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Abstract. A component U of the complement of the Julia set of an entire function
/ is a wandering domain if the sets /"(U) are mutually disjoint, where neN and
/ " i s the n-th iterate of/ Examples are given of entire / of order p, 0 < p < oo, which
have multiply-connected wandering domains. An example is given where the
connectivity is infinite.

1. Introduction
Iff is a rational function of degree at least two or, alternatively, a non-linear entire
function, denote by/", n e^J, the nth iterate of/; further, by N(f) the set

N(f) = (z; (/") is normal in some neighbourhood of z},

and by / ( / ) , often called the Julia set of/ the complement of N(f). The set / ( / )
is non-empty and perfect. J(f) is also completely invariant, meaning that J(f) is
mapped to itself both by z^f(z) and by z-»/"'(*)• For proofs of these properties
see e.g. [5], [6].

If U is a component of N(f) then /(U) lies in some component V of N(f) and
/(U) = V, except in the case when / i s transcendental entire with a Picard-exceptional
(omitted) value c such that ce V, when/(( / )= V-{c}. Suppose that f+k(U)n
f"(U)?i0 for some non-negative integers n and k. Then f"(U) is a periodic
component and the limiting behaviour of the sequence of iterates in this component
can be classified completely. In the converse case, when all f(U) are different
components of N(f), U is called a wandering domain of/ Rational functions have
no wandering domains [7], but entire functions may do so [2], [3], [4], [7].

It was shown in [3, theorem 5.2] that for any p such that 1 < p < oo, there exists
an entire function of order p which has wandering domains. The domains constructed
in this proof are simply-connected. However, it is known [2] that multiply-connected
wandering domains can occur. Indeed one has the stronger result, proved in § 2:

THEOREM 1. For any p such that 0 < p < oo there is an entire function of order p, which
has multiply-connected wandering domains.
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The proof of theorem 1 involves the construction of an entire function g and
concentric rings An, n € N, such that An+i lies outside An, g(An) <= An+l and An -» oo
as n -> oo. Further, each An lies in a wandering component (/„ of N(g). Although
each Un is clearly multiply-connected, the exact value of the connectivity does not
seem to be clear. However, by modifying the construction one can obtain some
cases where the connectivity of the wandering domain is known.

THEOREM 2. There exists an entire function which has wandering domains of infinite
connectivity.

2. Proof of theorem 1
Let kn, n e N, denote any sequence of positive integers and C a constant, such that

0 < C < — 5 . (1)
4e2 v ;

Suppose further that n0 is a positive integer and r, a number such that

r , > l , 2"»-'C>2rf'. (2)

Denote by rn, neN, numbers such that

rn + )>2rn, l < n < n 0 , (3)

and

for « > «0. By induction it follows from (1) to (4) that

rn+l>2rn, n>n0. (5)

For we may take any n > n0 and assume in the induction that rn > 2rB_, > 22rn_2,...,
so that (4) gives

Define the entire function g by

where the product converges uniformly in any compact region of the plane, since
rj>rx • 2J~\ Now

rn+i<g('iFi)<«1
li+i, n>n0, (6)

since

= n
. J - lNote that for all |z|< 1 we have by (1), since rJ>2i ', that

1 2 i (7)
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LEMMA 1. For n> n0 we have:

g(rlj2)<rl
n
/2

i; (8)

ig(r2
n)>r2

n+I. (9)

Proof of the lemma. Since g(r) is max |g(z)| for \z\ = r, it follows that V(s) = log g{es)
is convex and for s > 0 we have

Hence V(2s)>2V(s)-V(0), which gives, using (7),

Putting r = rn and noting (6) gives (9); putting r = rlj2 gives (8). •

We remark that there is an integer n, such that /•„+, > rA
n for n > nt. Set

An={z;r2
n<\z\<rxJ^}, n > n , .

LEMMA 2. There is an integer n2> nt such that for z in An

\g(z)\>kg(\z\). (10)

Further g(An)<= An+X, n> n2.

Proof of the lemma. For zeAn, putting \z\ = r,

g(r) ^ / l + (r/rj)\ / l + fo/rft
|g(z)| -jil

n \l-(r/rj)) " / i , \ 1 -(rj/r))"

For n > n2 both x = (r/rj)<r/rn+1< rnl
/2,j > n, and y = rj/r<rn\j<n, are so small

that log {(1 +*) / ( ! -x )} < 3x and log {(1 +y)/(l -y)} <3y. Thus for n > n2 we have

l o g ^ ^ 3 I -+3 I (
lf(z)l j>nO ^ n r \rn+1 r

if n2 is large enough. This proves (10).
For z in An the maximum modulus theorem and (8) give |g(z)| ̂  g{r\!+i) < r]!+2,

while the minimum modulus theorem and (9), (10) give

Hence g(An)cAn + 1 . •

LEMMA 3. For n>n3 each An belongs to a multiply-connected wandering domain
component of N(g).

Proof of the lemma. From lemma 2 it follows that gk(z) ->oo uniformly in each An,
n> n2, as fc-»oo. Thus An belongs to N(g). Since J(g) is not empty, the bounded
component of the complement of An meets / (g) for all large n. Hence the component
Un of N(g) which contains such an An is not simply-connected. It was shown in
[1] that if g is entire transcendental and N{g) has a multiply-connected component,
then every component of N(g) is bounded. Thus for n> «3, say, Un is bounded
and this implies that Un is disjoint from l/n+1. It follows that each Un, n > n3, is a
wandering domain.
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To complete the proof of theorem 1 it remains to show that g can be made to
have any prescribed order of growth. The maximum modulus function of g is g(r)
and we have

log g(r) = log C+ I log(l + ( - ) ' [ + 1 log(l + ( - ) ' ] ,
)<n I \fj/ } j>n I \Tj / )

where n is chosen so that rn s r< rn+[. But estimates like those of lemma 2 show that

= I k,log (-)

where n(t) is the number of zeros of g(z) in |z|< t. The term O(l) is bounded as
r (and hence n) -* oo. We have n{t) = k\ + - • - + kj in r, < t<rj+i. In the construction
rn depends only on r , /•„_], fc,,..., fcn_,. Thus we can prescribe kn as a function
of rn, e.g. fcn = [r"], for a given positive constant a. This makes k{ + • • • + kn = O(r°)
and n(/) = O(f") as r-»oo and so logg(r) = O(ra) as r->co. Since logg(2rn)>
kn log 2> [r^] log 2 we see that g is indeed exactly of order a. The cases a =0 and
oo are easily dealt with by similar arguments.

3. Proof of theorem 2
The exact connectivity of the wandering domains Un in the preceding example was
not determined. In this section the construction is modified in such a way that the
corresponding domains Un each contain exactly one critical point of the entire
function. This is shown to ensure the infinite connectivity of Un. The function
constructed below is of very small growth, certainly of order 0.

Begin the construction by taking C, n0, r , , . . . , r% to satisfy (1), (2), (3) as in the
proof of theorem 1, with kx = \, but define /•„, n > n0, by

By induction it follows from (1), (2), (3) and (11) that

rn+l>2rn, neN, (12)

and indeed

rn+l>4r2
n, n>n0. (13)

Define the entire function

( ) (14)

Set
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LEMMA 4. The zeros off are at the points —rn and tn, neN, where tn e (-rn+i ,~rn).
For large n the point tn lies in (—sn, — r2).

Proof of the lemma. Since h(z) = (f/f)(z) = 2 £,r {l/(z + r,)}, it is easily seen that all
zeros of h are real and negative. Further h is decreasing, except for discontinuities
at -rn. The first statement of the lemma is now clear. The rest will follow if we
show that h(-sn)>0, or equivalently, / i ( -5 n _ , )>0, and h(-r2

n)<0 for large n. Now

-[+2 I (16)

But if atj = l/(r, - sn_,), then for j < n,

- a < - « „ _ , = - — —

[nrn-(n+l)r n_ , ]

By (13) we have for large n that

rn > 4r2_, > 2"rn_, > (n + l)rn_,,
and so — «„_, < (n + l)/{(n — l)rn}, whence ft(—*„_,) > 0, using (16).

Further, using (12), (13) we have for large n that

LEMMA 5. Denote by Bn the annulus Bn = {z; r^ < |z| < sn}. Then for large n we have
f(Bn)<=Bn+l.

Proof of the lemma. By the maximum and minimum modulus principles it is sufficient
to show for large n

f(Sn)^Sn+l, (17)

/ ( -*„)> r2
n+l, (18)

/ ( - r 2 j>r 2
n + 1 . (19)

Now

(W + 2)(2M + 3 ) 2

< {4(n+l)3}
where

as n-»oo, by (13). Thus

/(*„->
A ! ' u l 3 ) *•"- ^

4« \/i f

for large «, which proves (17).
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Further/(-*„_,)= C2P,P2/(n + l)2, where

and

for large n. Since, by (13) the bracket on the right-hand side of P, is at least rn/4r,
we have for large n that P, > r*/16r,r2> 2r3JC2, whence/(-*„_,) > r\/(n +1)2> r\.
Thus (18*) holds.

To prove (19) note that we have from (1), (14) that

f(-r2
n) r 2 - - - / - 2 . , ( r n - l ) 2 P 2 P 2

where

Using (13) we see that P, and P2 are at least as big as a = (1 -*)(1 -§) • • •, while
i)3<(l+5)(l+5) • • • • Hence / ( - r 2 ) / r 2

+ l > 1 for all sufficiently large n. •

LEMMA 6. //"/i is a transcendental entire function, then no doubly-connected component
of N(h) contains a critical point ofh.

Proof of the lemma. Suppose that U is a doubly-connected component of N(h). By
[1] and [3] every component of N(h) is bounded and U is a wandering domain
for h. Denote by a and B the outer and inner boundary components of U. Write
U] = h(U), Bt = h(B), al = h(a). The complete invariance of J(h) implies that
dUi =f(dU) = a ( u /8 , , which has at most two components. Suppose that dU, is
connected. If Un = h"(U), neN, it then follows from the complete invariance of
J(h) that each 3Un is connected. For large n this conflicts with theorem 3.1 of [3],
where it is shown that for such n the domain f"(U) contains a closed curve yn

whose distance from 0 is large and whose winding number about 0 is not zero; that
is, yn must separate some points of J(h) and in particular boundary points of Un.

Thus dl/i has two distinct components ax, j8, and by the maximum principle a,
is the outer and &i is the inner component. Denote by i/> and i/o, respectively, 1-1
conformal maps of the annuli K = {z; 1<\z\ < R] and K{ = {z; 1<\z\< Rt} to U
and £/,. It is assumed that «/> (I/»I) approaches a (a,) or B (jS,), respectively,
according as jzj approaches R (Rk) or 1. Then F= tl/T]fi// maps K onto K,, and as
z^dK so F(z)-»dK,. Thus F extends analytically to K and \F(z)\ = 1 on \z\ = 1,
\F(z)\ = Rt on |z| = /?. Repeated application of the reflection principle shows that
F can be continued to give an analytic map C-»C such that the only solution of
F{z) = 0 is z = 0. Further, for w in K{ all solutions of F(z) - w are in K. Hence F
is a polynomial of the form czm, \c\ = 1, in a positive integer. It follows that F' = 0
has no solution in K, whence h' = 0 has no solution in U. •
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Conclusion of the proof of theorem 2. The preceding lemmas show, as in the proof
of theorem 1, that for large n the annulus Bn belongs to a multiply-connected
component Un of N(f), that/fc(z)-»oo locally uniformly in Un as fc-»oo, and that
Un, t/n+1 are disjoint, so that Un is wandering.

Note that for the critical points -rn and tn of f, described in lemma 4, we have
/ ( - r B ) = 0, so that for large n,f(-rn) is not in [/„+, and so -rn is not in Un, (or
indeed in any Uk, k large). Thus Un contains one critical point of/, namely tn. By
lemma 6 Un is not doubly-connected.

Suppose that the connectivity of Un is finite, say that Un has dn boundary
components. It follows that dn+, < dn and since dk >3 for all k we may assume that
all dn have the same value, d, for n > n 0 . Then we may denote the boundary
components of Un by an (outer), f3n (the boundary of that component of C\Un

which contains 0), and y", l < 7 < d - 2 . Since / maps an to an+l, /?„ to /3n+i it
follows from the complete invariance of / ( / ) that / maps each y" to a yk

+1 and
we may number the components so that f(y") = y"+1-

For a fixed n take a neighbourhood V of y" which meets no other boundary
component of Un. Since y" <=• / ( / ) there is some Jfc > 0 and f e V such that/fc(£) € Un.
Then ^€ N(f) but f £ Un since Un is a wandering domain of f. Denote by W the
component of C \ y" which contains £ Clearly W is bounded. Thus we have d Wa y"
and/fc( W) meets Un. But ^ ( W l c f f a l V J c ^ 1 . Now the domain Un is in the
unbounded component of the complement of y"+k and hence fk{W) must be
unbounded. This contradicts the boundedness of W. We have shown that the
connectivity of Un is indeed infinite. •
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