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Dedekind-finite fields

J.L. Hickman

Let p be a prime and let [m. J- be a strictly increasing

sequence of positive integers such that m = 1 and m, divides
0 &

m, . A field F is said to be of type [p, [m,)v ) if it is

the union of an increasing sequence (F.), of fields such that

F, has p elements. A set X is called "finite" if it has

n elements for some nonnegative integer n , and "Dedekind-

finite" if every injection f : X ->• X is a bijection. If the

Axiom of Choice is rejected, then it is relatively consistent to

assume the existence of medial (that is, infinite, Dedekind-

finite) sets. In this paper it is shown that given any type

[p, {m-b}j,<{^
 a s above, it is relatively consistent with the

usual axioms of set theory (minus Choice) to assume the existence

of a medial field of type (p, [mr,)T.K ) • Conversely, it is

shown that any medial field must be of type [p, (wr.)i.< ) for

some [p, ("V,)j,<M) as above. The paper concludes with a few

observations on Dedekind-finite rings. In the first part of the

paper, a general knowledge of Fraenkel-Mostowski set theory and

of the Jech-Sochor Embedding Theorems is assumed.

We work within Zermelo-Fraenkel set theory, but our methods and

results are applicable to any of the normal set theories (for example, VNB)

that do not contain any Choice Principles as axioms. We obtain our

consistency result by constructing an appropriate permutation model of FM
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set theory, and then transferring to a ZF model via one of the Jech-Sochor

Embedding Theorems. The technique is described in Hickman [/], and the

relevant details may all be found in Jech [2].

The ordinals are defined inductively by 0 = 0 , 1 = {0} ,

2 = {0, l} , and generally a = {8; g < a} . Finite ordinals are known as

(natural) numbers, and "w" will always denote the first transfinite

ordinal.

A set X is said to be finite if for some number n there is an

injection f : X -*• n , and infinite otherwise: X is said to be Dedekind-

finite if every injection f : X •* X is a bijection, and Dedekind-

infinite otherwise. Clearly every finite set is Dedekind-finite, but the

converse can only be proved with the aid of some Choice Principle. An

algebraic structure A with carrier A is said to be finite (Dedekind-

finite) if A is finite (Dedekind-finite).

A set X is said to be countable if there is some injection

f : X •* u . The following result is particularly useful, and is so well-

known that we omit the proof.

RESULT 1. A set X is Dedekind-finite if and only if eaoh countable

subset of it is finite.

A set that is infinite but Dedekind-finite is known as medial.

Let p be any prime, and let {.mt)v< ^e a n v strictly increasing

w-sequence of numbers such that m. = 1 and m, divides m, . Then the

ordered pair [p, (w,),< ) is called a "type", and a field F is said to

be of type [p, (m^)^< ) if it h a s a strictly increasing sequence (Frjr,

m,
of subfields F, such that F, has p elements and F = U{F, ; k < u} :

here of course F, F, are the respective carriers of F, F, . Clearly if

F is of type [p, (mx.)i.< ) >
 tnen F has characteristic p .

RESULT 2. Let the type (p, ["ij.)^ ) be given. Then it is

relatively consistent with the axioms of ZF set theory to assume the

existence of a medial field of this type.

REMARK. Since we are engaged upon the task of constructing a model of
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set theory in this proof, we are, strictly speaking, working within the

meta-theory, and so are permitted to employ the Axiom of Choice.

Proof. Let the type [p, [mijj(<t2
 t e given, and for each k let F,

m7
be a field of p elements. Since m, divides wjt,,-, 5 "the field F,

contains a subfield isomorphic to F ; therefore, by the Axiom of Choice,

we may assume that F, is a subfield of '"T.+I ^ o r eac'1 ^ • ^u^

F = UJF, ; k < w} ; since the Fj.'s form a chain under inclusion, it is

obvious that field operations can be imposed upon F in such a way as to

obtain a field F containing each F as a subfield.

Construct in the usual manner a model M of FM set theory, having F

as its set of urelemente. Within M let G be the group of all field

automorphisms on F , and let J be the subgroup filter generated by all

GB with B a finite subset of F , where for any X e F , Gv is the

subgroup of G consisting of all g € G such that g{x) = x for every

x € X . Then the couple (G, J) determine an FM submodel N of M

containing F . We wish to show that within N the set F is the carrier

of a field, which we shall for the moment denote by "F°" , and that F°

is a medial field of type (p, [m-j,')i, ) • We recall from the general

theory of FM models that each g (. G , which is really a permutation on

F , can be extended to an ^-automorphism (also denoted by "g" ) on M ,

and that for each set S in M , we have S in N if and only if S c_ N

and Gg c 5 fOr some finite subset B of F .

Consider in M the set S = {{a, b, c ) € F ; a+b = c} , where of

course + is the additive operation of F . Since F £ N and N , being

a transitive model of FM set theory, is closed under the normal set

theoretic operations, we have F c N and hence F c N . Thus S c N .

How for each g Z G we have ^((a, fr, e)] = [g(a), g(b), g(c)) € S for

each (a, £>, c) € 5 : the latter relation holds because g is an

F-automorphism, and the former relation holds because g is an

^-automorphism on M • Thus G* c G< «•> , and so S (. N .
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In a similar manner we can show that the set

T = {{a, b, a) € F ; ab = o) belongs to N . But of course within N the

sets £, T determine a field structure on F , and so with respect to S,

T we see that F is the carrier of a field F° in JV . Moreover, from

our vantage point in M , we can see that F° and F are isomorphic - in

fact, they are identical -, and so it is clear that within /V the field

F° is of type (p, (mfe)fc<a)) • Henceforth we shall identify F and F° .

We must now show that F is a medial field within N . Certainly F

is infinite in N ; for if not, there would exist in N an injection

f : F -*• n for some number n ; and since N is a submodel of M , the

same injection would exist in M , contradicting the fact that F is

infinite in M .

Thus we must simply show that within N there is no injection

f : a) •*• F ; once this has been done, Result 1 will tell us that F is

Dedekind-finite and hence medial in N . Therefore suppose that such an

injection / does exist in N . By the criterion for membership In N ,

we must have G~ c G, •, for some finite subset B of F .

Choose k such that B c F. ; such a number certainly exists because

B is finite. On the other hand, since / : u •* F is injective, there

must exist m and r with r > k and f(m) € F - F, . Now any finite

r K

field is normal over any of its proper subfields, and so there exists an

F -automorphism g such that g(a) = a for all a € F. but
g[f(m)) * f(m) . Clearly g € G , and so g € GB , whence g[f) = / .

Therefore [g(m), g[f(m))) = g[(m), f(m)) (. f , and since f(m) * g[f(m)) ,

we must have m / g{m) . But a simple inductive argument shows that

g{n) = n for every number n . This contradiction shows that no such f

can exist in H . Thus F is medial in N .

We now apply the Embedding Theorem to transfer this result from the FM

model N to a ZF model. This completes the proof.

RESULT 3. Let A be a finitely generated algebra, with a well-

ordered set Q of primitive operations, and an arbitrary set R of

defining relations. If A is Dedekind-finite, then it is finite.
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Proof. There is no loss of generality involved in assuming that Q

contains the identity operation c , defined by c(a) = a , for all

a i A ,. We let x , ..., x be generators for A , and we denote by "<"

the given well-ordering of Q . Put Q* = Q u {x , ..., x } , and extend

< to Q* by setting x. < x. < f for all i, j, f with 0 5 i 5 j 2 n
1 3

and / € Q .

We now define the set W of all words on x , ..., x with respect

to Q in the usual manner; each W £ W will be a finite sequence with

terms in Q* ; and since Q* is well-ordered by < , we can extend < to

a well-ordering of W , which we shall still denote by "<" , in the normal

lexicographic manner.

We define an equivalence relation ~ on X by letting V be the

relational join of all members of R , and setting W ~ w' if V(w, w') .

Since W is well-ordered by < , we can define an injection h : W/~ •*• W

by taking, for each C € J//~ , h{C) to be the <-first element of C .

Thus f//~ is either finite or has a countably infinite subset. But

clearly A = W/~ (or there is a bijection g : A -»• f//~ , depending upon

exactly how the term "algebra" is defined): hence A is finite or else

has a countably infinite subset. Therefore, if A is Dedekind-finite,

then by Result 1 it must be finite.

RESULT 4. Let F be a medial field. Then there is a type

[p, (m .̂]̂ <uJ such that F is of this type.

Proof. Let 0 , 1 be the zero and unit respectively, and for each

number m , let m be the F-sum 1 + 1 + ... + l having m

r t F F
summands. Then {m 6 F; m < w} is a countable subset of F and hence

finite, from which it follows that m_ = ()„ for some m > 0 . It is

t t

routine to show that the least such m is a prime, which we shall call

"p" , and that F has characteristic p . We commence our sequences by

putting mQ = 1 and F = {kp; k < p] . Obviously F is the carrier of
a subfield F of F .

In a similar fashion, we can show that for each a (. F* = F - {0 }
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we have a = 1_ for some m > 0 , and we denote the least such m by

"o(a)" . The set ioia); a £ F*} is an unbounded set of numbers. For if

n is any positive number, the set {a i F*; o{a) 5 n} is finite, since it

is the set of F-roots of the finite equation-set {ar = l ; 1 5 t / S n } .

Suppose that m, and F, have been defined, and put

n - max{o(a); a € F*} . This maximum certainly exists, because F* is

finite. We have just seen that o{b) > n for some b € F* , and so we can

define r, to be min{o(a); a £ F* & o(a) > n) . Now put

X = {a € F*; o{a) 5 r7 } ; then F;* c X by our choice of r, . However,

the equations argument shows that X is finite, and so the subfield F,

of F generated by X is also finite, by Result 3- As a subfield of F ,

this field Fj.+1 must have characteristic p , and therefore has p

elements for some well-defined number m. . Since F, c F. , F, is a

proper subfield of F, , and so m, is a proper divisor of m .

We observe that our construction process has yielded an auxiliary

sequence {rv)j<<
 o f numbers with the property that Fj.^-, contains all

a € F* such that o{a) £ r, . Now F is a finite field with p

elements, and the multiplicative group of a finite field is cyclic. Thus

there exists a g ^ + 1 with o{a) = p - 1 . But by construction,

r, > o(a) for every a 5 ^ + 1 • This shows that for each k > 0 , we

m.
have r,±p , and as [mi.)i.<. is a strictly increasing sequence, it

follows that for any n we have r, > n for some k . Now we have seen

that o(a) exists for each a € F* ; thus if we take any a t F* we can

choose k such that r, > o{a) , whence a t F, . Thus

F = U{.F\ ; k < m] , and our proof is complete.

It is not true that the type of a medial field determines it up to

isomorphism: given any type, it is not difficult to construct a model of
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set theory containing two medial fields of that type but of different

cardinalities, and hence certainly non-isomorphic. A more interesting

question is whether it is possible to have two non-isomorphic medial fields

of the same cardinality and type.

We conclude this paper with two short results on Dedekind-finite

rings.

RESULT 5. Every Dedekind-finite division ring is a field.

Proof. Let V be a Dedekind-finite division ring, and take any

a, b £ D . Consider the sub division ring V° generated by {a, b} . By

Result 3, V° is finite. But every finite division ring is a field, and

so ab = ba . Since a, b were chosen arbitrarily, it follows that V is

a field.

RESULT 6. Every medial ring with only a finite number of zero-

divisors is a field.

Proof. Firstly we consider any infinite ring R whose set Z° of

zero-divisors is finite. We shall show that Z° = 0 . To demonstrate

this, we assume that Z° # 0 , and put Z = Z° u {0} , where we are taking

0 as the zero of R . Take any a £ R - Z and define the function f

with domain Z by f (z) = az . Clearly / (s) € Z for all z £ Z , and

so we have defined a function h : R-Z £ Z given by h{a) - f . Since

Z is finite whilst R is infinite, it follows that h(a) = h(b) for some

distinct a, b £ R - Z . Put a = a - b . Then e # 0 , but az = 0 for

all z £ Z . But then we see that a(z-z') = 0 for all z, z' i Z ,

whence as a + 0 it must be the case that z - z' 6 Z . This shows that

Z is (the carrier of) an additive subgroup of the additive group of R .

Consider R/Z , with the quotient of course being defined with respect

to addition. Since Z is finite, each C € R/Z is finite. Wow define

for each C i R/Z , q{C) to be {h(a); a € C] . We claim that

q{C) n q(C') = 0 for distinct C, C (. R/Z . For if for some a i C ,

b £ C we have h{a) = h(b) , then (a-b)z = 0 for all z £ Z . Since

Z° t 0 , we can choose z i. Z with s * 0 , and it follows that

a - b £ Z . But this contradicts the fact that a, b belong to distinct

cosets of Z .
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Therefore distinct elements of R/Z give rise to disjoint subsets of

2
Z . Since Z is finite, R/Z must be finite. But each C € R/Z is

finite, and so we arrive at the absurd conclusion that R is finite. Thus

Z° = 0 .

Thus every medial ring with only a finite number of zero-divisors is a

division ring, and hence a field by Result 5.

We state without proof that it is relatively consistent with the ZF

axioms to assume the existence of a medial ring with an infinite number of

zero-divisors and either a finite or an infinite number of invertible

elements.
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