
Astin Bulletin (2023), 53, pp. 311–331
doi:10.1017/asb.2023.7

RESEARCH ARTICLE

Risk allocation through shapley decompositions, with
applications to variable annuities†

Frédéric Godin1,2,∗ , Emmanuel Hamel3, Patrice Gaillardetz1,2 and Edwin Hon-Man Ng4

1Concordia University, Department of Mathematics and Statistics, Montréal, Canada, 2Quantact Laboratory, Centre de
Recherches Mathématiques, Montréal, Canada, 3Université Laval, École d’Actuariat, Québec, Canada and 4Aviva Canada,
Montréal, Canada
∗Corresponding author. E-mail: frederic.godin@concordia.ca

Received: 16 August 2022; Revised: 20 January 2023; Accepted: 4 February 2023; First published online: 13 March 2023

Keywords: Risk allocation; risk attribution; profit and loss analysis; variable annuities; segregated funds; stochastic on
stochastic; Shapley decomposition

Abstract
This paper introduces a flexible risk decomposition method for life insurance contracts embedding several risk
factors. Hedging can be naturally embedded in the framework. Although the method is applied to variable annuities
in this work, it is also applicable in general to other insurance or financial contracts. The approach relies on applying
an allocation principle to components of a Shapley decomposition of the gain and loss. The implementation of the
allocation method requires the use of a stochastic on stochastic algorithm involving nested simulations. Numerical
examples studying the relative impact of equity, interest rate and mortality risk for guaranteed minimal maturity
benefit (GMMB) policies conclude our analysis.

1. Introduction
Insurers issuing various forms of life insurance contracts are exposed to multiple types of risks due to
the uncertainty surrounding the cash flows and associated discount factors. Such risks must be assessed,
managed, valued and reported by insurance companies. The various risks can be regrouped into several
categories, for instance equity risk, interest rate risk, mortality risk and policyholder behaviour risk.
Evaluating the risk exposure for each distinct category can shed some light on the magnitude of the
various risk types faced by insurers. Moreover, risk mitigation strategies associated with the various
categories differ, highlighting the need to disentangle the overall risk and understand the contribution
from each category.

One of the main issues related to the quantification of the insurer’s exposure to the various cate-
gories of risk is that such risks are entangled and most likely interrelated. For instance, cash flows and
liability values depend simultaneously and non-linearly on multiple risk factors whose movements are
not necessarily independent. As highlighted for instance in Ho et al. (2005), it is therefore desirable to
consider a methodology able to decompose the complex overall risk exposure into clear and separated
contributions from each individual risk category.

A very interesting approach tackling this particular problem is presented in Schilling et al. (2020).
It relies on the martingale representation theorem (MRT) associated with martingales living in filtered
probabilities spaces generated by Brownian motions. Although very useful, such method is not universal
as it does not apply to frameworks not admitting the characterization of martingales based on the MRT,
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such as many incomplete market models. Numerous works have considered different risk allocation
models, mainly for the purpose of capital requirements determination. The manuscripts of Dhaene et al.
(2012), Albrecht (2014) and Guo et al. (2018) survey multiple other existing allocation methods. For
instance, Parker (1997) and Christiansen and Helwich (2008) sequentially condition on some of the risk
factors to obtain a risk decomposition. Another recent alternative approach to risk allocation consists
in applying multivariate risk measures, see for instance Mailhot and Mesfioui (2016) or Cossette et al.
(2016).

The first main contribution of the present manuscript consists in proposing a very general method
for the allocation of the overall risk associated with life insurance contracts or other financial contingent
claims to the various sources of risks driving the aggregate exposure. The method applies for very gen-
eral discrete-time dynamics of the key risk drivers involved in the valuation of the contract. Furthermore,
the inclusion of a hedging portfolio is very natural in the proposed allocation scheme. The allocation of
risk is obtained in two steps. First, a Shapley decomposition (See Shapley (2016)) is applied, which leads
to an additive representation of the gain and loss in each given period that is expressed in terms of con-
tributions from each risk category. The Shapley decomposition satisfies multiple favorable properties
detailed in Shapley (2016), such as not depending on a subjective order in which risk factors are taken
into consideration. Furthermore, it takes into consideration the various potential interactions between all
risk drivers. In a second step, the additive representation of the gain and loss is combined with conven-
tional risk allocation schemes applying to sums of loss variables, such as the Euler allocation principle
(see for instance Tasche (2007)) in order to allocate the total risk exposure to the various risk drivers.
The proposed allocation method should prove useful to risk managers of an insurance company or a
financial institution desiring to understand how the various categories of risk impact the overall expo-
sure and determine the extent of resources and effort needed for an efficient mitigation of risk stemming
from such risk classes.

The second important contribution of this work is to test the allocation method through Monte-Carlo
simulations, with variable annuity contracts being chosen for the assessment due to their rich depen-
dence on multiple risk factors. More precisely, a guaranteed minimal maturity benefit (GMMB) contract
is considered, with equity, interest rate and mortality risks being the risk drivers in the proposed exam-
ples. A stochastic on stochastic simulation algorithm required to compute risk allocations is provided.
The algorithm is then used in numerical experiments to illustrate the application of the risk allocation
approach to variable annuities.

The paper is divided as follows. Section 2 develops the proposed methodology for risk decomposition
and allocation. Section 3 details the mathematical setup considered for the financial market dynamics
and variable annuity cash flows. Section 4 provides results from numerical experiments testing the risk
allocation method on variable annuity policies. Section 5 concludes. An Online Appendix providing
additional details about this work is also available. It includes, among others, a list of the symbols used
in this study to facilitate its reading.

2. Risk allocation method
This section describes the mathematical setup underlying the proposed risk allocation approach.

2.1. Contract valuation
Consider a discrete-time market with time steps t = 0, . . . , T representing monthly periods of length
� = 1/12 years. The triplet (�, F , P) is a probability space on which a filtration {Ft}T

t=0 representing
the information flow is defined. The measure P is referred to as the physical measure. The contract’s
sequence of cash inflows to the insurer is denoted by {CFt}T

t=1. Negative inflows are cash outflows. Cash
flows include for instance fees charged to policyholders and benefits paid to them. From no-abritrage
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pricing theory, for some martingale measure Q, the time t value to the insurer of the guarantee contract
right after the time t cash flow is paid

�t =EQ

[
T∑

j=t+1

Dt,jCFj

∣∣∣∣Ft

]
,

where Dt1,t2 = exp
(∑t2−1

j=t1
−rj�

)
is the discount factor with rj being the annualized risk-free short rate

prevailing during the time interval [j, j + 1). Using no-arbitrage pricing principles for insurance contracts
is a common (and sometimes mandatory) practice as they provide market-consistent prices as required
for instance by IFRS 17 accounting standards.1 The time t cash flow CFt and the short rate rt are assumed
to be observable at time t; they are Ft-measurable.

We assume that the short rate and cash flow dynamics are driven by a column vector exogenous state
variables process X = {Xt}T

t=0 referred to as risk factors: rt = r̃(Xt) and CFt = C̃Ft(Xt, Xt−1) for some
mappings r̃ and C̃Ft. Note that for the cash flow, the assumption is that CFt is also impacted by Xt−1 as
some components of the cash flow can be determined one period in advance. A self-financing hedging
portfolio can also be implemented by the insurer to mitigate the risk associated with the policy. Denoting
the time t hedging portfolio value by Vφ

t , one-period hedging gains provided by positions on hedging
assets between t − 1 and t are defined as

Hφ

t = Vφ

t − ert−1�Vφ

t−1, t = 1, . . . , T , (2.1)

where φ denotes the hedging strategy. See Section 3.4 for details about the hedging portfolio. Hedging
gains are assumed to have the representation Hφ

t = H̃φ
t (Xt, Xt−1). The evolution of risk factors X is

assumed to be driven by a d-dimensionalF-adapted process Y = {Yt}T
t=1 acting as shocks on risk factors,

which is subsequently referred to as sources of risk. Elements of Y can also be sub-vectors, that is, they
can each contain subgroups of sources of risk. Risk factors are assumed to evolve according to

Xt = Ut (Xt−1, Yt) , (2.2)

for some update functions Ut, t = 1, . . . , T . Finally, risk factors X are assumed to have the Markov
property with respect to filtration F ; there exists a mapping f such that �t = f (t, Xt). Unlike in the case
of vanilla options where a closed-form formula for f might exist (e.g., the Black-Scholes formula), such
a function does not have an explicit expression in the present framework, which is why nested simulation
is needed later.

2.2. Single-period gain and loss decomposition
To understand the relative impact of each source of risk, a decomposition of the gain and loss (GL)
associated with the contract is considered. The first objective is to interpret causes of the variability of
the gain and loss in a single period, that is, in

GLt+1 ≡ �t+1 + CFt+1 − ert��t︸ ︷︷ ︸
gains on the guarantee

+ Hφ

t+1︸︷︷︸
hedging gains

. (2.3)

Based on assumptions from Section 2.1, GLt+1 can be expressed as a function of Xt+1 and Xt. Therefore,
due to (2.2) we can write GLt+1 = G̃Lt+1 (Yt+1, Xt).

1For example, see CIA (2020) which applies to the Canadian context.

https://doi.org/10.1017/asb.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.7


314 Frédéric Godin et al.

Note that the definition (2.3) of the gain and loss makes it possible to partition the total discounted
gains earned throughout the life of the contract:

GLtot ≡
T∑

t=1

D0,tGLt (2.4)

=
T∑

t=1

(
D0,t�t + D0,tCFt − D0,te

rt−1��t−1

)+
T∑

t=1

D0,t

(
Vφ

t − ert−1�Vφ

t−1

)
=

T∑
t=1

(
D0,t�t + D0,tCFt − D0,t−1�t−1

)+
T∑

t=1

(
D0,tV

φ

t − D0,t−1V
φ

t−1

)
= D0,T �T︸︷︷︸

=0

−�0 +
T∑

t=1

D0,tCFt + D0,TVφ

T − Vφ

0 .

The goal is therefore to propose a suitable decomposition of GLt, t = 1, . . . , T , which is insightful and
allows understanding the impact of each underlying risk in the model.

2.2.1. Shapley decompositions
Shapley decompositions, which were initially studied in Shapley (2016) in a game theory context, allow
decomposing the variation of a function of multiple arguments into a linear combination of contributions
from each of the arguments. Such decompositions are the cornerstone of the methodology proposed in
this work.

Consider any function g with d-dimensional inputs. In what follows, the dummy 1j denotes a column
vector whose elements are all zero with the exception of its jth element which is one. The Hadamard
product (element per element product) is denoted by ◦. Let D be the set of subsets of {1, . . . , d}.
Then, for S ∈D, define 1S ≡∑

j∈S 1j. Furthermore, let Dk
i be the set of subsets of {1, . . . , d} which

have cardinality k and which do not contain i. Moreover for any S ∈D, define yS ≡ 1S ◦ y. The
Shapley decomposition of the variation of function g between points y = [y1, . . . , yd] and the null point
0 is

g(y) − g(0) =
d∑

j=1

d∑
k=1

(
d

k − 1

)−1 1

d − k + 1

∑
S∈Dk−1

j

(
g(yS∪{j}) − g(yS)

)
. (2.5)

For completeness, the proof of (2.5) is provided in the Appendix D of the Online Appendix. This leads
to the representation g(y) − g(0) =∑d

j=1 C(j) where

C(j) ≡
d∑

k=1

(
d

k − 1

)−1 1

d − k + 1

∑
S∈Dk−1

j

(
g(yS∪{j}) − g(yS)

)
, j = 1, . . . , d. (2.6)

Quantity C(j) can be interpreted as the contribution of element j of vector y to the variation
g(y) − g(0). The representation (2.6) considers not only standalone movements from element j of y
but also all possible co-movements of other elements since interaction terms are incorporated within
the decomposition (2.5).

2.2.2. Applying the Shapley decomposition to the gain and loss
The next step consists in simply applying the Shapley decomposition (2.5) to the gain and loss. Define
the passage of time contribution as the gain and loss which would occur in the absence of shocks on risk
factors, that is, if Yt+1 = 0:

�t+1 ≡ G̃Lt+1 (0, Xt) . (2.7)
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Using (2.5)–(2.6), this leads to

GLt+1 = G̃Lt+1 (0, Xt) + G̃Lt+1 (Yt+1, Xt) − G̃Lt+1 (0, Xt)

= �t+1 +
d∑

j=1

C(j)
t+1, t = 0, . . . , T − 1, (2.8)

where the contribution from the source of risk Y{j} for j = 1, . . . , d is

C(j)
t+1 ≡

d∑
k=1

(
d

k − 1

)−1 1

d − k + 1

∑
S∈Dk−1

j

(
G̃Lt+1(YS∪{j}

t+1 , Xt) − G̃Lt+1(YS
t+1, Xt)

)
. (2.9)

Equation (2.8) is the main building block of the risk allocation framework developed in this work. It
provides an additive representation of the gain and loss GLt+1 in terms of contributions from the various
sources of risk.

2.3. Aggregation of gain and loss over time
Section 2.2.2 provides a decomposition of the gain and loss for a single time period. Evaluating risk con-
tributions over a longer time horizon (e.g., the full contract duration) can be done by summing discounted
contributions, which are defined as

�̃t ≡ D0,t�t, C̃(j)
t ≡ D0,tC(j)

t , t = 1, . . . , T , (2.10)

over multiple time periods. Defining time-aggregated contributions as

�̃tot ≡
T∑

t=1

�̃t, C̃(j)
tot ≡

T∑
t=1

C̃(j)
t , (2.11)

leads, by substituting (2.8) into (2.4), to

GLtot = �̃tot +
d∑

j=1

C̃(j)
tot. (2.12)

2.4. Risk measurement and allocation for the gain and loss decomposition
Equations (2.8) and (2.12) provide linear decompositions of a risk of the form Z =∑J

j=1 Z(j). The objec-
tive is to perform risk attribution and allocate the risk associated with Z to its subcomponents Z(j). Let �

denote the risk measure considered to assess risk. This work specializes on � being either the variance
or the conditional value-at-risk (CVaR), which is meant to reflect overall risk and tail risk, respectively.
The CVaR with confidence level α, is defined as

CVaRα(Z) ≡ 1

1 − α

∫ 1

z=α

VaRα(Z)dz, where VaRα(Z) = min
z∈R

{z:P[Z ≤ z] ≥ α}.
It represents the average of outcomes of a risk over the set of all worst-case scenarios. Indeed, when
Z is an absolutely continuous random variable (which is assumed onwards), the CVaR also has the
representation CVaRα(Z) =E [Z|Z > VaRα(Z)], see Rockafellar and Uryasev (2002) and Tasche (2007).

Denote by Aj(Z(1), . . . , Z(J)) the allocation to component Z(j) of risk �(Z). Depending on the choice
of the risk measure, we use the following allocation rules:

Aj(Z
(1), . . . , Z(J)) ≡ Cov

(
Z(j),

J∑
i=1

Z(J)

)
if � = Variance, (2.13)
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Aj(Z
(1), . . . , Z(J)) ≡E

[
Z(j)|Z > VaRα(Z)

]
if � = CVaRα. (2.14)

Note that (2.14) makes it possible to perform an allocation of the expected value when considering the
case α = 0. Furthermore, (2.14) is equivalent to using the Euler allocation principle, see Tasche (1999),
which has been extensively studied in the literature. One interesting characteristic of such principle when
the risk measure is positively homogeneous and subadditive (properties satsified CVaRα) is that the
allocated amounts are smaller or equal to the CVaR for the standalone risks, that is, Aj(Z(1), . . . , Z(J)) ≤
CVaRα(Z(j)), j = 1, . . . , J, see Kalkbrener (2005). Quantity (2.14) is straightforward to estimate if an i.i.d.

sample of risk components
{ (

Z(1)
i , . . . , Z(J)

i

) }n

i=1

is available; E
[
Z(j)|Z > VaRα(Z)

]
can be estimated as

the sample average of Z(j) over all observations for which Z is greater than its sample quantile of level α.
In simulations from the subsequent Section 4, two main types of risk assessment are performed. The

first consists in assessing the risk over the entire duration of the contract by setting Z = −GLtot and
considering contributions −�̃tot and −C̃(j)

tot, j = 1, . . . , J as the sub-components Z(j), which is justified
by (2.12). The negative sign reflects that GLtot represents gains, whereas the risk should be quantified
by measuring losses. Conversely, other tests focus on standalone period t risk by letting Z = −GLt and
considering contributions −�̃t and −C̃(j)

t , j = 1, . . . , J as the sub-components. Tests on the full contract
duration are concerned with long-term (global) risk, whereas the single-period tests mainly reflects
short-term (local) risk, which is connected to solvency issues.

2.5. Discussion of properties of the Shapley-based allocation scheme
The allocation method proposed in this work, which consists in applying either (2.13) or (2.14) to the
linear decomposition of the gain and loss (2.8) (or to (2.12) for risks over the full time horizon), possesses
several desirable properties.

The first two are called additive aggregation and order invariance, based on the terminology of
Schilling et al. (2020), and are described more thoroughly in Appendix E of the Online Appendix.
Additive aggregation means that the total risk is entirely attributed to each source of risk: �(GLt+1) =
A�t+1 (�t+1, C(1)

t+1, . . . , C(d)
t+1) +∑d

j=1 AC(j)
t+1

(�t+1, C(1)
t+1, . . . , C(d)

t+1), with subscripts of A denoting compo-
nents related either to the time decay or to the d elements of Yt+1. Such property is helpful for the
interpretation of the risk allocation. The order invariance property means that allocation results do not
depend on a particular order in which the various sources of risk are considered. Other approaches
encountered in practice do not necessarily satisfy such property and sometimes require to use a particu-
lar order to compute the marginal impact of the various risk drivers. For example, in Canada’s Province
of Quebec, the regulator requires to sequentially add margins for adverse deviations to assumptions on
lapse risk, mortality risk, mortality improvement risk and expenses to calculate capital requirements for
a portfolio of segregated funds (the Canadian version of variable annuities) when an internal model is
used, see for instance p. 250 of AMF (2022). The use of our allocation scheme circumvents the need to
choose such a highly subjective order, which is a favorable property.

Another important feature of the proposed allocation scheme is its incorporation of interactions
between the various sources of risk. Indeed, the contribution of a source of risk j computed through
(2.6) involves all possible co-movements of other sources of risk. This is an improvement over several
risk management schemes which mainly look at marginal movements of risk drivers to perform risk
attribution. For instance, Greek letters used in finance to measure risk (e.g., the Delta, the Gamma and
the Vega) mainly look at marginal movements of single risk drivers. Incorporating interactions between
risk drivers allows forming a more holistic view on overall risk exposure. Furthermore, the Shapley
decomposition-based scheme is an improvement over the allocation by proportion approach detailed in
Feng (2018), which does not consider the dependence structure between the risk factors.

Moreover, the proposed allocation approach can handle very general dynamics of risk factors. Not
having to rely on restrictive dynamics (e.g., complete markets or dynamics admitting the martingale
representation theorem) enhances the approach’s applicability. Furthermore, several complex allocation
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schemes, such as that from Powers (2007) which relies on the computation of Aumann–Shapley values,
might suffer from intractability issues in the context of general loss distributions.

The proposed Shapley-based allocation method has several advantages over the gradient-based meth-
ods, such as that found in Tsanakas and Millossovich (2016). Whereas the latter considers infinitesimal
shocks on risk drivers whose shape and distribution must be subjectively chosen, the present paper’s
method uses actual simulated shocks on sources of risk whose size is consistent with their modeled
dynamics. As an example, certain categories of risk are associated with multiple random variables
which are not necessarily on the same scale, and it is unclear how should these be shocked all at once to
compute gradients (e.g., what form of dependence should be embedded between shocks). Furthermore,
our method does not require special adaptation for discretely distributed risk factors, unlike that of
Tsanakas and Millossovich (2016). Lastly, gradient-based methods often require numerical approxima-
tion schemes for partial derivatives, an issue not shared with the present study’s scheme not relying on
infinitesimal quantities.

Finally, the beauty of the proposed scheme lies in its conceptual simplicity, which allows tackling
the non-trivial allocation to interrelated sources of risk with well-studied and well-known allocation
principles such as the Euler allocation approach. Other approaches could have instead been considered,
such as these from Rabitti and Borgonovo (2020) relying on Sobol indices or conditional distributions
given fixed values for selected shocks. However, calculations involved in these schemes would most
likely be considerably more intensive.

Our method has one drawback that has been pointed out by Powers (2007) and which is due to the
use of Shapley decompositions: if a source of risk is partitioned, the sum of allocations to all sub-
elements of the partition will not be equal to the allocation to the initial source of risk. Such drawback is
nevertheless deemed an acceptable compromise given the various advantages of the proposed method
that are outlined above.

3. Variable annuities cash flows and market setup
This section describes the financial market setup and cash flows associated with variable annuities
contracts considered, which are inspired by Trottier et al. (2018) and Augustyniak et al. (2021).

3.1. Cash flows to the insurer
Consider a single-premium GMMB variable annuity. Such a contract allows a policyholder to deposit a
premium at time t = 0 in an account, which is invested into a mutual fund. It also guarantees a minimal
benefit at the contract maturity if the policyholder survives and does not surrender his policy by then;
the insurer will make up for any potential shortfall between the guaranteed amount and the account value
at maturity. The time t policy account value At evolves according to

At = At−1

Ft

Ft−1

(1 − ω), t = 1, . . . , T ,

where ω is the periodic fee rate charged by the insurer and Ft is the time t value of the underlying fund
in which the account is invested. A0 is the amount of premium paid by the policyholder.

Variable annuity policies are terminated at some point in time when the first of the following three
events occurs: the policyholders dies, the policyholder lapses his policy, that is, he forfeits the benefits
and stops paying fees, or the maturity date of the contract is reached. For simplicity, the case of a large-
sized insurer is considered, which entails that only the systematic part of mortality and lapse decrements
is modeled. In other words, the asymptotic policyholder termination rates when the total number of
policyholders in the portfolio is very large are applied. Such assumption could easily be relaxed in the
proposed model by having each policyholder randomly dying or lapsing based on asymptotic rates.
In such case, mortality risk would be higher, with the extent of the increase depending on the insurer

https://doi.org/10.1017/asb.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.7


318 Frédéric Godin et al.

portfolio size. Indeed, smaller portfolios would often incur mortality rates departing more sharply from
asymptotic rates.

The mortality of the policyholder is assumed to be independent from the decision to lapse the policy
or not.2 Denote by tax the proportion of policyholders still active at time t among a large homogeneous
cohort, assuming that they are all aged x periods at time t = 0 and they all hold the same contract. The
activity proportion is assumed to evolve according to

0ax = 1, tax = t−1ax

(
tpx

t−1px

)
(1 −L(mt−1)) , t = 1, . . . , T ,

where tpx denotes the probability that the policyholder survives at least t periods after time 0 andL(mt−1)
denotes the probability for a policyholder who is active at t − 1 to lapse his policy during the period
[t − 1, t). The latter proportion modeled as a mapping L applied to mt−1, a measure of the moneyness of
the contract guarantee which is defined more precisely subsequently.

Fees are charged at the end of the period for all policyholders active at the beginning of the period:

Feet ≡ t−1ax ωAt−1

Ft

Ft−1

= t−1ax

ω

1 − ω
At, t = 1, . . . , T .

Moreover a time-dependent penalty proportional to the end-of-period account value is charged to a
policyholder lapsing in early years. Such penalties are typically charged by insurers to ensure a sufficient
level of retention in their portfolio. Lapse penalties are characterized by a function P which is typically
decreasing with respect to time in practice. As in Augustyniak et al. (2021), lapse penalties are assumed
to start at 7% of the account value the first year, and then to decrease by 1% every year until it reaches
0% after the seventh year:

P(t) = max (0, 0.07 − 0.01
(t − 1)/12�) , t = 1, . . . , T ,

where 
·� is the integer part function. Assuming a constant force of mortality and lapsation in any period
(see Appendix A for details), the inflow to the insurer related to lapse penalties is

Lapse penaltyt ≡ t−1ax qL
x,t−1AtP(t), t = 1, . . . , T ,

where qL
x,t−1, the proportion of policyholders active at t − 1 who lapse their policy in the next period, is

qL
x,t =

λL
t

λL
t + λM

t

(
1 − exp

(−(λL
t + λM

t )
))

, λL
t ≡ − log (1 −L(mt)) , λM

t ≡ − log

(
t+1px

tpx

)
.

For a GMMB policy, the insurer promises to pay to all policyholders active at maturity T the difference
between the guaranteed amount and the account value if it is positive:

Benefit ≡ Tax max (0, GT − AT),

where GT denotes the guaranteed amount at maturity. The guaranteed amount can either be fixed,
that is, Gt ≡ G0 for all t and some constant G0, or it can evolve stochastically based on a ratchet
provision. The ratchet provision considered in this work, when applied, is similar to that considered in
Augustyniak et al. (2021). In each period at least 10 years prior to the maturity of the contract, it entails
increasing the guaranteed amount, at most once a year, to the account value when the latter surpasses
the guaranteed amount by 15%:

Gt+1 =
⎧⎨⎩At+1, if t < T − 120,

At+1

Gt

≥ 1.15 and ζt+1 < 1,

Gt, otherwise,
(3.1)

where ζt+1 is the number of times in the current year that the guaranteed amount was increased prior to
time t + 1.

2This assumption is used for simplicity and might not be fully accurate in practice. For instance, policyholders with diminished
health and a higher probability of death might be more inclined to lapse a GMMB policy than healthy policyholders. Nevertheless,
modeling such interactions would be a non-trivial endeavor requiring access to private insurer data. It is left out-of-scope.
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The moneyness process m whose value drives lapse rates is defined in terms of the guaranteed value
process G through mt = At

Gt
.

Combining all the previously outlined cash flows, the net inflow to the insurer at time t is given by

CFt ≡ Feet + Lapse penaltyt − 1{t=T}Benefit, t = 1, . . . , T .

3.2. Market setup and state variables
This section outlines the stochastic models driving market dynamics used in the present work. For the
evolution of the term structure, the discrete-time Gaussian three-factor model presented in Augustyniak
et al. (2021) is used, where P-dynamics of the annualized risk-free rate are

rt =
3∑

i=1

x(i)
t , x(i)

t+1 = x(i)
t + κi

(
μi − x(i)

t

)+ σiz
(r)
t+1,i, i = 1, . . . , 3, (3.2)

where (κi, μi, σi), i = 1, 2, 3, are constant model parameters, and z(r) = {(
z(r)

t,1, z(r)
t,2, z(r)

t,3

)}T

t=1
is a multi-

variate standard normal process with correlation Corr
(
z(r)

t,i , z(r)
s,�

)= 1{s=t}�i,� for some correlation matrix
� = [

�i,�

]
i,�=1,2,3

. The advantages of such multi-factor model are twofold. First, reliance of the Gaussian
distribution makes the model very tractable. Second, the model is sufficiently flexible to produce
different shapes of the term structure.

Two equity indices with EGARCH dynamics are considered as building blocks to represent the equity
portion of the underlying fund. The time t value of index j, denoted by S(j)

t , follows

R(S)
t+1,j = log

(
S(j)

t+1

S(j)
t

)
, t = 0, 1, . . . , T − 1, (3.3)

R(S)
t+1,j − rt� = λ(S)

j

√
h(S)

t,j − 1

2
h(S)

t,j +
√

h(S)
t,j z(S)

t+1,j, (3.4)

log h(S)
t,j = ω(S)

j + α(S)
j z(S)

t,j + γ (S)
j

(
|z(S)

t,j | − 2/
√

2π
)

+ β (S)
j log h(S)

t−1,j, (3.5)

where
(
λ

(S)
j , ω(S)

j , α(S)
j , γ (S)

j β
(S)
j

)
, j = 1, 2 are constant parameters, z(S) = {

z(S)
t,1 , z(S)

t,2

}T

t=1
is a bivariate stan-

dard normal process independent from term structure innovations z(r) with correlation Corr
(
z(S)

t,i , z(S)
s,�

)=
1{s=t}ρi,� for some correlation matrix ρ = [

ρj,k

]
j,k=1,2

.
The underlying fund of the variable annuity follows the mixed fund model dynamics from

Augustyniak et al. (2021), which consist in an EGARCH process where the conditional mean is mapped
to equity fund returns and term structure factor variations to reflect the presence of both equity and fixed
income assets within the fund:

R(F)
t+1 ≡ log

(
Ft+1

Ft

)
, t = 0, 1, . . . , T − 1, (3.6)

R(F)
t+1 − rt� = θ0 +

3∑
i=1

θi

(
x(i)

t+1 − (1 − κ̃i)x
(i)
t

)+
2∑

j=1

θ (S)
j R(S)

t+1,j +
√

h(F)
t z(F)

t+1, (3.7)

log h(F)
t = ω(F) + α(F)z(F)

t + γ (F)
(
|z(F)

t | − 2/
√

2π
)

+ β (F) log h(F)
t−1, (3.8)

where (θ0, θ1, θ2, θ3), (θ (S)
1 , θ (S)

2 ) and (ω(F), α(F), γ (F), β (F)) are constant parameters, and z(F) = {z(F)
t }T

t=1 is a
sequence of independent standard normal random variables independent from the term structure and
equity innovations z(r) and z(S). Parameters (θ0, θ1, θ2, θ3) and (θ (S)

1 , θ (S)
2 ) represent the extent to which

underlying fund returns load on term structure factor shocks and equity index returns, respectively. As
indicated in Appendix B, κ̃i = κi − σiλi in (3.7), where λi is the constant risk premium associated with
risk factor x(i), is the risk-neutral (and not the physical) speed of reversion for term structure factor i.
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Table 1. Maximum likelihood estimates of the discrete-time G3 model.

Notes: Estimated parameters of the discrete-time G3 model given by (3.2) and (B.1) obtained with a Kalman filter applied on Canadian
end-of-month yield curve data from January 1986 to October 2018.

The risk-neutral measure Q considered is also drawn from Augustyniak et al. (2021) and is described
in Appendix B.

The mortality dynamics follow an adaptation of the Lee and Carter (1992) model and are assumed
to be identical under the physical and the risk-neutral measures,3 with mortality rates being independent
from term structure, equity and underlying fund innovations. Let Y(x + t) ≡ 
(x + t)/12� be the integer
age in years at time t of the policyholder who had age x months at time 0. The conditional 1-month
survival probability at time t is given by

px+t ≡ t+1px

tpx

≡(1 − min
(
1, exp

(
aY(x+t) + bY(x+t)ut+1 + εt+1

)))�
, (3.9)

where {εt}t∈T is a sequence of i.i.d.Gaussian random variables with standard deviation being a function
of the current age given by4

σε(Y(x + t)) = βε,0 + βε,1Y(x + t) + βε,2Y(x + t)2, (3.10)

ay is the yearly base mortality rate at age y and by is the yearly sensitivity of the mortality rate at age y to
the systemic mortality factor {ut}t∈T , which is an integrated Gaussian auto-regressive process of order
1 with a trend:

ut+1 = c + ut + νt+1, (3.11)

where {νt}t∈T is a sequence of independent and identically distributed Gaussian random variables with
zero mean and variance σ 2

ν
. Processes {ut}T

t=1 and {εt}T
t=1 are independent from each other and both

F-adapted. They, respectively, reflect the stochastic trend of mortality intensity and temporary depar-
tures from such trend. An implication of this model specification is that Lee–Carter model factors a and
b found in (3.9) are constant throughout any given year.

The lapse function, taken from Augustyniak et al. (2021), is a piecewise linear function constructed
such that the lapse rate varies linearly between two boundaries as a function of the policy moneyness.
Denoting the annualized lapse rate by Lann,

L(mt) = 1 − (1 −Lann(mt))
� , Lann(mt) = max

(
γ1, min

(
γ2, γ1 + (γ2 − γ1)

mt − δ1

δ2 − δ1

))
.

3.3. Model estimation
For the term structure, equity indices and underlying fund models, estimated parameters are also taken
from Augustyniak et al. (2021) and are presented here for completeness.

Table 1 presents parameters for the term structure model (3.2).
The two equity indices considered are the S&P/TSX Composite and S&P 500 price indices. Estimated

parameters for the equity indices model (3.4)–(3.5) are provided in Table 2.

3Having the same mortality rates under both the physical and the risk-neutral measures implies that no premium is charged to
hold mortality risk specifically. Inferring premia applied to mortality rates when passing to the risk-neutral measure would require
calibrating implied mortality rates out of market prices of mortality-linked securities, which is out-of-scope.
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Table 2. Maximum likelihood estimates of the equity index model.

Stock index j λ
(S)
j ω

(S)
j α

(S)
j γ

(S)
j β

(S)
j ρ12

S&P/TSX 1 0.08477 −1.0132 −0.01083 0.29438 0.84031 0.76384
S&P 500 2 0.12810 −1.5390 −0.16422 0.28580 0.75939
Notes: Estimated parameters of the equity index model (3.4)–(3.5). Estimates are based on a monthly time series of returns of the S&P/TSX Composite
and S&P 500 price indices from February 1986 to October 2018.

Table 3. Maximum likelihood estimates of the fund model parameters.

RBC bond fund Assumption mixed fund
θ0 0.00258 0.00020
θ1 −6.80690 0.39095
θ2 −1.50116 −0.32789
θ3 −3.86662 −0.99664
θ

(S)
1 0.06202 0.49773

θ
(S)
2 0.04657 0.05913

ω(F) −0.29261 −0.51325
α(F) −0.25294 −0.06924
γ (F) 0.19228 −0.20790
β (F) 0.97454 0.94287

Notes: Parameter estimates for the fund model (3.7)–(3.8). Model estimation was performed using monthly return
data from October 2006 to October 2018 for the RBC Bond GIF Series 1 fund and from February 2002 to October
2018 for the Assumption/CI Harbour Growth & Income Fund Series A fund.

Two different funds acting as variable annuity underlying assets are considered: the RBC Bond GIF
Series 1, which is a bond fund, and the Assumption/CI Harbour Growth & Income Fund Series A fund
which is a mixed equity/bond fund. Table 3 gives parameter estimates for the fund model (3.7)–(3.8).

The Lee–Carter mortality model is calibrated on yearly Canadian mixed male and female mortality
data from the Human Mortality Database for the 1951–2016 period. This dataset reports yearly realized
mortality rates, and yearly rates must be transformed into monthly rates for the present study. Estimated
parameters and details about the determination of monthly parameters for the model based on the yearly
calibration of the Lee–Carter model are given in Appendix C from the Online Appendix.

3.4. Hedging instruments and hedging portfolio dynamics
To mitigate the risk associated with the insurance contract, the insurer can set up a hedging portfolio.
The portfolio is assumed to be self-financing and to have a null initial value: Vφ

0 = 0. On each time t,
positions on three assets or contracts can be traded: a cash asset or futures contracts on the two market
indices considered. Every time a position on a futures is taken in the portfolio, it is closed at the end
of the period; trading frictions are disregarded. A trading strategy is defined as a process φ = {φt}T

t=0

where, for t = 1, . . . , T , the Ft−1-measurable vector φt =
[
φ(0)

t , φ(1)
t , φ(2)

t

]
corresponds to the number of

long positions between time t − 1 and time t on the three traded instruments. The convention φ0 = 0 is
used, which is consistent with a null initial portfolio value. Denote by δ(i)

t the price variation of a unitary
position in instrument i between t − 1 and t. For a self-financing trading strategy φ, the time-t value of
the portfolio is given by the sum of gains earned on all instruments and on all previous time steps:

Vφ

t =
t∑

j=1

2∑
i=0

φ(i)
j δ(i)

j , t = 1, . . . , T ,

4The quadratic relationship between the volatility of mortality innovations ε and age is illustrated in Appendix C from the Online
Appendix.
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which allows computing hedging gains Hφ
t through (2.1). The asset i = 0 is a risk-free asset which is

rolled-over such that on any period [t, t + 1) its value at the beginning and at the end of the period are,
respectively, 1 and ert�. Therefore, δ(0)

t = ert−1� − 1. Furthermore, the two other hedging assets consid-
ered are futures contracts that are rolled-over and always have a null value at their initiation. Therefore,
the entire portfolio value is always fully invested in the risk-free asset, yielding φ

(0)
j = Vφ

t−1. This implies
only hedging gains on the futures need to be taken into account to compute hedging gains:

Hφ

t = Vφ

t − ert−1�Vφ

t−1 = Vφ

t−1 +
2∑

i=1

φ(i)
t δ(i)

t + φ(0)
t δ(0)

t︸ ︷︷ ︸
=Vφ

t−1(ert−1�−1)

−ert−1�Vφ

t−1 =
2∑

i=1

φ(i)
t δ(i)

t .

As shown in Björk (2009), in absence of dividends,5 the time t price of a futures on index S(j) maturing
at t + n is Futt,t+n =EQ[S(j)

t+n|Ft]. Appendix F from the Online Appendix shows that

Fut(j)
t,t+n = S(j)

t P̃t,t+n, where

P̃t,T ≡ exp

{
�

3∑
i=1

m(i)
T−t,t +

�2

2

3∑
i=1

3∑
�=1

v(i,�)
T−t

}
,

m(i)
n,t ≡

(
x(i)

t − μ̃i

) [1 − (1 − κ̃i)n

κ̃i

]
+ μ̃in,

v(i,�)
n = σiσ�

κ̃iκ̃�

�i,�

[
n − 1−(1−κ̃i)n

κ̃i

− 1−(1−κ̃�)n

κ̃�

+ 1 − (1 − κ̃i)n(1 − κ̃�)n

1 − (1 − κ̃i)(1 − κ̃�)

]
. (3.12)

The gain and loss obtained by holding the futures on index S(j) between times t and t + 1 and the delta
of the futures with respect to the index S(j) are, respectively,

δ
(fut,j,n)
t+1 = Fut(j)

t+1,t+n − Fut(j)
t,t+n, �(fut,S,j,n)

t ≡ ∂

∂S(j)
t

Fut(j)
t,t+n = P̃t,t+n. (3.13)

The hedging approach proposed in the present work requires calculating the sensitivity (i.e., the Greek)
of the variable annuity guarantee with respect to the account value. Thus, define

�(guar,A)
t ≡ ∂f

∂At

(t, Xt). (3.14)

Due to the absence of closed-form solutions for the pricing function f , such Greek is estimated through a
forward finite difference approach based on a Monte-Carlo simulation. The approximation considered is

∂f

∂At

≈ f̂ (t, Xt + ε1A) − f̂ (t, Xt)

ε
, (3.15)

where ε > 0 is a small constant, 1A is the dummy vector having the value 1 only at the element
corresponding to the component At from Xt and f̂ (t, Xt) is the time t value of the guarantee estimated
by simulation when the current state variables are Xt. Note that the same pseudo-random numbers shall
be used to calculate both f̂ (t, Xt + ε1A) and f̂ (t, Xt) to reduce the variance of the estimate. Furthermore,
to use equity futures for hedging, the Greek with respect to the account value needs to be transformed
into Greeks with respect to equity indices underlying the futures contracts. This can be accomplished
by using the chain rule, see Appendix G from the Online Appendix for details:

�(guar,S,j)
t ≡ ∂�t

∂S(j)
t

= ∂�t

∂At

∂At

∂Ft

∂Ft

∂S(j)
t

= �(guar,A)
t

Atθ
(S)
j

S(j)
t

. (3.16)

Whenever equity risk hedging is implemented, a delta hedging approach is used. If risk associated
with the equity index j is hedged, a position on a single equity index j futures of time-to-maturity n(S,j)

is included in the hedging portfolio. Denote by φ
(S,j)
t+1 the position on such futures between time t − 1

5Dividends are not considered in this study.
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and time t. The delta of the overall portfolio (i.e., including the guarantee and the hedging portfolio) is
neutralized through φ

(S,j)
t+1 �(fut,S,j,n)

t + �(guar,S,j)
t = 0. Based on (3.13) and (3.16), this yields

φ
(S,j)
t+1 = −�(guar,A)

t Atθ
(S)
j

S(j)
t P̃t,t+n(S,j)

. (3.17)

4. Simulation experiments
This section presents Monte-Carlo simulation experiments involving the Shapley-based risk decompo-
sition method to assess the importance of the various risks faced by an insurer issuing variable annuities
and their interplay with different features such as the presence of hedging, the inclusion of ratchet
provisions or the type of mutual fund underlying the policy.

4.1. Stochastic on stochastic simulation scheme
The application of the risk allocation methodology in a Monte-Carlo simulation setting requires the use
of nested simulations, an approach referred to as a stochastic on stochastic simulation. Indeed, as a first
step, multiple paths of risk factor values are simulated under the physical measure P. Such paths are
referred to as outer loops. Moreover, as indicated by (2.9), on each time step of each outer loop, the
guarantee must be revaluated several times, which is done through the generation of multiple paths of
risk factors under the risk-neutral measure Q referred to as inner loops. Nested simulation procedures
are very demanding numerically. Nevertheless, calculations can easily be parallelized, which can speed
computations up substantially.6 The proposed simulation algorithm is presented in the Algorithm 1
textbox, where M(out) denotes the number of outer loops in the simulation.

4.2. Parameters and simulation specifications
Simulations presented subsequently depend on multiple parameters which are now provided.

4.2.1. Simulation parameters and starting values
The number of outer and inner loops applied are, respectively, M(out) = 1000 and M(in) = 1000. For risk
factor dynamics and cash flow specifications, all models and parameter estimates provided in Section 3
and Appendix C are considered. As in Augustyniak et al. (2021), fees are set to ω = 0.0286 for the
Assumption fund and ω = 0.0206 for the RBC fund.

Starting values for risk factors are also selected in accordance with Augustyniak et al. (2021) (see
their Table 4 Scenario I) which correspond to filtered and estimated values on October 31, 2018. Initial
term structure factor values are x(1)

0 = −0.0690, x(2)
0 = −0.0062 and x(3)

0 = 0.0940. Initial equity index
volatilities are characterized by

√
12h(S)

0,1 = 0.1412 for the S&P/TSX index and
√

12h(S)
0,2 = 0.1785 for the

S&P 500. For the underlying fund, the initial annualized volatility is
√

12h(F)
0 = 0.0090 for the RBC

fund, or
√

12h(F)
0 = 0.0416 for the Assumption fund. For the purpose of simulation, all funds value and

the account value are initiated to one that is, A0 = F0 = S(1)
0 = S(2)

0 = 1. The guaranteed amount of the
policy is assumed to be G0 = A0, that is, the policy is at-the-money at the onset. The initial mortality
trend is set to u0 = −64.73868, which corresponds to the estimated value on year 2016 of the trend u on
based on the fit to the mortality dataset mentioned in Section 3.3. Lapse parameters are set to γ1 = 0.02,
γ2 = 0.10, δ1 = 0.4434 and δ2 = 1.7420, which is aimed at replicating assumptions from p.149 of AMF
(2022).

6For instance, the Rcpp package for the R software is used to integrate C++ code into our implementation, with parallel
calculations being performed with the R package doParallel.
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Algorithm 1 Stochastic on stochastic simulation scheme for the risk decomposition
1: estimate the initial guarantee value f̂ (0, X0) through a Monte-Carlo simulation
2: for each m ∈ {1, ..., M(out)} do
3: simulate a path of innovations Y, denoted {mYt}T

t=1, under the physical measure P
4: obtain the corresponding path of risk factors X, denoted {mXt}T

t=0, through (2.2)
5: for each t ∈ {0, ..., T − 1} do
6: calculate the current risk-free rate r̃(mXt)
7: calculate hedging instrument sensitivities to risk factors m�(fut,S,·)

t as defined in (3.13)
8: based on the forward difference approximation (3.15), using two risk-neutral Monte-Carlo

simulations, estimate the sensitivities of the guarantee value with respect to risk factors
�(guar,S,·)

t as specified by (3.14) and (3.16)
9: calculate time t hedging portfolio positions φt+1 = [

φ
(0)
t+1, φ

(1)
t+1, φ

(2)
t+1

]
based on (3.17)

10: estimate the next period guarantee value in absence of shocks f̂ (t + 1, Ut+1 (mXt, 0)) through a
risk-neutral Monte-Carlo simulation

11: calculate the cash flow and hedging portfolio value in absence of shocks, respectively
C̃Ft+1(Ut+1 (mXt, 0) , mXt) and H̃φ

t+1 (Ut+1 (mXt, 0) , mXt), to get the contribution of time m�t+1

defined in (2.7)
12: for each S ∈D \ ∅ do
13: estimate the next-period shocked guarantee value f̂

(
t + 1, Ut+1

(
mXt, mYS

t+1

))
through a

Monte-Carlo simulation
14: calculate the next period shocked cash flow C̃Ft+1

(Ut+1

(
mXt, mYS

t+1

)
, mXt

)
15: calculate shocked hedging gains H̃φ

t+1

(Ut+1

(
mXt, mYS

t+1

)
, mXt

)
16: end for
17: for j = 1, . . . , d do
18: calculate the contribution mC(j)

t+1 for source of risk j through equations (2.3) and (2.9)
19: end for
20: end for
21: end for

Whenever equity risk hedging is applied, the maturity of equity futures that are rolled-over is
n(S,j) = 3, that is, three monthly periods, for j = 1, 2. To estimate Greeks of the guarantee with respect to
the underlying account value At, finite difference forward steps of ε = 0.01At are considered.

As in Augustyniak et al. (2021), some modifications to the model are applied based on judgmental
considerations. A floor of −0.75% is applied on simulated values of the risk-free rate rt; highly negative
short rate values are deemed undesirable. This entails using rt = max ( − 0.0075,

∑p
i=1 x(i)

t ) in simula-
tions. Nevertheless, in order to ease the computational burden, the impact of the floor is not considered
when computing the price of derivatives in hedging portfolios. Another modification consists of floor-
ing the conditional variance of the mutual fund h(F)

t ; the minimal value is set to 2.0833 × 10−6 which
corresponds to an annualized volatility of 0.5%.

The various sources of risk considered are regrouped into term structure innovations (z(r)
t,i , i = 1, 2, 3),

equity innovations (z(S)
t,j , j = 1, 2 and z(F)

t ), and mortality (εt, νt) innovations:

Yt =
[(

z(r)
t,1, z(r)

t,2, z(r)
t,3

)
,
(
z(S)

t,1 , z(S)
t,2 , z(F)

t

)
, (εt, νt)

]
, t = 1, . . . , T . (4.1)

Risk factors characterizing the guarantee value are Xt =
[
x(1)

t , x(2)
t , x(3)

t , h(S)
t,1 , h(S)

t,2 , h(F)
t , ut, At, Gt

]
, which

include term structure factors, equity volatilities, the mortality factor, the underlying account value and
the current guaranteed amount.
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Table 4. Total risk allocation for GMMB policies in the absence of hedging.

RBC bond fund Assumption mixed fund
Maturity 10 years 20 years 20 years 10 years 20 years 20 years
With ratchet? No No Yes No No Yes
Total expected loss decomposition
Expected loss; E (−GLtot) 0.029 0.029 0.030 −0.055 − 0.046 −0.078
Equity AEQtot

0.087 −2.008 −1.052 1.375 − 2.904 1.328
Interest rate AIRtot −1.491 −5.457 −2.454 −0.057 − 4.356 −2.791
Mortality AMOtot −0.107 −2.342 −1.464 −0.367 − 5.113 −3.372
Time A�̃tot

1.540 9.836 4.999 −1.006 12.328 4.757

Total variance decomposition
Total risk; Var (−GLtot) 0.0027 0.0013 0.0022 0.0095 0.0062 0.010
Equity AEQtot

0.0611 0.0569 0.1194 0.5755 0.6316 1.217
Interest rate AIRtot 0.0548 0.0944 0.1152 0.1508 0.1889 0.476
Mortality AMOtot 0.0176 0.0188 0.0730 0.0878 0.1347 0.340
Time A�̃tot

−0.1307 −0.1688 −0.3054 −0.8047 −0.9490 −2.023

Total CVaR95% decomposition
Total risk; CVaR95% (−GLtot) 0.16 0.11 0.16 0.23 0.19 0.20
Equity AEQtot

3.87 3.66 7.97 17.78 25.45 34.73
Interest rate AIRtot −0.74 −2.83 2.15 4.34 8.40 13.14
Mortality AMOtot 0.75 −0.03 5.21 1.97 3.34 7.00
Time A�̃tot

−3.73 −0.69 −15.18 −23.86 −37.00 −54.66

Notes: Risk allocations A to time decay (−�̃tot), interest rate risk (−C̃(IR)
tot ), equity risk (−C̃(EQ)

tot ) and mortality risk (−C̃(MO)
tot ) applied on GMMB policies on

the RBC bond fund or the Assumption mixed fund mentioned in Section 3.3. Three risk measures are considered for the allocation: the expected value, the
variance and the CVaR95%; allocation principles for such measures are presented in Section 2.4. Two policy maturities are considered: 10 years and 20 years.
For 20-year policies, results with and without the inclusion of ratchets in accordance with the specification (3.1) are presented.

4.3. Simulation results
The results of numerical experiments are presented in this section. The risk decomposition methodology
is applied on simulated paths for several GMMB policies, and the allocations to the various risk classes
based on either the variance or CVaR risk measures are extracted. The various simulations presented aim
mainly to test the impact on the allocation of the choice of the risk measure, the nature of the underlying
fund, the use of hedging, the inclusion of ratchet provisions to the policy and the policy maturity.

4.3.1. Risk in absence of hedging
The first set of simulations considers GMMB policies issued on either the RBC bond fund or the
Assumption mixed fund in absence of hedging, that is, with null hedging positions φt ≡ 0, t = 1, . . . , T .
Two maturities are considered, respectively, 10 years (T = 120) or 20 years (T = 240). Two versions of
the 20-year policies are tested: one without ratchets and one with ratchets applied to the first 10 years in
accordance with (3.1). Two risk measures are used for the decomposition approach: the variance and the
CVaR95% which represent overall and tail risk, respectively. For the total-period risk allocation, A�̃tot

,
AIRtot , AEQtot

and AMOtot denote allocations corresponding to respective additive inverses of contribu-
tions, namely −�̃tot, −C̃(IR)

tot , −C̃(EQ)
tot and −C̃(MO)

tot , with interest rate (IR), equity (EQ) and mortality (MO)
risk groups corresponding to elements 1, 2 and 3 of the innovations vector (4.1). Such allocations are
reported in Table 4.

For the Assumption mixed fund, it is clear that equity risk plays the most predominant role in terms of
contribution to both the variance and tail risk. Interest rates and mortality are, respectively, second and
third in term of contribution size. These observations hold true for both 10-year and 20-year maturities,
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Figure 1. For all time points t = 1, . . . , T , discounted contribution sample average (left panel) and
sample standard deviation (right panel) across all simulated paths in the simulation for the Assumption
mixed fund 20-year GMMB without ratchet. Discounted contributions are that of the time decay �̃t, of
equity risk C̃(EQ)

t , of interest rate risk C̃(IR)
t , and of mortality risk C̃(MO)

t .

regardless of whether ratchet provisions are included to the policy. For the RBC bond fund, equity
risk and interest rate risk surprisingly seem to have contributions to the variance of similar magnitude.
Furthermore, tail risk is mainly driven by equity risk, with interest rate risk providing an offsetting
effect reducing the CVaR. This implies that credit spread variations, which are negatively correlated
with market returns, might be a more important driver of risk than interest rates for some bond funds.
The equity risk contribution is therefore credit risk in disguise. Note that the contribution of the passage
of time � always has an offsetting effect for risk. The reason underlying such phenomenon is that the
passage of time reduces the likelihood of observing extreme values for payoff, unlike shocks on the
equity, interest rate and mortality risk factors which may accentuate such probabilities.

It is also relevant to look at risk allocations period by period instead of considering the entire time
horizon as a whole. For the simulation of the Assumption mixed fund 20-year GMMB without ratchet,
Figure 1 provides the sample average (left panel) and sample standard deviation (right panel) across all
simulated paths for all discounted group contributions �̃t and C̃(j)

t on all steps t = 1, . . . , T . Interestingly,
sources of risk have a changing impact throughout the life of the contract. In early years, where multiple
periods for the collection of fees remain, equity, interest rate and mortality risks have an upward effect
on the gain and loss (see their positive average contribution) since they provide potential for appreciation
of collected fees. Conversely, when nearing the contract maturity, very few fees are left to be collected
and sources of risk mainly provide potential for benefits appreciation, which contributes to losses as
evidenced by their negative average contribution. The time decay contribution �̃t has an offsetting effect;
for instance if sources of risk can generate increases in fees or benefits, the time decay conversely reduces
the likelihood of such appreciations. Such changing signs for expected values of contributions over time
highlight that care must applied when interpreting sums of discounted contributions across all time
steps; it might make sense to instead consider their sum over some phases of the product life, each of
which corresponds to an average direction for contribution of sources of risk.

4.3.2. Impact of hedging on risk
The simulation-based risk allocation procedure from the previous section is repeated for the Assumption
mixed fund, but this time including a hedging portfolio which delta-hedges exposure to the two equity
indices based on the methodology outlined in Section 3.4. Recall that equity risk is the most important
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Table 5. Total risk allocation for GMMB policies with versus without hedging.

Assumption mixed fund Assumption mixed fund
Without hedging With hedging

Maturity 10 years 20 years 20 years 10 years 20 years 20 years
With ratchet? No No Yes No No Yes
Total expected loss decomposition
Expected loss; E (−GLtot) −0.055 − 0.046 −0.078 0.016 0.047 0.040
Equity AEQtot

1.375 − 2.904 1.328 −1.727 − 7.619 −3.172
Interest rate AIRtot −0.057 − 4.356 −2.791 −0.058 − 4.355 −2.790
Mortality AMOtot −0.367 − 5.113 −3.372 −0.368 − 5.114 −3.373
Time A�̃tot

−1.006 12.328 4.757 2.169 17.134 9.375

Total variance decomposition
Total risk; Var (−GLtot) 0.0095 0.0062 0.010 0.0063 0.0058 0.0088
Equity AEQtot

0.5755 0.6316 1.217 0.1733 0.2303 0.6872
Interest rate AIRtot 0.1508 0.1889 0.476 0.1335 0.1722 0.4348
Mortality AMOtot 0.0878 0.1347 0.340 0.0532 0.0606 0.2468
Time A�̃tot

−0.8047 −0.9490 −2.023 −0.3536 −0.4573 −1.3599

Total CVaR95% decomposition
Total risk; CVaR95% (−GLtot) 0.23 0.19 0.20 0.22 0.26 0.30
Equity AEQtot

17.78 25.45 34.73 4.60 0.46 17.42
Interest rate AIRtot 4.34 8.40 13.14 4.45 4.89 12.88
Mortality AMOtot 1.97 3.34 7.00 1.44 − 1.00 5.82
Time A�̃tot

−23.86 −37.00 −54.66 −10.27 − 4.09 −35.83

Notes: Risk allocationsA to time decay (−�̃tot), interest rate risk (−C̃(IR)
tot ), equity risk (−C̃(EQ)

tot ) and mortality risk (−C̃(MO)
tot ) applied on GMMB policies on the

Assumption mixed fund mentioned in Section 3.3, either in absence of (left panel) or in the presence of (right panel) a hedging portfolio. Three risk measures
are considered for the allocation: the expected value, the variance and the CVaR95%; allocation principles for such measures are presented in Section 2.4.
Two policy maturities are considered: 10 years and 20 years. For 20-year policies, results with and without the inclusion of ratchets in accordance with the
specification (3.1) are presented.

contributor to total risk in the experiment in the absence of hedging, which justifies spending efforts on
mitigating such risk. Results are provided in Table 5. The left panel of the latter table is a repetition from
Table 4 displaying the results without hedging, which can be compared to these with hedging shown in
the right panel.

The application of dynamic hedging reduces the risk in terms of total variance for all three products,
that is, the 10-year, 20-year and 20-year with ratchets GMMBs, by 33.7%, 6.5% and 12%, respectively
(see the total risk line for the total variance decomposition). Despite providing non-negligible reduction
in risk, the hedge is unable to mitigate a large portion of the variance. This can be explained by the
presence of basis risk in the mixed fund model, which cannot be hedged away with equity futures. Indeed,
as shown in Trottier et al. (2018), even a small amount of basis risk can lead to major deterioration in
hedging performance. Unreported tests performed by the authors showed that reducing the magnitude of
basis risk significantly improves hedging performance. Furthermore, the tail risk measured by the CVaR
is amplified for the two 20-year products when applying hedging. This is explained among other reasons
by the fact that hedging significantly reduces the profitability of the contract for the insurer; for example,
the expected profits go from 0.078$ to −0.040$ per unit of account value when the hedging portfolio is
added. This results from systematic short positions on the underlying equity futures entailing shorting
the equity risk premium over long periods of time and thus incurring very large hedging costs. Since
the CVaR is translation invariant, the reduction in profitability reduces the buffer to offset fluctuations
due to equity risk, which can create higher overall risk. When looking at the magnitude of the equity
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risk allocation AEQtot in the presence of the hedging portfolio, it is still higher than that of interest rate
and mortality, but to a much smaller extent in relative terms than in the no-hedging case.

To further improve hedging performance, using equity options on the two indices instead of only
futures could help hedging the Gamma of the contract and hence protect against large equity movements.
However, this would not help mitigating basis risk which is a major driver of the equity risk. Interest
rate derivatives such as swaps could also be used, but since interest rate risk is less material than equity
risk (even for the RBC bond fund as explained above), we expect that this would produce only minor
improvements in hedging performance.

5. Conclusion
This paper proposes a method to perform the allocation of risk associated with an insurance policy or
a financial contract providing exposure to various sources of risk. The approach first applies a Shapley
decomposition to represent the gain and loss in any period as a sum of contributions from the various
sources of risk. Then, a risk allocation rule (e.g., the Euler allocation principle) is applied on contribu-
tions to allocate the whole risk as quantified by a risk measure to each of the underlying sources. The
method is very flexible and can be applied for general discrete-time dynamics of risk factors. Hedging
is naturally included in the framework. A stochastic on stochastic algorithm for the implementation of
the allocation method is provided. Simulation experiments are conducted over GMMB variable annuity
policies on either fixed income or mixed underlying funds to analyze the relative impact of equity, inter-
est rate and mortality risk on such contracts. Equity risk is shown to be the most material risk drivers
in the simulations, even when the underlying fund considered is a bond fund. This can be explained by
movements of credit spreads in bonds which are correlated with equity market fluctuations. The ability
of dynamic hedging to reduce risk over the entire horizon of the contract is limited by the presence
of substantial basis risk. Since dynamic hedging for variable annuities leads to significant reduction in
profitability due to hedging positions being systematically short over the equity risk premium, partial
hedging might be a preferable alternative to full delta hedging in practice, especially if basis risk cannot
fully be diversified away across an entire portfolio of variable annuity contracts as illustrated in Li et al.
(2020).

Results from the present paper could be extended in various ways. Other types of variable annuity
guarantees or insurance contracts could be considered. Variance reduction methods could be imple-
mented in either inner or outer loops of the stochastic on stochastic algorithm to increase the precision of
Monte-Carlo simulations. Furthermore, to speed up computations, online re-valuation of the guarantee
through inner loops could be avoided by pre-training a neural network on various contract specifica-
tions and using it for generalization. Finally, dynamics of risk factors could be refined, for instance by
applying idiosyncratic components to mortality and lapse risk that cannot be diversified due to limited
portfolio size.

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.7.
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A. Probability of lapsing before dying within a period
Define forces of lapsing and mortality through

λL
t ≡ − log (1 −L(mt, At)) , λM

t ≡ − log

(
t+1px

tpx

)
.

Under the constant force of lapsing and mortality assumption, the probability, given being active at t, to

lapse in [t, t + 1) without dying before lapsing is

qL
x,t ≡

∫ 1

0

λL
t exp

(−u(λL
t + λM

t )
)

du = λL
t

λL
t + λM

t

(
1 − exp

(−(λL
t + λM

t )
))

.

B. Risk–neutral dynamics of financial variables
This appendix provides the risk–neutral dynamics considered for risk factors whose physical dynamics is
described in Section 3.2. The tilde used on parameters below is used to represent risk–neutral parameters
and innovations. Under the risk–neutral measure Q, the term structure factors retain their autoregressive
structure: for i = 1, 2, 3

x(i)
t+1 = x(i)

t + κ̃i

(
μ̃i − x(i)

t

)+ σiz̃
(r)
t+1,i, κ̃i ≡ κi − σiλi, μ̃i ≡ κiμi

κi − σiλi

, (B.1)
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where risk premia λi, i = 1, 2, 3 are constants. The risk–neutral equity indices dynamics are

R(S)
t+1,j − rt� = −1

2
h(S)

t,j +
√

h(S)
t,j z̃(S)

t+1,j, (B.2)

log h(S)
t,j = ω(S)

j + α(S)
j (z̃(S)

t,j − λ(S)
j ) + γ (S)

j

(
|z̃(S)

t,j − λ(S)
j | − 2/

√
2π
)

+ β (S)
j log h(S)

t−1,j,

for constant equity risk premia λ
(S)
j , j = 1, 2. Underlying fund risk–neutral dynamics are

R(F)
t+1 − rt� = −1

2

(
σ (F)

t

)2 + σ (F)
t ε̃

(F)
t+1,

log h(F)
t+1 = ω(F) + α(F)(z̃(F)

t+1 − λ(F)
t ) + γ (F)

(
|z̃(F)

t+1 − λ(F)
t | − 2/

√
2π
)

+ β (F) log h(F)
t ,

(
σ

(F)
t+1

)2 =
3∑

i=1

3∑
i′=1

θiθi′σiσi′�i,i′ +
2∑

j=1

(
θ (S)

j

)2
h(S)

t+1,j + 2
2−1∑
j=1

2∑
k=j+1

θ (S)
j θ

(S)
k ρjk

√
h(S)

t+1,jh
(S)
t+1,k + h(F)

t+1,

where

ε̃
(F)
t+1 =

∑3
i=1 θiσiz̃

(r)
t+1,i +

∑2
j=1 θ

(S)
j

√
h(S)

t,j z̃(S)
t+1,j +

√
h(F)

t z̃(F)
t+1

σ
(F)
t

,

φt = θ0 +
3∑

i=1

θiκ̃iμ̃i +
2∑

j=1

θ (S)
j

(
rt� − 1

2
h(S)

t,j

)
,

λ(F)
t = 1√

h(F)
t

[
φt + 1

2

(
σ (F)

t

)2
]

.

The risk-neutral term structure, equity and underlying fund innovations processes, respectively{ (
z̃(r)

t,1, z̃(r)
t,2, z̃(r)

t,3

) }T

t=1
,
{ (

z̃(S)
t,1 , z̃(S)

t,2

) }T

t=1
and {z̃(F)

t }T
t=1, are again independent underQ. Moreover, underQ, term

structure time t innovations zt =
[
z̃(r)

t,1, z̃(r)
t,2, z̃(r)

t,3

]
and equity time t innovations z̃(S)

t = [
z̃(S)

t,1 , z̃(S)
t,2

]
are still mul-

tivariate standard normal with respective correlation matrix � and ρ. Furthermore, time-independence
is still preserved: z̃(r)

t1,· is still independent from z̃(r)
t2,· when t1 �= t2, and z̃(S)

t1,· is still independent from z̃(S)
t2,·.

C. Calibrated parameters for a monthly Lee–Carter model
In the yearly Lee–Carter model, realized yearly survival rates are given by

pyr
x+t = 1 − min

(
1, exp

(
ax+t + bx+tu

yr
t+1 + ε

yr
t+1

))
, (C.1)

where t and x are denominated in years, and uyr
t+1 = cyr + uyr

t + ν
yr
t+1 with εyr and νyr being two indepen-

dent i.i.d. Gaussian processes, the latter having a constant variance σ 2
νyr . The process εyr has a standard

deviation which we assume to be characterized by the quadratic function of age σεyr given by (3.10). The
calibration on yearly data directly provides sequences {at} and {bt} which are also used in the monthly
model. Furthermore, other parameters from the monthly model can be obtained from calibrated yearly
model parameters through

σ 2
ε

= 12σ 2
εyr , c = cyr

12
, σ 2

ν
= 1

12
σ 2

νyr .

The calibration methodology to obtain estimates of the functions a and b and of the realized process
uyr is the standard one proposed in Lee and Carter (1992), which is implemented with the lca function
of the R software. Parameter estimates ĉyr and σ̂ 2

νyr are then set as the sample estimates of the mean
and standard deviation of the first difference of the realized process uyr estimate. Resulting parameter
estimates are ĉyr = −1.8325 and σ̂ 2

νyr = 2.1957. The parameters of the quadratic function for the inno-
vations standard deviations σεyr are estimated based on ordinary least squares (OLS). For all fixed ages,
the sample standard deviation (across all years in the data) of residuals ε̂yr from the Lee–Carter model
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Figure 2. Yearly Lee–Carter model residuals standard deviation as a function of age.

is computed through quadratic regression on the sample standard deviation versus the age (in years)
presented in Figure 2, which yields

β̂ε,j =
√

12β̂ann
ε,j , j = 0, 1, 2, β̂ann

ε,0 = 0.1856 β̂ann
ε,1 = −4.050 × 10−3, β̂ann

ε,2 = 2.769 × 10−5.
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