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ON EXTENSION OF CHARACTERS
FROM NORMAL SUBGROUPS

by G. KARPILOVSKY
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1. Introduction

In what follows, character means irreducible complex character.
Let G be a finite group and let % be a character of a normal subgroup N. If % extends

to a character of G then % is stabilised by G, but the converse is false. The aim of this
paper is to prove the following theorem which gives a sufficient condition for x to be
extended to a character of G.

Theorem. Let the group G contain a subgroup B of order n such that G = N- B(N A G)
and let x be a character of N which is stabilised by G. Then x extends to a character of G
if the following conditions hold:

(1) (

(2)

The following well known results are corollaries of this theorem.

Corollary 1. (Gallagher, [2, Theorem 6]). Let N be a normal Hall subgroup of G.
Then each character of N which is stabilised by G extends to a character of G.

Corollary 2. (Mackey, [1, p. 353]). Suppose that NAG. If N is abelian and
complemented in G, then each character of N which is stabilised by G extends to a
character of G.

It follows from [1, Theorem 53.17] that the degrees of characters of a group divide
the index of its abelian subnormal subgroup (and not only the index of abelian normal
subgroup as is stated in [1, (53.18)]).

Hence we have a somewhat sharper result then the one given in Corollary 1.

Corollary 1'. Suppose that G = N- B (N AG,N n B = 1) and that the group N contains
a subnormal abelian subgroup A such that (m,n) = l where m = (N:A) and n is the order of
the group B. Then each character of N which is stabilised by G extends to a character of
G.

Finally note that if OP(G) is the subgroup of G generated by all the elements of order
prime to p and if P is a Sylow p-subgroup of G then

G = O"(G)P and 0"{G)n P^
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Thus we have the following result

Corollary 3. Let % be a character of 0p(G) and suppose that x is stabilised by G with
p)[X(\). Then x extends to a character of G.

Most of the notation we use is well known. In particular C* denotes the set of all
nonzero complex numbers, o(g) is the order of g, and / denotes the mxm identity
matrix.

2. Proof of the Theorem

Let F be a matrix representation of N which affords x- Since x is stabilised by G, any
two representations

s->r(s) and s^Y{g~^sg) (seN)

of N are equivalent for all geG. Thus, if geG, there is a matrix i//(g) such that

i//(g)''TisMg) = T(g~lsg) for any seN, (1)

and so we may assume that

r(s) = ^(s), alls e AT. (2)

It is easy to see that the matrix il/{gi)il/(g2)ip(gig2)'* permutes with T(s) for all seN,
gi,g2eG, and thus it follows from Schur's Lemma that

t(giMg2) = ̂ gi,g2)Hgi82), Kg.gi) e C*. (3)

Therefore ^ is a projective representation of G. By replacing \j/(g) by 3g\l/(g) for a
suitable 5g e C* we may assume that, for any geG — N,

Mg)°(s) = I. (4)

If geN nB then iMg) = r(g) and so NnB^N' implies that dett/<g) = l. If geB-N then
it follows from (4) that det^(g) = e, ek = l, k = o{g). The condition (m,n) = \ implies
(m, k) = 1 and hence there exists a natural number x such that mx = \ (mod k). Thus
dete~*iA(g) = l and [e~x^(g)]0(9) = /. We may therefore assume that

det il/(g) = 1, t%)o(»> = / for all g e B. (5)

Calculating the determinants in (3) and applying (5) we obtain

Vtei,gJT = 1 for all gug2eB. (6)

Now consider the group L = (\j/(g)\geB'). Then L contains the central subgroup
\
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It follows from (5), (6) and (m, n) = 1 that the factor-group L/M has order prime to the
order of M and hence by a theorem of Schur ([1], (7.5)) the group L is a direct product
of M and another Hall subgroup. Since L is generated by the elements of orders prime
to m it follows that M = 1 and

MgiMgi) = "AteiS2) for all gl, g2 £ B. (7)

Let R be a transversal to AfnBin B. Thus each g in G has a unique representation
g = rt, r eR, teN. If g1 = rlt1 is another element of G, write r-r1 = r2t2 with r2eR,
t2eNr\B. Define \J/{g) = ^{r)\j/(t). Using (1), (2) and (7) we get

Thus, the character of $ extends %•
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