ∈ Z for all i. Plugging this into the irreducible decomposition
of D gives

D =
t∑

i=0

(
ai

ni

)
niΓi =

t∑
i=0

a0niΓi = a0H ∈ π∗(Div(S)).

3.2 An isomorphism in cohomology
The cohomology of a smooth variety defined over k is intimately related to the Tate-module of its
Picard variety. We recall that, given an abelian variety A/k, its l-adic Tate-module is defined as

Tl(A) := lim←−A[ln]

where l is any prime in Z, and A[ln] := {a ∈ A(k̄) | lna = 0}. The Tate module Tl(A) has a natural
structure as a Gal(k̄/k)-module. We prove that Pic0

E ∼= Pic0
S (Theorem 3.2 below) by first proving

the isomorphism of Tate-modules, and this will follow quite easily from the following.

Theorem 3.1. Let (τ,B) denote the K̂/k̄-trace of E; then there is an exact sequence of abelian
groups:

0→ Pic0(S)→ Pic0(E)→ B(k̄). (2)

Proof. The morphism π : E → S induces a map π∗ : Pic0
S → Pic0

E . Furthermore, restriction to the
generic fiber induces the morphism

ψ : Pic0
E ×S Spec(k(S))→ Pic0

E
∼= E, (3)

which, by the universal mapping property of the K̂/k̄-trace (τ,B) of E, factors through B, i.e.
there is a unique homomorphism β : Pic0

E → B such that ψ = τ ◦ β. Thus, we have a sequence of
morphisms

Pic0
S

π∗
−→Pic0

E
β−→B, (4)

and it remains to show that, as maps on the k̄-points, this is a short exact sequence of abelian
groups:

0→ Pic0(S) π∗
−→Pic0(E) β−→B(k̄). (5)
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The injectivity of π∗ follows from the existence of the global section σ0 : S → E . By definition,
π ◦ σ = idS , so idPic(S) = (π ◦ σ)∗ = σ∗ ◦ π∗.

To show exactness at the middle, note first that ψ ◦ π∗ = 0 (because π∗ sends Pic0(S) to fibral
divisors in Pic0(E), and restriction to the generic fiber sends fibral divisors in Pic0(E) to zero). By the
injectivity of τ , β ◦ π∗ = 0 also and, therefore, Im(π∗) ⊂ Ker(β). Finally, to show Ker(β) = Im(π∗),
take any 0 �= Γ ∈ Ker(β). Then Γ = cl(D) for some divisor D with D|E = 0, and thus D must be
a fibral divisor. Since cl(D) ∈ Pic0(E), it follows that 〈D,F 〉 = 0 for every divisor F on E and, in
particular, 〈D,D〉 = 0. By Proposition 3.1, part c, it follows that D ∈ π∗(Div(S)). Thus, we have
D = π∗C for some C ∈ Div(S). Since also D ∼alg 0, this implies

C = σ∗ ◦ π∗C = σ∗D ∼alg 0,

and, therefore, Γ = cl(D) ∈ π∗(Pic0(S)).

Now we are ready to prove the isomorphism of Tate modules; in fact, we will prove the following
stronger result.

Theorem 3.2. Let π : E → S be a non-split elliptic n-fold. Then Pic0
S and Pic0

E are isomorphic as
abelian varieties over k.

Proof. The elliptic n-fold E is non-split, so B must be trivial. From the exact sequence (2), it then
follows that Pic0(S) and Pic0(E) are isomorphic as groups and, therefore, since π∗ is defined over k,
the Tate modules Tl(Pic0

E ) and Tl(Pic0
S) are isomorphic as Gal(k̄/k)-modules. This implies that π∗

is an isogeny, and since it is also injective, we have Pic0
E ∼= Pic0

S by [Mum70, Corollary III.10.1].

Let V be a smooth, projective variety defined over k, and define V�(Pic0
V) := T�(Pic0

V) ⊗ Ql.
Then the Galois-module isomorphism [Mil80, Corollary III.4.19]

V�(Pic0
V)(−1) ∼= H1

ét(V/k̄,Ql),

together with Theorem 3.2 above, imply as an immediate corollary the following.

Corollary 3.1. If π : E → S is a non-split elliptic n-fold, then

H1
ét(S/k̄,Ql) ∼= H1

ét(E/k̄,Ql).

as Gal(k̄/k)-modules and, in particular, ap(E) = ap(S).

3.3 A Shioda–Tate formula
In this section, we prove that NS(E) ⊗ Q is generated by T and by the k-rational sections. In the
case of elliptic surfaces, this is the main result of the Shioda–Tate formula [Shi72, Theorem 1.1]. In
order to prove an analogous formula for elliptic n-folds, we need to take a closer look at restriction
to the generic fiber at the level of geometric points.

To every divisor class cl(D) on E , we associate the divisor D|E = D.E on the generic fiber E,
and this defines a homomorphism

Pic(E)→ Pic(E/K̂). (6)

Then, using the given rational point O ∈ E(K), adjust the image by sending cl(D) to cl(D′), where
D′ := D.E − (D.E)O; the divisor D′ is thus a degree zero divisor on E, and the homomorphism
becomes

φ : Pic(E)→ Pic0(E/K̂) ∼= E(K̂). (7)

We wish to determine the kernel of this map.
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Lemma 3.1. Let Ť be the subgroup of Pic(E) generated by the irreducible components of the fibral
divisors, and by the zero-section (O). Then

0→ Ť η−→Pic(E) φ−→E(K̂)→ 0 (8)

is a short exact sequence of abelian groups.

Proof. Note first that the morphism φ is surjective: given any K̂-rational divisor C on E, taking
the schematic closure of its irreducible components gives a divisor C̄ on E such that C̄.E = C.

Furthermore, by construction, Ť ⊂ ker(φ). To show that Ť = ker(φ), consider Υ ∈ ker(φ).
In this case, Υ = cl(D), where D|E ∼ 0 on E, and so D|E = div(h), where

h ∈ K̂(E) = k̄(S)(E) = k̄(E).
Therefore, there exists H ∈ k̄(E) such that (H)|E = (h). If D′ := D− (H), then D′ must be in some
fiber, i.e. D′ ∈ Ť , and therefore Υ = cl(D) = cl(D′) ∈ Ť .

Theorem 3.3 (A Shioda–Tate formula for elliptic n-folds). Embed E(S/k̄) into NS(E) by sending a
section γ to the divisor γ(S)− σ(S) (where γ(S) is the schematic closure of γ(S) in E). Then there
is a decomposition of Gal(k̄/k)-modules,

NS(E)⊗Q ∼= (E(S/k̄)⊗Q)⊕ T .
Proof. Comparing the short exact sequences (2) and (8), we see that ψ maps Pic(E) surjectively
onto E(K̂), while at the same time sending Pic0(E) to B(k̄) = 0. This implies that

NS(E) := Pic(E)/Pic0(E) � E(K̂), (9)

with kernel T ′, the image of Ť in NS(E). Thus, we have an exact sequence

0→ T ′ → NS(E)→ E(K̂)→ 0.

Since the action of Galois sends fibral divisors to fibral divisors, and horizontal to horizontal, this
sequence splits as a Galois module after tensoring with Q; noting that T ′ ⊗ Q = T then gives the
desired formula.

Corollary 3.2. With notation as above,

rankNS(E/k) = 1 + rank E(S/k) + rankNS(S/k) + rankFGal(k̄/k),

where F is the vector space generated by the non-identity geometrically irreducible components of
the fibral divisors.

Proof. Recall that T is generated by (O), π∗(NS(S)) and F , and the corollary follows by taking
Gal(k̄/k)-invariants of the Shioda–Tate formula for elliptic n-folds.

4. The singular fibers

The goal of this section is to prove Theorem 4.1 below, which establishes a geometric interpretation
for the action of Frobenius on the singular fibers. Our main tools will be Tate’s algorithm for
determining the singularity type of a given fiber, and an effective version of the geometric Chebotarev
density theorem, and this requires that we now restrict to the case of an elliptic threefold E/k.
Theorem 4.1. Let E/k be an elliptic threefold, with notation as before. Then∑

x∈∆̃(Fp)

(mx − 1) = qpTrace(Frobp|F̃) +O(
√
qp),

where we recall that F̃ is the vector space generated by all non-identity components of π−1(∆̃)
(the identity component is the component intersecting (O)).
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Proof. Let ∆ = ∆1 + · · · + ∆r be the irreducible decomposition (over k̄) of the discriminant ∆
of π : E → S; then, by enlarging the set of bad primes R if necessary, the discriminant locus of
π̃ : Ẽ → S̃ is given by ∆̃, the reduction of ∆ mod(p), which has irreducible decomposition

∆̃ = ∆̃1 + · · ·+ ∆̃r.

(This is cheating a bit. The ∆i are not all defined over k, hence it does not make sense to talk about
reduction mod p. However, there is a finite Galois extension h of k, and a prime ideal B|p in Oh

such that ∆̃i = ∆i mod B for all i). Now assume that, for all 1 � j � r,∑
x∈∆̃j(Fp)

(mx − 1) = qpTrace(Frobp|F̃j) +O(
√
qp),

where F̃j is the vector space generated by the non-identity fibral divisors over ∆̃j. Letting J be the
error term coming from overcounting the points x ∈ ∆̃i ∩ ∆̃j, we have∑

x∈∆̃(Fp)

(mx − 1) =
r∑

j=1

∑
x∈∆̃j(Fp)

(mx − 1) + J,

=
r∑

j=1

qpTrace(Frobp|F̃j) +O(
√
qp) + J,

= qpTrace(Frobp|F̃) +O(
√
qp) + J.

Thus, if we can show that J only enters into the error term, it will suffice to prove the theorem with
∆ replaced by one of its irreducible components. As we will have several occasions to thus ‘throw
out’ bad points, we will refer to this as the elimination principle.

Let P be a property such that, for every prime p ⊂ OR, the set S ⊂ ∆̃(F̄p) of points having
property P is finite, and, by enlarging R if necessary, S = Ṽ for some finite set of points V ⊂ ∆(k̄).
Then #S � #V is bounded independently of p. Furthermore, for every x ∈ V , the number of
geometrically irreducible components of Ẽx is the same as the number of irreducible components
of Ex, and since V is a finite set, this shows that there is an upper bound M on the number of
irreducible components in a fiber, independent of x and p. Therefore,

J =
∑

x∈S(Fp)

mx � M(#S) � M(#V )

is bounded independently of x and p, and throwing out points with property P has no effect on our
calculation.

In particular, it is clear that points x ∈ ∆̃i ∩ ∆̃j satisfy the elimination principle, so we can let
∆̃ = ∆̃i and assume that ∆̃ is irreducible. However, a priori we do not know whether ∆̃i is defined
over Fp; but since in the case ∆̃i is not defined over Fp the only rational points x ∈ ∆̃i(Fp) must lie
in ∆̃i ∩ ∆̃j, we can also assume that ∆̃i is defined over Fp.

Denote by η : ∆̂→ ∆ the normalization of ∆, and (again enlarging R if necessary) extend this
to an integral model ηR : ∆̂R → ∆R. Then the set of singular points on ∆̃ satisfy the elimination
principle. Further, since in our application of Tate’s algorithm we are only interested in k(∆̃), we

can replace ∆̃ by ˆ̃∆, and assume that ∆̃ is non-singular.
We next apply Tate’s algorithm to the localization of Ẽ at ∆̃ to determine the generic Kodaira

type of the singular fibers over ∆̃. Let OS̃,∆̃ be the local ring of ∆̃ on S̃. Then OS̃,∆̃ is a discrete
valuation ring, with residue field F := Fp(∆̃) and prime ideal m. Let

Ẽ∆̃ := Ẽ ×OS̃ OS̃,∆̃
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be the localization of Ẽ at ∆̃, then a Weierstrass equation for Ẽ∆̃ is given by

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, ai ∈ OS̃,∆̃. (10)

Remark 4.1. Note that Ẽ∆̃ is an elliptic curve defined over the discrete valuation ring OS̃,∆̃, which
has non-perfect residue field F , whereas Tate’s algorithm is for elliptic curves over discrete valuation
rings with perfect residue fields. However, the proof of Tate’s algorithm works verbatim for any
residue field with the property that all extensions of degree 2 or 3 are separable (see [Tat75] or
[Sil94, § IV.9]). Thus, if R is expanded to include all primes p such that 2|qp or 3|qp, then Tate’s
algorithm can also be applied here.

We return to the proof of Theorem 4.1.
We note that localizing E over ∆ gives an elliptic curve defined over the discrete valuation ring

OS,∆, and the Weierstrass equation for Ẽ∆̃ can be taken to be the reduction mod p of the Weier-
strass equation for E∆. Furthermore, OS,∆ has perfect residue field k(∆); hence, a straightforward
application of Tate’s algorithm shows that the Kodaira singularity type of E is generically constant
over ∆. So in this case, the set of points x ∈ ∆̃ which do not have the generic fiber type also satisfy
the elimination principle, and we can assume that all fibers have the same Kodaira fiber type (call
it K).

Consider now the irreducible components of Ẽ∆̃, and define H(K) as the number of irreducible
components over F̄ , and h(K) as the number of irreducible components over F̄ that are defined
over F .

By Tate’s algorithm, there exists an integer Hmin(K,F ′) ∈ [1,H(K)], and a separable polynomial
P (T ) defined over F , derived from the Weierstrass equation (10) and with deg(P (T )) � 3, such
that, if F ′ is its splitting field, then

h(K) =

{
H(K) if F ′ = F ,

Hmin(K,F ′) if F ′ �= F .

However, since we are considering the action of Frobp on a subspace of NS(Ẽ/F̄p), we must look at
all components of Ẽ∆̃ that are irreducible over F̄p(∆̃) (and not just over F̄ )! The Frobenius trace
picks out from among these those that are defined over F . Denote the number of such components
by M(K). In particular, if F ′ is a constant field extension of F (i.e. F ′ = L(∆̃), where L is a finite
extension of Fp), then the F̄p(∆̃)-irreducible components are clearly not defined over F . Otherwise,
F ′ is a geometric extension of F , and therefore all F -irreducible components are also irreducible
over F̄p(∆̃). Thus we have the following three cases.

F ′ = F . In this case M(K) = H(K) = md for all d ∈ ∆̃. Therefore,∑
d∈∆̃(Fp)

(md − 1) =
∑

d∈∆̃(Fp)

(M − 1)

= #∆̃(Fp)(M − 1)

= #∆̃(Fp)Trace(Frobp|F̃). (11)

This case always holds for fibers of type II, III, II∗, and III∗.
F ′ = L(∆̃). In this case M(K) = Hmin(K,F ′) = md for all d ∈ ∆̃, and

∑
d∈∆̃(Fp)

(md − 1) =

#∆̃(Fp)Trace(Frobp|F̃) as before.
F ′ �= L(∆̃). Let G := Gal(F ′/F ). Then G acts on the geometrically irreducible components of

Ẽ∆̃, and M(K) is the number of G orbits. Furthermore, every d ∈ ∆̃(Fp) determines a conjugacy
class Cd ⊂ G such that the Frobenius action on the fiber Ẽd can be identified (up to conjugacy)
with the action of some σd ∈ Cd when restricted to Ẽd. Under this identification, the number of
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components md in Ẽd defined over Fp equals the number of components fixed by σd. Furthermore,
since two elements of the same conjugacy class fix the same number of components, it makes sense
to say md = i(Cd), where i(σd) is the number of components that remain fixed under the action of
σd ∈ Cd, and i(Cd) := i(σd). Therefore,∑

d∈∆̃(Fp)

md =
∑
C⊂G

∑
d:Cd=C

i(σd), where the first sum is over all conjugacy classes C in G

=
∑
C

i(C)#{d : σd = C},

=
∑
C

i(C)
|C|
|G|#∆̃(Fp) +O(

√
qp), by the Chebotarev density theorem (see (13))

= #∆̃(Fp)
1
|G|

∑
C

i(C)|C|+O(
√
qp),

= #∆̃(Fp)
1
|G|

∑
C

∑
g∈C

i(g) +O(
√
qp),

= #∆̃(Fp)
1
|G|

∑
g∈G

i(g) +O(
√
qp),

= #∆̃(Fp)M +O(
√
qp).

Therefore, ∑
d∈∆̃(Fp)

(md − 1) = #∆̃(Fp)(M − 1) +O(
√
qp)

= #∆̃(Fp)Trace(Frobp|F̃) +O(
√
qp).

To complete the proof of Theorem 4.1, we must show that

#∆̃(Fp)Trace(Frobp|F̃) = qpTrace(Frobp|F̃) +O(
√
qp).

However, by Weil’s estimate, we have

#∆̃(Fp) = 1 + ap(∆) + qp,

where |ap(∆)| � √q
p
g∆. Furthermore, for all but finitely many primes p, Trace(Frobp|F̃) is bounded

by the number of geometrically irreducible components of π−1(∆), hence is bounded independently
of p.

In proving Theorem 4.1, we have used the following effective version of the geometric Chebotarev
density theorem.

Theorem 4.2 [MS94]. Suppose X → Y is a geometric covering of curves over Fp (i.e. Y is defined
over Fp, and Fp is the algebraic closure of itself in Fp(X)). Let C be a conjugacy class in G :=
Gal(X/Y ), and for y ∈ Y unramified, let Cy be its Frobenius conjugacy class. Define

ψC = #{y ∈ Y | y unramified, Cy = C},
ψ = #{y ∈ Y | y unramified},
D = the set of ramified points in Ȳ := Y ×Fp F̄p.

Then, if we let |S| denote the size of a set S, we have∣∣∣∣ψC −
|C|
|G|ψ

∣∣∣∣ � 2gX
|C|
|G|
√
qp + |D|. (12)
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To apply this version of Chebotarev, we note that in our case, X is the curve defined by the
polynomial P (T ) (hence can be considered the reduction mod p of a curve defined over k), and
Y = ∆̃. Observing also that ψ = #∆̃(Fp)− |D|, gives

ψC =
|C|
|G|#∆̃(Fp) +O(

√
qp), (13)

where the constant implicit in the big-O notation depends only on |G|, gX , and |∆̃|. Since the set
of ramification points on ∆̃ satisfies the elimination principle, this is bounded independent of p.

5. L-series

We now have all the information necessary to prove Theorem 1.1. What remains is to run it through
the L-series machinery, and apply Tate’s conjecture. We briefly recall the relevant definitions below.

For a smooth variety V/k, the Hasse–Weil L-series attached to H2
ét(V/k̄), denoted L2(V, s), is

given by

L2(V, s) :=
∏
p

det(1− Frobp q−s
p |H2

ét(V/k̄; Ql))−1.

If V is a finite-dimensional Q-vector space, with an action of G := Gal(k̄/k), then V defines a Galois
representation of G, and the Artin L-series attached to V is

L(V, s) :=
∏
p

det(1− Frobp q−s
p |V G)−1.

Remark 5.1. To be precise, since in this paper we are working over all primes p ⊂ OR,

L2(E , s) ≈
∏
p∈OR

det(1− Frobp q−s
p |H2

ét(E/k̄; Ql))−1,

and similarly for L2(S, s) and L(F , s). The symbol ≈ is used to indicate that the two sides agree
up to finitely many Euler factors; this, however, has no effect on the residue computation.

Conjecture 5.1 (Tate’s conjecture [Tat65, Conjecture 2]). Let V be a smooth projective variety
defined over k, and let L2(V, s) be the Hasse–Weil L-function attached to H2

ét(V/k̄; Ql). Then
L2(V, s) has a meromorphic continuation to C, and has a pole at s = 2 of order

−ord
s=2

L2(V, s) = rankNS(E/k ).

Finally, we are ready to prove the main theorem.

Proof of Theorem 1.1. We begin by counting the number of Fp-rational points on Ẽ . First, view Ẽ
as a fibration of curves, and use the Lefschetz fixed-point theorem to count points fiber by fiber:

#Ẽ(Fp) =
∑

x∈S̃(Fp)

#Ẽx(Fp)

=
∑

x∈S̃(Fp)

(1− ap(Ẽx) + qp + (mx − 1)qp)

= (1 + qp)#S̃(Fp)− q2pAp(E) +
∑

x∈∆̃(Fp)

(mx − 1)qp

= (1 + qp)#S̃(Fp)− q2pAp(E) + qpTrace(Frobp|F̃)qp +O(
√
q3p) by Theorem 4.1. (14)

Since #S̃(Fp) is given by

#S̃(Fp) = 1− ap(S̃) + bp(S̃)− qpap(S̃) + q2p, (15)
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we obtain the following expression for #Ẽ(Fp):

#Ẽ(Fp) = 1 + qp + q2p + q3p − ap(S̃)− 2qpap(S̃)− q2pap(S̃) + bp(S̃) + qpbp(S̃)

− q2pAp(E) + qpTrace(Frobp|F̃)qp +O(
√
q3p). (16)

Note that, for any smooth, n-dimensional variety V/k,

Trace(Frobp|H2n−i
ét (V,Ql)) = qn−i

p Trace(Frobp|H i
ét(V,Ql))

is given by Poincaré duality.
Next, we view E as a threefold to obtain

#Ẽ(Fp) = 1− ap(Ẽ) + bp(Ẽ)− cp(Ẽ) + qpbp(Ẽ)− q2pap(Ẽ) + q3p

= 1− ap(S̃) + bp(Ẽ)− cp(Ẽ) + qpbp(Ẽ)− q2pap(S̃) + q3p by Corollary 3.1. (17)

Finally, equating the two expressions for the number of rational points on Ẽ in Equations (17)
and (16) gives an expression for Ap(E):

q2pAp(E) = qp − 2qpap(S̃) + bp(S̃) + qpbp(S̃) + cp(Ẽ)− bp(Ẽ)− qpbp(Ẽ)

+ q2p + qpTrace(Frobp|F̃)qp +O(
√
q3p). (18)

By Deligne’s theorem [Del74], we know, for every smooth projective variety V defined over k, that

|Trace(Frobp|H i
ét(V,Ql))| � Bi(V)qi/2

p ,

where Bi(V) := dimH i
ét(V/k̄,Ql) is independent of p. Thus, we can group all terms of order

√
q3p

or less together, and obtain

q2pAp(E) = q2p + qpbp(S̃)− qpbp(Ẽ) + Trace(Frobp|F̃)q2p +O(
√
q3p). (19)

It now only remains to compute residues. For Re(s) > 1
2 ,

d

ds
logL(F , s) =

d

ds

∑
p

− log det(1− Frobp q−s
p |F)

=
∑
p

−Trace(Frobp|F)
log qp
qs
p

+O(1).

Therefore,

res
s=1

∑
p

Trace(Frobp|F̃)
log qp
qs
p

= −res
s=1

d

ds
logL(F , s)

= −ord
s=1

L(F , s)

= rank(FGal(k̄/k)), (20)

where this last equality follows from [RS98, Proposition 1.5.1].
Furthermore, for Re(s) > 3

2 ,

d

ds
logL2(E , s) =

d

ds

∑
p

− log det(1− Frobp q−s
p |H2

ét(E/k̄,Ql))

=
∑
p

−bp(E)
log qp
qs
p

+O(1).
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Therefore,

res
s=2

∑
p

bp(E)
log qp
qs
p

= −res
s=1

d

ds
logL2(E , s)

= −ord
s=2

L2(E , s)

= rankNS(E/k ) by Tate’s conjecture, (21)

and similarly

res
s=2

∑
p

bp(S)
log qp
qs
p

= −ord
s=2

L2(S, s)

= rankNS(S/k) by Tate’s conjecture. (22)

Combining the residue calculations with Equation (19), we have

res
s=1

∑
p

−Ap(E)
log qp
qs
p

= −1− rank(FGal(k̄/k))− rankNS(S/k) + rankNS(E/k)

and the theorem follows by the Shioda–Tate formula for elliptic threefolds (Corollary 3.2).
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