BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 177-189

ISOMETRIC MULTIPLICATION OF HARDY-ORLICZ SPACES

W. DEEB, R. KHALIL AND M. MARZUQ

For a modulus function ϕ , we define the Hardy-Orlicz space $H(\phi)$. Two main questions are discussed in this paper. First, when is a linear map $m_g: H(\phi) \to H(\phi)$, $m_g(f) = g.f$ an isometry? Second, when is $H(\phi) = H^1$?

0. Introduction.

Let Δ be the open unit disc in ℓ , the set of complex numbers, and $H(\Delta)$ be the space of analytic functions in Δ . If T is the unit circle, then $L^p(T)$ denotes the space of p-Lebesgue integrable functions, 0 . The classical Hardy spaces will be denoted by

$$H^{\mathcal{P}} = \left\{ f \in H(\Delta) : \sup_{\substack{0 \leq r \leq 1 \\ 0}} \int_{0}^{2\pi} |f(re^{i\theta})|^{\mathcal{P}} d\theta < \infty \right\}, 0 < p < \infty ,$$

and H^{∞} is the space of bounded analytic functions in Δ . It is very well-known that every $f \in H^p$ has a radial limit function, also denoted by f, in $L^p(T)$. Further, H^p can be considered as a closed subspace of $L^p(T)$, when equipped with the metric:

Received 31 October 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

$$d(f_{s}g) = \begin{cases} (\int_{T} |f(x) - g(x)|^{p} dx)^{\frac{1}{p}} & p \ge 1 \\ \\ \int_{T} |f(x) - g(x)|^{p} dx & 0$$

Another important and interesting class in $H(\Delta)$ is the Nevalinna class:

$$N = \left\{ f \in H(\Delta) : \sup_{0 \le r \le 1} \int_{0}^{2\pi} \ln(1 + |f(re^{i\theta})|) d\theta < \infty \right\}.$$

By N^{+} we mean as usual the space

$$N^{+} = \left\{ f \in N : \sup_{0 \le r < 1} \int_{0}^{2\pi} \ln(1+|f(re^{i\theta})|)d\theta = \int_{0}^{2\pi} \ln(1+|f(e^{i\theta})|)d\theta \right\}.$$

We may think of the metric for $\operatorname{H}^p \operatorname{O} and N as given by$

$$d(f,g) = \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi(|f(re^{i\theta}) - g(re^{i\theta})|) d\theta$$

where

$$\phi(x) = x^p \quad \text{for} \quad H^p$$

and

$$\phi(x) = \ln(1 + |x|) \quad \text{for } N$$

It is clear that in both of these cases ϕ is continuous, increasing, subadditive and zero only at zero. Moreover $\phi(|u|)$ is subharmonic for every $u \in H(\Delta)$. Assuming that we have a function ϕ as described above we can define the space

$$H(\phi) = \left\{ f \in H^{+}(\Delta) : \int_{0}^{2\pi} \phi |f(e^{i\theta})| d\theta = \sup_{0 \le r \le 1} \int_{0}^{2\pi} \phi(|f(re^{i\theta})|) d\theta \right\}$$

where H^+ denoted the subspace of $H(\Delta)$ consisting of functions which have radial limits almost everywhere. See [2] for more details about these spaces. See [9] and [10] for general related results.

In this paper we consider the following question: if $g \in H(\phi)$ and the map $m_g(f) = f \cdot g$ is an isometry what can we say about g? Our result in this regard generalizes the known one for \mathbb{H}^p , see [4]. In

https://doi.org/10.1017/S0004972700010042 Published online by Cambridge University Press

Section 3 we consider the very natural question: what condition on ϕ would guarantee that $H(\phi) = H^{2}$? Finally we consider the projective tensor product of $H(\phi)$ with itself.

1. Preliminaries and Notation.

- A function $\phi : [0,\infty) \to R$ is called a modulus function if:
 - (i) \$\phi\$ is continuous and increasing,
 - (ii) $\phi(x) = 0$ if and only if x = 0,
- (iii) $\phi(x + y) \leq \phi(x) + \phi(y)$.

Examples of such functions are: $\phi(x) = x^p \quad 0 , <math>\phi(x) = \ln(1 + x)$. In fact if ϕ is a modulus function then $\psi(x) = \frac{\phi(x)}{1 + \phi(x)}$ is a modulus function, and for modulus functions ϕ_1, ϕ_2 , the function $w = \phi_1 \circ \phi_2$ is a modulus function.

Throughout the paper, we will assume that our modulus function satisfies the additional conditions that $\phi(|u|)$ is a subharmonic function whenever $u \in H(\Delta)$, and ϕ is strictly increasing.

Let $H^{+}(\Delta) = \{f \in H(\Delta) : \lim_{r \to 1} f(re^{i\theta}) \text{ exists } a.e.\}$. Thus $H^{+}(\Delta)$

can be viewed as a space of functions on $\ T$.

Now, we define the Hardy-Orlicz space:

$$H(\phi) = \left\{ f \in H^{+}(\Delta) : \sup_{0 \leq r < 1} \int_{0}^{2\pi} \phi \left| f(re^{i\theta}) \right| d\theta = \int_{0}^{2\pi} \phi \left| f(e^{i\theta}) \right| d\theta < \infty \right\},$$

where ϕ is a modulus function. On $H(\phi)$ we define a metric

$$d(f,g) = ||f - g||_{\phi} = \int_{0}^{2\pi} \phi |f(e^{i\theta}) - g(e^{i\theta})| d\theta .$$

With this metric, $H(\phi)$ is a topological vector space. Further, since we are assuming that $\phi(|u|)$ is subharmonic for $u \in H(\Delta)$, the space $H(\phi)$ is an *F*-space, [2]. If ϕ is bounded, then $H(\phi) = H(\Delta)$. If $\phi(x) = \ln(1 + x^p), 0 , then we write <math>N_p$ for $H(\phi)$. Clearly $N_1 = N^{+} \le N_p$, noting that $\ln(1 + x^p) = \phi_1 \circ \phi_2(x)$, where

$$\phi_1(x) = \ln(1 + x), \ \phi_2(x) = x^p$$
.

In [2], it was shown that $H^{2} \subseteq H(\phi)$ for all modulus functions ϕ . Throughout the paper, we write $||f||_{\phi}$ for $\int_{0}^{2\pi} \phi |f(e^{i\theta})| d\theta$, $f \in H(\phi)$.

2. Multiplication on $H(\phi)$.

Throughout this section, we will view $H(\phi)$ as a space of functions defined on T. A function g defined on T is called a (Schur) multiplier of $H(\phi)$ if $g.f \in H(\phi)$ for all $f \in H(\phi)$, where (g.f)(x) = g(x).f(x).

The set of all multipliers of $H(\phi)$ will be denoted by $M(H(\phi))$. It is well known (and easy to prove) that $M(H^{\mathcal{D}}) = H^{\infty}$. In this section we characterize $M(H(\phi))$ for a large class of modulus functions. First we need the following

LEMMA 2.1. Let ϕ be a modulus function which satisfies:

(i) for any $f \in H^1$ there exists $g \in H(\phi)$ such that $\phi(|g|) = |f|$;

(ii)
$$\phi(x).\phi(y) \leq \phi(x.y)$$
 for all $x \geq 1$ and $y \geq 0$.

If $g \in M(H(\phi))$, and $f \in H^1$, then $\int_0^{2\pi} (\phi | g(e^{i\theta}) |) \cdot f(e^{i\theta}) d\theta < \infty$.

Proof. Since $1 \in H(\phi)$, it follows that $g \in H(\phi)$. Let $E = \{\theta : |g(e^{i\theta})| \ge 1\}$. Then

$$\int_{0}^{2\pi} \phi |g(e^{i\theta})| |f(e^{i\theta})| d\theta = \int_{E} \phi |g(e^{i\theta})| |f(e^{i\theta})| d\theta + \int_{E} \phi |g(e^{i\theta})| |f(e^{i\theta})| d\theta$$

By the first assumption on ϕ , there exists $h \in H(\phi)$ such that $|f| = \phi |h|$. Consequently, using assumption (ii) on ϕ , we have $\int_{0}^{2\pi} \phi |g(e^{i\theta})| |f(e^{i\theta})| d\theta \leq \int_{E} \phi |g(e^{i\theta}).h(e^{i\theta})| d\theta + \phi(1).||h||_{\phi},$ $\leq ||h.g||_{\phi} + \phi(1)||h||_{\phi} < \infty,$ since $g \in M(H(\phi))$.

THEOREM 2.2. Let ϕ be a modulus function satisfying the conditions in lemma 2.1. If $\lim \phi(x) = \infty$, then $M(H(\phi)) = H^{\infty}$.

Proof. Let
$$g \in M(H(\phi))$$
. Lemma 2.1 implies that

$$\int_{0}^{2\pi} \phi \left[|g(e^{i\theta})| + 1 \right] \cdot |f(e^{i\theta})| d\theta < \infty \text{ for all } f \in H^{1} \text{ . It follows easily}$$
that $ln(l + \phi |g(e^{i\theta})|) \in L^{1}(T)$. Hence, [5, p.53], there exists
 $u \in H^{1}$ such that $l + \phi |g| = |u|$. Consequently

$$\int_{0}^{2\pi} |u(e^{i\theta})| \cdot |f(e^{i\theta})| d\theta < \infty \text{ for all } f \in H^{1} \text{ . This implies that}$$
 $u \in M(H^{1}) = H^{\infty}$. Thus $l + \phi |g| \in H^{\infty}$. Since $\lim_{x \to \infty} \phi(x) = \infty$, it follows
that $g \in H^{\infty}$. Hence $M(H(\phi)) \subseteq H^{\infty}$. That $H^{\infty} \subseteq M(H(\phi))$ is clear.
Hence $H^{\infty} = M(H(\phi))$.

COROLLARY 2.3. $M(H^p) = H^{\infty}$, 0 .

Proof. The modulus function defining H^p , 0 , is $<math>\phi(x) = x^p$. For $f \in H^p$, one can write f = u.v, where u is an inner function, and v is an outer function, [3], such that $|f|^p = |v|^p$. Thus $v^p \in H^1$. Hence ϕ satisfies condition (i) of Lemma 2.1. Condition (ii) of Lemma 2.1 is clearly verified for ϕ . So the result in Lemma 2.1 is true for H^p , and therefore by Theorem 2.2, $M(H^p) = H^\infty$.

THEOREM 2.4. Let ϕ be a modulus function such that $\phi(x,y) \leq \phi(x) + \phi(y)$ for all $x, y \in [0,\infty)$. Then $M(H(\phi)) = H(\phi)$.

Proof. Since $1 \in H(\phi)$, clearly, $M(H(\phi)) \subseteq H(\phi)$. Let $g \in H(\phi)$. Then for any $f \in H(\phi)$ we have

$$\int_{0}^{2\pi} \phi |f(e^{i\theta}).g(e^{i\theta})|d\theta \leq \int_{0}^{2\pi} \phi |f(e^{i\theta})|d\theta + \int_{0}^{2\pi} \phi |g(e^{i\theta})|d\theta$$

Π

$$\leq ||f||_{\phi} + ||g||_{\phi} < \infty$$

Hence $g \quad M(H(\phi))$.

COROLLARY 2.5. $M(N_p) = N_p \qquad 0 .$

Proof. This modulus function defining N_p is $\phi(x) = \ln(1 + x^p)$. Since

 $\phi(x.y) = \ln(1 + (x.y)^p) \le \ln(1 + x^p) + \ln(1 + y^p) ,$ thereom 2.4 applies to give $M(N_p) = N_p$.

For $g \in M(H(\phi))$, one defines a linear map m_g on $H(\phi)$ by $m_g(f) = g.f$ for $f \in H(\phi)$. The map m_g will be called an isometry if $||m_g(f)||_{\phi} = ||f||_{\phi}$ for all $f \in H(\phi)$.

THEOREM 2.6. Let ϕ be a modulus function such that $\lim_{x \to \infty} \phi(x) = \infty$. Let $g \in M(H(\phi))$. Then m_g is an isometry on $H(\phi)$ if and only if |g| = 1 for almost all θ .

Proof. If |g| = 1, then it is easily seen that m_g is an isometry.

Let m_g be an isometry on $H(\phi)$. Then $g^n \in H(\phi)$ for all n, and $||g^n||_{\phi} = ||g||_{\phi}$.

Let $E = \{\theta : |g(e^{i\theta})| > 1\}$. First we show that E has Lebesgue measure zero. Suppose E has a positive Lebesgue measure, so that

$$\int_{E} \phi |g^{n}(e^{i\theta})| d\theta \leq ||g^{n}||_{\phi} = ||g||_{\phi}$$

Since |g| > 1 on E, by Fatou's lemma we get

$$\infty = \int_{E} \lim_{n} \phi |g^{n}(e^{i\theta})| d\theta \leq \lim_{n} \int_{E} \phi |g^{n}(e^{i\theta})| d\theta \leq ||g||_{\phi}$$

This contradiction implies that E has Lebesgue measure zero.

Let
$$B = \{\theta : |g(e^{i\theta})| < 1\}$$
, Then $\lim_{n \to \infty} \phi |g^n(e^{i\theta})| = 0$ on B .

Since $||g^{n}||_{\phi} = ||g||_{\phi}$, and |g| = 1 on B^{c} , it follows that $\int_{B} \phi |g(e^{i\theta}) \ d\theta = \int_{B} \phi |g^{n}(e^{i\theta})| d\theta$.

The Lebesgue domoninated convergence theorem implies that

$$\int_{B} \phi |g(e^{i\theta})| d\theta = 0$$

Consequently, $\phi |g(e^{i\theta})| = 0$ on B, and hence g = 0 on B. But g is the radial limit of an analytic function in Δ . This implies that B has Lebesgue measure zero. From this we conclude that |g| = 1 a.e on T.

3. Equality of
$$H^1$$
 and $H(\phi)$.

In [2], it was shown that $H^{1} \subseteq H(\phi)$ for all ϕ . Further, if $\int_{0}^{\infty} \frac{\phi(x)}{x^{2}} dx < \infty$, then $H^{1} \subset H(\phi)$. In this section we study the question $\frac{1}{2} = H(\phi)$.

THEOREM 3.1. Let ϕ be a given modulus function. Then the following are equivalent:

(i)
$$\lim_{x \to 0} \frac{\phi(x)}{x} = \delta$$
, $\lim_{x \to \infty} \frac{\phi(x)}{x} = \varepsilon$, δ , $\varepsilon \in \mathbb{R}^{+}$;
(ii) $H(\phi) = H^{1}$ and $||f||_{1} \leq \lambda ||f||_{\phi} \leq n ||f||_{1}$. for all $f \in H(\phi)$, and some constants λ , $n \in \mathbb{R}^{+}$.

Proof. (i)
$$+$$
 (ii) . Choose $0 < a < b$ such that $\frac{\varphi(x)}{x} \ge r$ on
 $[0,a)$ and $\frac{\phi(x)}{x} \ge s$ on (b,∞) , for some $r, s \in R^+$.
Let $f \in H(\phi)$, and
 $E(a) = \{\theta : 0 < |f| < a\}$
 $E(b) = \{\theta : |f| > b\}$
 $E(a,b) = \{\theta : a \le |f| \le b\}$.

Then

$$\begin{split} \left| \left| f \right| \right|_{I} &= \int_{E(a)} \left| f(e^{i\theta}) \left| d\theta \right| + \int_{E(a,b)} \left| f(e^{i\theta}) \left| d\theta \right| + \int_{E(b)} \left| f(e^{i\theta}) \left| d\theta \right| \\ &\leq \frac{1}{r} \left| \left| f \right| \right|_{\phi} + \int_{E(a,b)} \left| f(e^{i\theta}) \left| d\theta \right| + \frac{1}{s} \left| \left| f \right| \right|_{\phi} \,. \end{split}$$

The function $\frac{\phi(x)}{x}$ is continuous on [a,b], consequently there exists $c \in (a,b)$ such that $\frac{\phi(x)}{x} \ge \frac{\phi(c)}{c}$ for all $x \in [a,b]$. Hence $\phi(x) \ge t.x$ on [a,b]. It follows $||f||_{1} \le \frac{1}{r} ||f||_{\phi} + \frac{1}{t} ||f||_{\phi} + \frac{1}{s} ||f||_{\phi}$ $\le \lambda ||f||_{\phi} < \infty$.

where $\lambda = \max\left(\frac{1}{r}, \frac{1}{t}, \frac{1}{s}\right)$.

Similarly one can show that $||f||_{\phi} \leq \lambda ||f||_{J}$. Thus (ii) is proved.

(ii) \rightarrow (i). Consider the map $f(e^{i\theta}) = x e^{i\theta}$, x > 0. Then $||f||_{1} = x$, $||f||_{\phi} = \phi(x)$. From (ii) we get

 $x \leq \lambda \phi(x) \leq \eta x$.

Hence $\frac{1}{\lambda} \leq \frac{\phi(x)}{x} \leq \frac{\eta}{\lambda}$. Consequently $\lim_{x \to 0} \frac{\phi(x)}{x}$ is finite and $\lim_{x \to \infty} \frac{\phi(x)}{x}$ is finite. This proves (i) .

THEOREM 3.2. If
$$\lim_{x \to \infty} \frac{\phi(x)}{x} = 0$$
, then $H^1 \subset H(\phi) = \frac{1}{4}$

Proof. Since $\lim_{x\to\infty} \frac{\phi(x)}{x} = 0$, one can choose a sequence $x_n > \sqrt{n}$ such that $\phi(x_n) < \frac{x_n}{n}$. With no loss of generality, we can choose $x_{n+1} > x_n$ for all n. Since $x_n < \sqrt{n}$, then $H = \sum_{1}^{\infty} \frac{1}{n x_n} < \infty$. Choose points $y_m \in [0, 2\pi)$ such that $y_0 = 2\pi$, and $y_n > y_{n+1}$.

for all n, and $y_n - y_{n-1} = \frac{2\pi}{n x_n \cdot H}$. The interval $[0, 2\pi]$ is then partitioned into disjoint intervals $I_n = (y_{n-1}, y_n]$, $\sum_{n=1}^{\infty} |y_n - y_{n-1}| = 2\pi$.

Define the function f on $(0, 2\pi]$ such that $f(x) = x_n$ on I_n .

$$\begin{split} \left| \left| f \right| \right|_{\phi} &= \sum_{n=1}^{\infty} \int_{I_n} \phi \left| f(x) \right| dx \quad , \\ &= \sum_{n=1}^{\infty} \phi(x_n) \left| y_n - y_{n-1} \right| \; , \\ &\leq \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty \; . \end{split}$$
Hence $f \in L(\phi) = \left\{ f : T \neq \phi : \int_{T} \phi \left| f \right| < \infty \right\} \; .$ But $\left| \left| f \right| \right|_{I} = \sum_{n=0}^{\infty} \int_{I_n} \left| f(x) \right| dx$
 $&= \sum_{n=1}^{\infty} x_n \cdot \left| y_n - y_{n-1} \right|$
 $&= \sum x_n \cdot \frac{1}{n \cdot x_n \cdot H} = \infty \; . \end{split}$

Hence $f \notin L^1$.

It is not difficult to see that one can construct f to be continuous, without changing the facts that $f \in H(\phi)$ but $f \notin H^2$.

Now, consider the following sequence of functions:

$$f_n(x) = f(x) \quad \text{if} \quad x \in \bigcup_{j=1}^n I_j = E_n \text{, define } f_n \text{ on}$$

$$[0, y_n] \quad \text{by} \quad f_n(x) = x_n \text{. Then } f_n \in C(T) \text{ for all } n \text{, and } f_n(x) \leq f(x)$$
for all $x \in [0, 2\pi]$. Thus

$$\begin{aligned} \left|\left|f_{n}\right|\right|_{\phi} \leq \left|\left|f\right|\right|_{\phi}, \text{ for all } n. \text{ Further} \\ \left|\left|f_{n}\right|\right|_{1} \geq \int_{E_{n}} \left|f\right| dx \geq \sum_{k=1}^{n} \frac{1}{k} \qquad (*) \end{aligned}$$

Let $\varepsilon > 0$. By Wermer's maximality theorem, [&], for each n, one can find $g_n \in C(T)$ such that $||f_n - g_n||_{\infty} \le \varepsilon$. Further, there exists $G_n \in H(\Delta)$ such that

$$\lim_{r \to 1} G_n (re^{i\theta}) = g_n(e^{i\theta}) \text{ for almost all } \theta$$

Now:

$$\left|\left|G_{n}\right|\right|_{\phi} = \left|\left|g_{n}\right|\right|_{\phi} < \left|\left|f_{n}\right|\right|_{\phi} + \varepsilon$$

for all n. Since ϕ is assumed to satisfy the condition that $\phi|u|$ is subharmonic for $u \in H(\Delta)$, it follows that, [2],

$$|G_n(z)| \leq \phi^{-1} \left(\frac{4||G_n||_{\phi}}{1-r} \right)$$
, for all $z = re^{i\theta} \in \Delta$.

Consequently, the sequence $\{G_n\}$ is uniformly bounded on compact subsets of Δ , and so it is a normal family.

Hence there exists a subsequence (G_n) which converges uniformly on n_j compact sets to some analytic function $G \in H(\Delta)$. Since

$$\int_{0}^{2\pi} \phi |G(re^{i\theta})| d\theta = \lim_{n \to \infty} \int_{0}^{2\pi} \phi |G_n(re^{i\theta})| d\theta ,$$
$$\leq ||f||_{\phi} + \varepsilon ,$$

it follows that $G \in H(\phi)$.

$$||G_n||_1 > ||f_n||_1 - \epsilon ,$$

> $(\sum_{j=1}^{n} \frac{1}{k}) - \epsilon .$

Since
$$||G_n||_1 = \lim_{r \to 1} \int_0^{2\pi} |G_n(re^{i\theta})| d\theta$$
, we get

$$\int_{0}^{2\pi} |G(re^{i\theta})| d\theta \geq (\sum_{k=1}^{\infty} \frac{1}{k}) - \varepsilon,$$

for some $r \in (0,1)$. Hence $G \notin H^1$. Hence $H^1 \subset H(\phi)$.

Let $H(\phi) \otimes H(\phi)$ be the space of all analytic functions f on $\Delta^2 = \Delta \times \Delta$, such that $f(z, \omega) = \sum_{i=1}^n u_i(z) v_i(\omega)$, u_i , $v_i \in H(\phi)$, for some modulus function ϕ . We will assume that ϕ satisfies the condition that $\phi|u|$ is subharmonic if $u \in H(\Delta)$. Let us define the metric d on

$$d(f,g) = \inf \left\{ \sum_{i=1}^{n} ||u_i||_{\phi} \cdot ||v_i||_{\phi} \right\},$$

where the infimum is taken over all representations of f - g in $H(\phi) \otimes H(\phi)$. Once can easily check that d is a metric on $H(\phi) \otimes H(\phi)$, and we write

$$||f - g||_{\phi}$$
 for $d(f,g)$.

The space $H(\phi) \otimes H(\phi)$ with the metric d is not complete. We write $H(\phi) \otimes H(\phi)$ for the completion. Following [1], one can show that every element in $H(\phi) \otimes H(\phi)$ has a representation $f = \sum_{i=1}^{\infty} u_i \otimes v_i$,

$$\sum_{i=1}^{\infty} ||u_i||_{\phi} \cdot ||v_i||_{\phi} < \infty \text{, and } ||f||_{\phi} = d(f) = \inf\left\{\sum_{i=1}^{\infty} ||u_i||_{\phi} \cdot ||v_i||_{\phi}\right\}.$$

The space $H(\phi) \stackrel{\circ}{\otimes} H(\phi)$ will be called the projective tensor product of $H(\phi)$ with itself.

Tensor product is usually defined for locally convex topological vector spaces. The space $H(\phi)$ is not locally convex in general. The main result of this section is:

THEOREM 4.1. $H(\phi) \stackrel{\circ}{\otimes} H(\phi)$ is a topological vector space.

Proof. First, we remark that d is a quasi-norm on $H(\phi) \stackrel{\circ}{\otimes} H(\phi)$. That is:

 $H(\phi) \otimes H(\phi)$ by:

(i)
$$d(f,0) = 0$$
 if and only if $f = 0$

(ii)
$$d(0,-f) = d(0,f)$$

(iii)
$$d(f+g, 0) \leq d(f, 0) + d(g, 0)$$
.

These follow easily from the properties of the metric d and the representations of functions in $H(\phi) \ \hat{\partial} \ H(\phi)$.

From Proposition 1 of [7, p. 38], it remains to show that:

(i) if
$$\alpha_n \to 0$$
, then $d(\alpha_n, f, 0) \to 0$ for all $f \in H(\phi) \hat{\otimes} H(\phi)$;

(ii) if
$$d(f_n) \to 0$$
, then $d(\alpha f_n, 0) \to 0$ for all $\alpha \in \mathbb{R}$.

To prove (i): let $f = \sum_{i=1}^{n} u_i \otimes v_i \in H(\phi) \otimes H(\phi)$. Then

$$0 \le d(\alpha_n f, 0) \le \sum_{i=1}^{k} ||\alpha_n u_i||_{\phi} . ||v_i||_{\phi}$$

and

$$\lim_{n} d(\alpha_{n}f,0) \leq \sum_{i=1}^{k} \lim_{n} ||\alpha_{n} u_{i}||_{\phi} \cdot ||v_{i}||_{\phi} = 0.$$

Now, for $f = \sum_{i=1}^{\infty} u_i \otimes v_i$, $\sum_{i=1}^{\infty} ||u_i||_{\phi} \cdot ||v_i||_{\phi} < \infty$, define the

sequence of functions

$$g_n(i) = ||\alpha_n u_i||_{\phi} \cdot ||v_i||_{\phi}$$

The Lebesgue dominated convergence theorem on the set on natural numbers with the counting measure implies:

$$\begin{split} \lim_{n \to \infty} d(\alpha_n f, 0) &\leq \lim_{n \to \infty} \sum_{i=1}^{\infty} ||\alpha_n u_i||_{\phi} \cdot ||v_i||_{\phi} \\ &\leq \sum_{i=1}^{\infty} \lim_{n \to \infty} ||\alpha_n u_i||_{\phi} \cdot ||v_i||_{\phi} \\ &= 0 \end{split}$$

To prove (ii): let $f_n \in H(\phi) \ \hat{\otimes} \ H(\phi)$, $d(f_n, 0) \to 0$. Let k be a positive integer such that $k > \alpha$. Then

$$d(\alpha, f_n, 0) \leq d(k, f_n, 0) \leq k.d(f_n, 0) \neq 0$$

This completes the proof of the theorem.

Characterization of the (Schur) multipliers of $H(\phi) \stackrel{\sim}{\partial} H(\phi)$ would be an interesting problem.

References

- [1] J. Diestel and J. R. Uhl, Vector measures. (Math. Surveys, 15, 1977).
- [2] W. Deeb and M. Marzuq, " $H(\phi)$ spaces," Bull. Canad. Math. Soc. (To appear).
- [3] P. L. Duren, Theory of HP-spaces. (Pure and Applied Mathematics No. 38, Academic Press, New York and London 1970).
- [4] M. Hasumi and L.A. Rubel, "Multiplication isometries of Hardy and double Hardy spaces," Hokkaido Math. J. 10 (1981), 221-241.
- [5] K. Hoffman, Banach spaces of analytic functions, (Prentice Hall, Inc. N.J. 1962).
- [6] G. Köthe, Topological vector spaces, (Springer-Verlag, New York, 1969).
- [7] C. Romulus, Topological vector spaces, (Noord. Inter. Pub. Com. Netherlands, 1977).
- [8] G. Leibowits, Lectures on complex function algebras, (Scott. Forseman/Company, 1970).
- [9] R. Leśniewicz, "On Hardy-Orlicz spaces. I," Commt. Math. Prace Mat. 15 (1971) 3-56.
- [10] R. Leśniewicz, "On linear functionals in Hardy-Orlicz spaces. I," Studia Math. 46 (1973) 53-77.

Department of Mathematics Kuwait University KUWAIT. Ω