ISOPETRIC MLLLTIPLICATION OF HARDY-ORLICZ SPACES

W. Deeb, R. Khalil and M. Marzuq

```
For a modulus function }\phi\mathrm{ , we define the Hardy-Orlicz space
H(\phi) . Two main questions are discussed in this paper. First,
when is a linear map mg}\mp@subsup{m}{g}{}:H(\phi)->H(\phi),\mp@subsup{m}{g}{\prime}(f)=g.f an isometry
Second, when is }H(\phi)=\mp@subsup{H}{}{1}\mathrm{ ?
```


0. Introduction.

Let Δ be the open unit disc in \mathbb{C}, the set of complex numbers, and $H(\Delta)$ be the space of analytic functions in Δ. If T is the unit circle, then $I^{p}(T)$ denotes the space of p-Lebesgue integrable functions, $0<p \leq \infty$. The classical Hardy spaces will be denoted by

$$
H^{p}=\left\{f \in H(\Delta): \sup _{0 \leq r<1} \int_{0}^{2 \pi} \mid f\left(r e^{i \theta}\right) p d \theta<\infty\right\}, 0<p<\infty
$$

and H^{∞} is the space of bounded analytic functions in Δ. It is very well-known that every $f \in H^{p}$ has a radial limit function, also denoted by f, in $L^{p}(T)$. Further, H^{p} can be considered as a closed subspace of $L^{p}(T)$, when equipped with the metric:

Received 31 October 1986.

[^0]\[

d(f, g)= $$
\begin{cases}\left(\int_{T}|f(x)-g(x)|^{p} d x\right)^{\frac{1}{p}} & p \geq 1 \\ \int_{T}|f(x)-g(x)|^{p} d x & 0<p<1 .\end{cases}
$$
\]

Another important and interesting class in $H(\Delta)$ is the Nevalinna class:

$$
N=\left\{f \in H(\Delta): \sup _{0 \leq r<1} \int_{0}^{2 \pi} \ln \left(1+\left|f\left(r e^{i \theta}\right)\right|\right) d \theta<\infty\right\}
$$

By N^{+}we mean as usual the space

$$
N^{+}=\left\{f \in N: \sup _{0 \leq r<1} \int_{0}^{2 \pi} \ln \left(1+\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\int_{0}^{2 \pi} \ln \left(1+\left|f\left(e^{i \theta}\right)\right|\right) d \theta\right\}
$$

We may think of the metric for $H^{p} 0<p<1$ and N as given by

$$
d(f, g)=\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)-g\left(r e^{i \theta}\right)\right|\right) d \theta
$$

where

$$
\phi(x)=x^{p} \text { for } H^{p}
$$

and

$$
\phi(x)=\ln (1+|x|) \text { for } N .
$$

It is clear that in both of these cases ϕ is continuous, increasing, subadditive and zero only at zero. Moreover $\phi(|u|)$ is subharmonic for every $u \in H(\Delta)$. Assuming that we have a function ϕ as described above we can define the space

$$
H(\phi)=\left\{f \in H^{+}(\Delta): \int_{0}^{2 \pi} \phi\left|f\left(e^{i \theta}\right)\right| d \theta=\sup _{0 \leq r<1} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right\}
$$

where H^{+}denoted the subspace of $H(\Delta)$ consisting of functions which have radial limits almost everywhere. See [2] for more details about these spaces. See [9] and [10] for general related results.

In this paper we consider the following question: if $g \in H(\phi)$ and the map $m_{g}(f)=f . g$ is an isometry what can we say about g ? Our result in this regard generalizes the known one for H^{p}, see [4]. In

Section 3 we consider the very natural question: what condition on ϕ would guarantee that $H(\phi)=H^{1}$? Finally we consider the projective tensor product of $H(\phi)$ with itself.

1. Preliminaries and Notation.

A function $\phi:[0, \infty) \rightarrow R$ is called a modulus function if:
(i) ϕ is continuous and increasing,
(ii) $\phi(x)=0$ if and only if $x=0$,
(iii) $\phi(x+y) \leq \phi(x)+\phi(y)$.

Examples of such functions are: $\phi(x)=x^{p} \quad 0<p \leq 1, \phi(x)=\ln (1+x)$.
In fact if ϕ is a modulus function then $\psi(x)=\frac{\phi(x)}{1+\phi(x)}$ is a modulus function, and for modulus functions ϕ_{1}, ϕ_{2}, the function $w=\phi_{1} \quad \phi_{2}$ is a modulus function.

Throughout the paper, we will assume that our modulus function satisfies the additional conditions that $\phi(|u|)$ is a subharmonic function whenever $u \in H(\Delta)$, and ϕ is strictly increasing.

$$
\text { Let } H^{+}(\Delta)=\left\{f \in H(\Delta): \lim _{r \rightarrow 1} f\left(r e^{i \theta}\right) \text { exists a.e. }\right\} \text {. Thus } H^{+}(\Delta)
$$

can be viewed as a space of functions on T.
Now, we define the Hardy-Orlicz space:

$$
H(\phi)=\left\{f \in H^{+}(\Delta): \sup _{0 \leq r<1} \int_{0}^{2 \pi} \phi\left|f\left(r e^{i \theta}\right)\right| d \theta=\int_{0}^{2 \pi} \phi\left|f\left(e^{i \theta}\right)\right| d \theta<\infty\right\}
$$

where ϕ is a modulus function. On $H(\phi)$ we define a metric

$$
d(f, g)=||f-g||_{\phi}=\int_{0}^{2 \pi} \phi\left|f\left(e^{i \theta}\right)-g\left(e^{i \theta}\right)\right| d \theta
$$

With this metric, $H(\phi)$ is a topological vector space. Further, since we are assuming that $\phi(|u|)$ is subharmonic for $u \in H(\Delta)$, the space $H(\phi)$ is an F-space, [2]. If ϕ is bounded, then $H(\phi)=H(\Delta)$. If $\phi(x)=\ln \left(1+x^{p}\right), 0<p \leq 1$, then we write N_{p} for $H(\phi)$. Clearly $N_{1}=N^{+} \subseteq N_{p}$, noting that $\ln \left(1+x^{p}\right)=\phi_{1} \circ \phi_{2}(x)$, where
$\phi_{1}(x)=\ln (1+x), \phi_{2}(x)=x^{p}$.
In [2], it was shown that $H^{1} \subseteq H(\phi)$ for all modulus functions ϕ. Throughout the paper, we write $\left|\mid f \|_{\phi}\right.$ for $\left.\int_{0}^{2 \pi} \phi\right| f\left(e^{i \theta}\right) \mid d \theta$, $f \in H(\phi)$.

2. Multiplication on $H(\phi)$.

Throughout this section, we will view $H(\phi)$ as a space of functions defined on T. A function g defined on T is called a (Schur) multiplier of $H(\phi)$ if $g . f \in H(\phi)$ for all $f \in H(\phi)$, where $(g \cdot f)(x)=g(x) \cdot f(x)$.

The set of all multipliers of $H(\phi)$ will be denoted by $M(H(\phi))$. It is well known (and easy to prove) that $M\left(H^{p}\right)=H^{\infty}$. In this section we characterize $M(H(\phi))$ for a large class of modulus functions. First we need the following

LEMMA 2.1. Let ϕ be a modulus function which satisfies:
(i) for any $f \in H^{1}$ there exists $g \in H(\phi)$ such that $\phi(|g|)=|f| ;$
(ii) $\phi(x) . \phi(y) \leq \phi(x . y)$ for all $x \geq 1$ and $y \geq 0$.

If $g \in M(H(\phi))$, and $f \in H^{1}$, then $\int_{0}^{2 \pi}\left(\phi\left|g\left(e^{i \theta}\right)\right|\right) . f\left(e^{i \theta}\right) d \theta<\infty$.
Proof. Since $1 \in H(\phi)$, it follows that $g \in H(\phi)$. Let $E=\left\{\theta:\left|g\left(e^{i \theta}\right)\right| \geq 1\right\}$. Then

$$
\int_{0}^{2 \pi} \phi\left|g\left(e^{i \theta}\right)\right|\left|f\left(e^{i \theta}\right)\right| d \theta=\int_{E} \phi\left|g\left(e^{i \theta}\right)\right|\left|f\left(e^{i \theta}\right)\right| d \theta+\int_{E} c^{\phi}\left|g\left(e^{i \theta}\right)\right|\left|f\left(e^{i \theta}\right)\right| d \theta
$$

By the first assumption on ϕ, there exists $h \in H(\phi)$ such that $|f|=\phi|h|$. Consequently, using assumption (ii) on ϕ, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \phi\left|g\left(e^{i \theta}\right)\right|\left|f\left(e^{i \theta}\right)\right| d \theta & \leq \int_{E} \phi\left|g\left(e^{i \theta}\right) \cdot h\left(e^{i \theta}\right)\right| d \theta+\phi(1) \cdot| | h \|_{\phi}, \\
& \leq\|h \cdot g\|_{\phi}+\phi(1) \mid\|h\|_{\phi}<\infty
\end{aligned}
$$

since $g \in M(H(\phi))$.
THEOREM 2.2. Let ϕ be a modulus function satisfying the conditions in Zemma 2.1. If $\lim \phi(x)=\infty$, then $M(H(\phi))=H^{\infty}$. $x \rightarrow \infty$

Proof. Let $g \in M(H(\phi))$. Lemma 2.1 implies that $\int_{0}^{2 \pi} \phi\left[\lg \left(e^{i \theta}\right) \mid+1\right] \cdot\left|f\left(e^{i \theta}\right)\right| d \theta<\infty \quad$ for all $f \in H^{1}$. It follows easily that $\ln \left(1+\phi\left|g\left(e^{i \theta}\right)\right|\right) \in L^{1}(T)$. Hence, $[5, p .53]$, there exists $u \in H^{1}$ such that $1+\phi|g|=|u|$. Conseryently $\int_{0}^{2 \pi}\left|u\left(e^{i \theta}\right)\right| \cdot\left|f\left(e^{i \theta}\right)\right| d \theta<\infty$ for all $f \in H^{1}$. This implies that $u \in M\left(H^{1}\right)=H^{\infty}$. Thus $1+\phi|g| \epsilon H^{\infty}$. Since $\lim _{x \rightarrow \infty} \phi(x)=\infty$, it follows that $g \in H^{\infty}$. Hence $M(H(\phi)) \subseteq H^{\infty}$. That $H^{\infty} \subseteq M(H(\phi))$ is clear. Hence $H^{\infty}=M(H(\phi))$.

COROLLARY 2.3. $M\left(H^{p}\right)=H^{\infty}, 0<p<1$.
Proof. The modulus function defining $H^{p}, 0<p<1$, is $\phi(x)=x^{p}$. For $f \in H^{p}$, one can write $f=u . v$, where u is an inner function, and v is an outer function, [3], such that $|f|^{p}=|v|^{p}$.
Thus $v^{p} \in H^{1}$. Hence ϕ satisfies condition (i) of Lemma 2.1. Condition (ii) of Lemma 2.1 is clearly verified for ϕ. So the result in Lemma 2.1 is true for H^{p}, and therefore by Theorem $2.2, M\left(H^{p}\right)=H^{\infty}$.

THEOREM 2.4. Let ϕ be a modulus function such that $\phi(x . y) \leq \phi(x)+\phi(y)$ for all $x, y \in[0, \infty)$. Then $M(H(\phi))=H(\phi)$.

Proof. Since $1 \in H(\phi)$, clearly, $M(H(\phi)) \subseteq H(\phi)$. Let $g \in H(\phi)$. Then for any $f \in H(\phi)$ we have

$$
\int_{0}^{2 \pi} \phi\left|f\left(e^{i \theta}\right) \cdot g\left(e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi} \phi\left|f\left(e^{i \theta}\right)\right| d \theta+\int_{0}^{2 \pi} \phi\left|g\left(e^{i \theta}\right)\right| d \theta
$$

$$
\leq\|f\|_{\phi}+\|g\|_{\phi}<\infty .
$$

Hence $g \quad M(H(\phi))$.
COROLLARY 2.5. $M\left(N_{p}\right)=N_{p} \quad 0<p \leq 1$.
Proof. This modulus function defining N_{p} is $\phi(x)=\ln \left(1+x^{p}\right)$. Since

$$
\phi(x . y)=\ln \left(1+(x . y)^{p}\right) \leq \ln \left(1+x^{p}\right)+\ln \left(1+y^{p}\right),
$$

theroem 2.4 applies to give $M\left(N_{p}\right)=N_{p}$.
For $g \in M(H(\phi))$, one defines a linear map m_{g} on $H(\phi)$ by $m_{g}(f)=g . f$ for $f \in H(\phi)$. The map m_{g} will be called an isometry if $\left|\mid m_{g}(f)\left\|_{\phi}=\right\| f \|_{\phi}\right.$ for all $f \in H(\phi)$.

THEOREM 2.6. Let ϕ be a moduZus function such that $\lim \phi(x)=\infty$. Let $g \in M(H(\phi))$. Then m_{g} is an isometry on $H(\phi)$ if and only if $|g|=1$ for almost all θ.

Proof. If $|g|=1$, then it is easily seen that m_{g} is an isometry.

Let m_{g} be an isometry on $H(\phi)$. Then $g^{n} \epsilon H(\phi)$ for all n, and $\left\|g^{n}\right\|_{\phi}=\|g\|_{\phi}$.

Let $E=\left\{\theta:\left|g\left(e^{i \theta}\right)\right|>1\right\}$. First we show that E has Lebesgue measure zero. Suppose E has a positive Lebesgue measure, so that

$$
\int_{E} \phi\left|g^{n}\left(e^{i \theta}\right)\right| d \theta \leq\left\|g^{n}\right\|_{\phi}=\|g\|_{\phi}
$$

Since $|g|>1$ on E, by Fatou's lemma we get

$$
\infty=\int_{E} \lim _{n} \phi\left|g^{n}\left(e^{i \theta}\right)\right| d \theta \leq \frac{1 \mathrm{im}}{n} \int_{E} \phi\left|g^{n}\left(e^{i \theta}\right)\right| d \theta \leq\|g \mid\|_{\phi} .
$$

This contradiction implies that E has Lebesgue measure zero,

$$
\text { Let } B=\left\{\theta:\left|g\left(e^{i \theta}\right)\right|<1\right\} \text {. Then } \lim _{n \rightarrow \infty} \phi\left|g^{n}\left(e^{i \theta}\right)\right|=0 \text { on } B \text {. }
$$

Since $\left|\mid g^{n}\left\|_{\phi}=\right\| g \|_{\phi}\right.$, and $| g \mid=1$ on B^{c}, it follows that

$$
\int_{B} \phi\left|g\left(e^{i \theta}\right) d \theta=\int_{B} \phi\right| g^{n}\left(e^{i \theta}\right) \mid d \theta
$$

The Lebesgue domoninated convergence theorem implies that

$$
\int_{B} \phi\left|g\left(e^{i \theta}\right)\right| d \theta=0
$$

Consequently, $\phi\left|g\left(e^{i \theta}\right)\right|=0$ on B, and hence $g=0$ on B. But g is the radial limit of an analytic function in Δ. This implies that B has Lebesgue measure zero. From this we conclude that $|g|=1$ a.e on T.
3. Equality of H^{1} and $H(\phi)$.

In [2], it was shown that $H^{1} \subseteq H(\phi)$ for all ϕ. Further, if $\int_{0}^{\infty} \frac{\phi(x)}{x^{2}} d x<\infty$, then $H^{1} \subset H(\phi)$. In this section we study the question of when $H^{1}=H(\phi)$.

THEOREM 3.1. Let ϕ be a given modulus function. Then the following are equivalent:
(i) $\frac{\lim }{x \rightarrow 0} \frac{\phi(x)}{x}=\delta, \lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=\varepsilon, \delta, \varepsilon \in R^{+} ;$
(ii) $H(\phi)=H^{1}$ and $\|f\|_{1} \leq \lambda| | f\left\|_{\phi} \leq n| | f\right\|_{1}$. for alZ
$f \in H(\phi)$, and some constants $\lambda, \eta \in R^{+}$.
Proof. (i) \rightarrow (ii). Choose $0<a<b$ such that $\frac{\phi(x)}{x} \geq r$ on $[0, a)$ and $\frac{\phi(x)}{x} \geq s$ on (b, ∞), for some $r, s \in R^{+}$.

Let $f \in H(\phi)$, and

$$
\begin{aligned}
E(a) & =\{\theta: 0<|f|<a\} \\
E(b) & =\{\theta:|f|>b\} \\
E(a, b) & =\{\theta: a \leq|f| \leq b\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\|f\|_{I} & =\int_{E(a)}\left|f\left(e^{i \theta}\right)\right| d \theta+\int_{E(a, b)}\left|f\left(e^{i \theta}\right)\right| d \theta+\int_{E(b)}\left|f\left(e^{i \theta}\right)\right| d \theta \\
& \leq \frac{1}{r}| | f\left\|_{\phi}^{+} \int_{E(a, b)}\left|f\left(e^{i \theta}\right)\right| d \theta+\frac{1}{s}\right\| f \|_{\phi}
\end{aligned}
$$

The function $\frac{\phi(x)}{x}$ is continuous on $[a, b]$, consequently there exists $c \in(a, b)$ such that $\frac{\phi(x)}{x} \geq \frac{\phi(c)}{c}$ for all $x \in[a, b]$. Hence $\phi(x) \geq t \cdot x$ on $[a, b]$. It follows

$$
\begin{aligned}
\left|\mid f \|_{1}\right. & \leq \frac{1}{r}| | f\left\|_{\phi}+\frac{1}{t}| | f\right\|_{\phi}+\left.\frac{1}{s}| | f\right|_{\phi} \\
& \leq \lambda| | f \|_{\phi}<\infty
\end{aligned}
$$

where $\lambda=\max \left(\frac{1}{r}, \frac{1}{t}, \frac{1}{s}\right)$.
Similarly one can show that $\|f\|_{\phi} \leq \lambda| | f \|_{1}$. Thus (ii) is proved.
(ii) \rightarrow (i). Consider the map $f\left(e^{i \theta}\right)=x e^{i \theta}, x>0$. Then $\left|\mid f\left\|_{1}=x,\right\| f \|_{\phi}=\phi(x)\right.$. From (ii) we get $x \leq \lambda \phi(x) \leq n x$.

Hence $\frac{1}{\lambda} \leq \frac{\phi(x)}{x} \leq \frac{\eta}{\lambda}$.
Consequently $\frac{\lim _{x \rightarrow 0}}{} \frac{\phi(x)}{x}$ is finite and $\frac{\lim }{x \rightarrow \infty} \frac{\phi(x)}{x}$ is finite. This proves (i) .

THEOREM 3.2. If $\lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=0$, then $H^{1} \underset{\neq}{c} H(\phi)$.
Proof. Since $\lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=0$, one can choose a sequence $x_{n}>\sqrt{n}$
such that $\phi\left(x_{n}\right)<\frac{x_{n}}{n}$. With no loss of generality, we can choose $x_{n+1}>x_{n}$ for all n. Since $x_{n}<\sqrt{n}$, then $H=\sum_{1}^{\infty} \frac{1}{n x_{n}}<\infty$.

Choose points $y_{m} \in[0,2 \pi)$ such that $y_{0}=2 \pi$, and $y_{n}>y_{n+1}$
for all n, and $y_{n}-y_{n-1}=\frac{2 \pi}{n x_{n} \cdot H}$. The interval $[0,2 \pi]$ is then partitioned into disjoint intervals $I_{n}=\left(y_{n-1}, y_{n}\right], \sum_{n=1}^{\infty}\left|y_{n}-y_{n-1}\right|=2 \pi$. Define the function f on $(0,2 \pi]$ such that $f(x)=x_{n}$ on I_{n}.

$$
\begin{aligned}
\|f\|_{\phi} & =\sum_{n=1}^{\infty} \int_{I_{n}} \phi|f(x)| d x, \\
& =\sum_{n=1}^{\infty} \phi\left(x_{n}\right)\left|y_{n}-y_{n-1}\right|, \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty .
\end{aligned}
$$

Hence $f \in L(\phi)=\left\{f: T \rightarrow \phi: \int_{T} \phi|f|<\infty\right\}$. But

$$
\begin{aligned}
\|f\|_{1} & =\sum_{n=0}^{\infty} \int_{I_{n}}|f(x)| \mathrm{dx} \\
& =\sum_{n=1}^{\infty} x_{n} \cdot\left|y_{n}-y_{n-1}\right| \\
& =\sum x_{n} \cdot \frac{1}{n \cdot x_{n} \cdot H}=\infty .
\end{aligned}
$$

Hence $f \notin L^{1}$.
It is not difficult to see that one can construct f to be continuous, without changing the facts that $f \in H(\phi)$ but $f \notin H^{1}$.

Now, consider the following sequence of functions:
$\left[0, y_{n}{ }^{\prime}\right.$ by $f_{n}(x)=x_{n}$. Then $f_{n} \in C(T)$ for all n, and $f_{n}(x) \leq f(x)$ for all $x \in[0,2 \pi]$. Thus

$$
\begin{align*}
& \left|\left|f_{n} \|_{\phi} \leq\left||f|_{\phi}, \text { for all } n\right. \text {. Further }\right.\right. \\
& \left|\left|f_{n} \|_{1}>\int_{E_{n}}\right| f\right| d x \geq \sum_{k=1}^{n} \frac{1}{k} \quad \text { (*) } \tag{*}
\end{align*}
$$

Let $\varepsilon>0$. By Wermer's maximality theorem, [8] , for each n, one can find $g_{n} \in C(T)$ such that $\left|\mid f_{n}-g_{n} \|_{\infty} \leq \varepsilon\right.$. Further, there exists $G_{n} \in H(\Delta)$ such that

$$
\lim _{r \rightarrow 1} G_{n}\left(r e^{i \theta}\right)=g_{n}\left(e^{i \theta}\right) \text { for almost all } \theta
$$

Now :

$$
\left|\left|G_{n}\right|_{\phi}=\left|\left|g_{n}\right|_{\phi}<\left\|f_{n}\right\|_{\phi}+\varepsilon\right.\right.
$$

for all n. Since ϕ is assumed to satisfy the condition that $\phi|u|$ is subharmonic for $u \in H(\Delta)$, it follows that, [2],

$$
\left|G_{n}(z)\right| \leq \phi^{-1}\left(\frac{4| | G_{n}| |_{\phi}}{1-r}\right), \text { for all } z=r e^{i \theta} \in \Delta
$$

Consequently, the sequence $\left\{G_{n}\right\}$ is uniformly bounded on compact subsets of Δ, and so it is a normal family.

Hence there exists a subsequence $\left(G_{n_{j}}\right)$ which converges uniformly on compact sets to some analytic function $G \in H(\Delta)$. Since
it follows that $G \in H(\phi)$.

$$
\begin{aligned}
\left|\mid G_{n} \|_{1}\right. & >\left\|f_{n}\right\|_{1}-\varepsilon \\
& >\left(\sum_{1}^{n} \frac{1}{k}\right)-\varepsilon
\end{aligned}
$$

Since $\left\|G_{n}\right\|_{1}=\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|G_{n}\left(r e^{i \theta}\right)\right| d \theta$, we get

$$
\int_{0}^{2 \pi}\left|G\left(r e^{i \theta}\right)\right| d \theta \geq\left(\sum_{k=1}^{\infty} \frac{1}{k}\right)-\varepsilon
$$

for some $r \in(0,1)$. Hence $G \notin H^{1}$. Hence $H^{1} \underset{\neq}{\neq} H(\phi)$.

$$
\text { 4. } H(\phi) \hat{\theta} H(\phi) \text {. }
$$

Let $H(\phi) \otimes H(\phi)$ be the space of all analytic functions f on $\Delta^{2}=\Delta \times \Delta$, such that $f(z, w)=\sum_{i=1}^{n} u_{i}(z) v_{i}(w), u_{i}, v_{i} \in H(\phi)$, for some modulus function ϕ. We will assume that ϕ satisfies the condition that $\phi|u|$ is subharmonic if $u \in H(\Delta)$. Let us define the metric d on $H(\phi) \otimes H(\phi)$ by:

$$
d(f, g)=\inf \left\{\left.\sum_{i=1}^{n}| | u_{i}\right|_{\phi} .| | v_{i} \|_{\phi}\right\}
$$

where the infimum is taken over all representations of $f-g$ in $H(\phi) \otimes H(\phi)$. Once can easily check that d is a metric on $H(\phi) \otimes H(\phi)$, and we write

$$
||f-g||_{\phi} \quad \text { for } \quad d(f, g)
$$

The space $H(\phi) \otimes H(\phi)$ with the metric d is not complete. We write $H(\phi) \hat{\otimes} H(\phi)$ for the completion. Following [1], one can show that every element in $H(\phi) \hat{\otimes} H(\phi)$ has a representation $f=\sum_{i=1}^{\infty} u_{i} \otimes v_{i}$, $\sum_{i=1}^{\infty}| | u_{i}\left\|_{\phi^{\prime}}| | v_{i}\right\|_{\phi}<\infty$, and $\|f\|_{\phi}=d(f)=\inf \left\{\sum_{i=1}^{\infty}\left\|u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi}\right\}$. The space $H(\phi) \hat{\otimes} H(\phi)$ will be called the projective tensor product of $H(\phi)$ with itself.

Tensor product is usually defined for locally convex topological vector spaces. The space $H(\phi)$ is not locally convex in general. The main result of this section is:

THEOREM 4.1. $H(\phi) \hat{\otimes} H(\phi)$ is a topological vector space.
Proof. First, we remark that d is a quasi-norm on $H(\phi) \hat{\otimes} H(\phi)$. That is:
(i) $d(f, 0)=0$ if and only if $f=0$
(ii) $d(0,-f)=d(0, f)$
(iii) $d(f+g, 0) \leq d(f, 0)+d(g, 0)$.

These follow easily from the properties of the metric d and the representations of functions in $H(\phi) \hat{\theta} H(\phi)$.

From Proposition 1 of $[7, \mathrm{p} .38]$, it remains to show that:
(i) if $\alpha_{n} \rightarrow 0$, then $d\left(\alpha_{n}, f, 0\right) \rightarrow 0$ for all $f \in H(\phi) \hat{\otimes} H(\phi)$;
(ii) if $d\left(f_{n}\right) \rightarrow 0$, then $d\left(\alpha f_{n}, 0\right) \rightarrow 0$ for all $\alpha \in R$.

To prove (i): let $f=\sum_{i=1}^{n} u_{i} \otimes v_{i} \in H(\phi) \hat{\otimes} H(\phi)$. Then

$$
0 \leq d\left(\alpha_{n} f, 0\right) \leq \sum_{i=1}^{k}\left\|\alpha_{n} u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi},
$$

and

$$
\begin{gathered}
\lim _{n} d\left(\alpha_{n} f, 0\right) \leq \sum_{i=1}^{k} \lim _{n}\left\|\alpha_{n} u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi}=0 \\
\text { Now, for } f=\sum_{i=1}^{\infty} u_{i} \otimes v_{i}, \sum_{i=1}^{\infty}\left\|u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi}<\infty, \text { define the }
\end{gathered}
$$

sequence of functions

$$
g_{n}(i)=\left\|\alpha_{n} u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi}
$$

The Lebesgue dominated convergence theorem on the set on natural numbers with the counting measure implies:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d\left(\alpha_{n} f, 0\right) & \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{\infty}\left\|\alpha_{n} u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi} \\
& \leq \sum_{i=1}^{\infty} \lim _{n \rightarrow \infty}\left\|\alpha_{n} u_{i}\right\|_{\phi} \cdot\left\|v_{i}\right\|_{\phi} \\
& =0 .
\end{aligned}
$$

To prove (ii): let $f_{n} \in H(\phi) \hat{\otimes} H(\phi), d\left(f_{n}, 0\right) \rightarrow 0$. Let k be a positive integer such that $k>\alpha$. Then

$$
d\left(\alpha \cdot f_{n}, 0\right) \leq d\left(k f_{n}, 0\right) \leq k \cdot d\left(f_{n}, 0\right) \rightarrow 0
$$

This completes the proof of the theorem.
Characterization of the (Schur) multipliers of $H(\phi) \hat{\theta} H(\phi)$ would be an interesting problem.

References

[1] J. Diestel and J. R. Uhl, Vector measures. (Math. Surveys, 15, 1977).
[2] W. Deeb and M. Marzuq, "H(ф) spaces," Bull. Canad. Math. Soc. (To appear).
[3] P. L. Duren, Theory of H^{p}-spaces, (Pure and Applied Mathematics No. 38, Academic Press, New York and London 1970).
[4] M. Hasumi and L.A. Rubel, "Multiplication isometries of Hardy and double Hardy spaces," Hokkaido Math. J. 10 (1981), 221-241.
[5] K. Hoffman, Bonach spaces of analytic functions, (Prentice Hall, Inc. N.J. 1962).
[6] G. Köthe, Topological vector spaces, (Springer-Verlag, New York, 1969).
[7] C. Romulus, Topological vector spaces, (Noord. Inter. Pub. Com. Netherlands, 1977).
[8] G. Leibowits, Lectures on complex function algebras, (scott. Forseman/Company, 1970).
[9] R. Leśniewicz, "On Hardy-Orlicz spaces. I," Comnt. Math. Prace Mat. 15 (1971) 3-56.
[10] R. Leśniewicz, "On linear functionals in Hardy-Orlicz spaces. I," Studia Math. 46 (1973) 53-77.

Department of Mathematics
Kuwait University
KUWAIT.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ 22.00+0.00$.

