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Abstract

We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the
derived category of such a variety, we isolate a special semiorthogonal component, which
is a K3 or Enriques category according to whether the dimension of the variety is even
or odd. We analyze the basic properties of this category using Hochschild homology,
Hochschild cohomology, and the Grothendieck group. We study the K3 category of a
Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to
the derived category of a K3 surface for a certain codimension 1 family of rational
Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a
certain codimension 3 family. The first of these results verifies a special case of a
duality conjecture which we formulate. We discuss our results in the context of the
rationality problem for Gushel–Mukai varieties, which was one of the main motivations
for this work.
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1. Introduction

This paper studies the derived categories of coherent sheaves on smooth Gushel–Mukai varieties,
with a special focus on the relation to birational geometry and the case of fourfolds.

1.1 Background
For the purpose of this paper, we use the following definition.

Definition 1.1. A Gushel–Mukai (GM) variety is a smooth n-dimensional intersection

X = Cone(Gr(2, 5)) ∩Pn+4 ∩Q, 2 6 n 6 6,

where Cone(Gr(2, 5)) ⊂ P10 is the cone over the Grassmannian Gr(2, 5) ⊂ P9 in its Plücker
embedding, Pn+4 ⊂ P10 is a linear subspace, and Q ⊂ Pn+4 is a quadric hypersurface.

We note that a more general definition of GM varieties, which includes singular varieties
and curves, is given in [DK18a, Definition 2.1]. However, the definition there agrees with ours
after imposing the condition that a GM variety is smooth of dimension at least 2, see [DK18a,
Proposition 2.28]. The classification results of Gushel [Gus83] and Mukai [Muk89], generalized
and simplified in [DK18a, Theorem 2.16], show that this class of varieties coincides with the
class of all smooth Fano varieties of Picard number 1, coindex 3, and degree 10, together with
Brill–Noether general polarized K3 surfaces of degree 10.

In the Fano–Iskovskikh–Mori–Mukai classification of Fano threefolds, GM threefolds occupy
an intermediate position between complete intersections in weighted projective spaces and linear
sections of homogeneous varieties, and possess a particularly rich birational geometry. The case of
GM fourfolds is even more interesting, and was our original source of motivation. These fourfolds
are similar to cubic fourfolds from several points of view: birational geometry, Hodge theory, and
as we will see, derived categories.
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In terms of birational geometry, both types of fourfolds are unirational and rational examples
are known. On the other hand, a very general fourfold of either type is expected to be irrational,
but to date irrationality has not been shown for a single example.

At the level of Hodge theory, a fourfold of either type has middle cohomology of K3 type,
i.e. h0,4 = 0 and h1,3 = 1. Moreover, there is a classification of Noether–Lefschetz loci where
the ‘non-special cohomology’ is isomorphic to (a Tate twist of) the primitive cohomology of a
polarized K3 surface. This is due to Hassett for cubics [Has00], and Debarre et al. [DIM15] for
GM fourfolds.

Finally, the first author studied the derived categories of cubic fourfolds in [Kuz10]. For
any cubic fourfold X ′, a ‘K3 category’ AX′ is constructed as a semiorthogonal component of
the derived category Db(X ′), and it is shown for many rational X ′ that AX′ is equivalent to
the derived category of an actual K3 surface. Since their introduction, the categories AX′ have
attracted a great deal of attention, see for instance [MS12, AT14, CT16, Huy17].

1.2 GM categories
We show in this paper that the parallel between GM and cubic fourfolds persists at the level
of derived categories. In fact, for any GM variety X (not necessarily of dimension 4) we define
a semiorthogonal component AX of its derived category as the orthogonal to an exceptional
sequence of vector bundles. Namely, projection from the vertex of Cone(Gr(2, 5)) gives a
morphism f : X → Gr(2, 5), which corresponds to a rank 2 bundle UX on X. If n = dimX,
we show in Proposition 2.3 that there is a semiorthogonal decomposition

Db(X) = 〈AX ,OX ,U
∨
X ,OX(1),U∨X(1), . . . ,OX(n− 3),U∨X(n− 3)〉.

The GM category AX is the main object of study in this paper. Its properties depend on the
parity of the dimension n. For instance, we show that in terms of Serre functors, AX is a ‘K3
category’ or ‘Enriques category’ according to whether n is even or odd (Proposition 2.6). We
support the K3-Enriques analogy by showing that each GM category has a canonical involution
such that the corresponding equivariant category is equivalent to a GM category of opposite
parity (Proposition 2.7).

We also compute the Hochschild homology (Proposition 2.9), Hochschild cohomology
(Corollary 2.11 and Proposition 2.12), and (in the very general case) the numerical Grothendieck
group (Proposition 2.25 and Lemma 2.27) of GM categories. Our computation of Hochschild
homology and Grothendieck groups is based on their additivity, while for Hochschild cohomology
we rely on results about equivariant Hochschild cohomology from [Per18].

We deduce from our computations structural properties of GM categories. Notably, we
show that for any GM variety of odd dimension or for a very general GM variety of even
dimension greater than 2, the category AX is not equivalent to the derived category of any
variety (Proposition 2.29).

1.3 Conjectures on duality and rationality
We formulate two conjectures about GM categories. First we introduce a notion of ‘generalized
duality’ between GM varieties. The precise definition of this notion is somewhat involved (see
§ 3.2), but its salient features are as follows. Generalized duals have the same parity of dimension,
and when they have the same dimension they are dual in the sense of [DK18a, Definition 3.26].
The space of generalized duals of X is parameterized by the quotient of the projective space P5 by
a finite group. We also formulate a similar notion of ‘generalized GM partners’, which reduces
to [DK18a, Definition 3.22] when the varieties have the same dimension. We conjecture that
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generalized dual GM varieties and generalized GM partners have equivalent GM categories
(Conjecture 3.7).

Our second conjecture concerns the rationality of GM fourfolds, and is directly inspired
by an analogous conjecture for cubic fourfolds from [Kuz10]. Namely, we conjecture that the
GM category of a rational GM fourfold is equivalent to the derived category of a K3 surface
(Conjecture 3.12). Together with Proposition 2.29, this conjecture implies that a very general
GM fourfold is not rational.

1.4 Main results
Our first main result gives evidence for the above two conjectures. A GM variety as in
Definition 1.1 is called ordinary if Pn+4 does not intersect the vertex of Cone(Gr(2, 5)).

Theorem 1.2. Let X be an ordinary GM fourfold containing a quintic del Pezzo surface. Then
there is a K3 surface Y such that AX ' Db(Y ).

For a more precise statement, see Theorem 4.1. The K3 surface Y is in fact a GM surface
which is generalized dual to X, and the GM fourfold X is rational (Lemma 4.7). Thus
Theorem 1.2 verifies special cases of our duality and rationality conjectures. We note that GM
fourfolds as in the theorem form a 23-dimensional (codimension 1 in moduli) family.

By Theorem 1.2, the categories AX of GM fourfolds are deformations of the derived category
of a K3 surface. Yet, as mentioned above, for very general X these categories are not equivalent
to the derived category of a K3 surface. There even exist X such that AX is not equivalent to
the twisted derived category of a K3 surface (see Remark 5.9). Families of categories with these
properties appear to be quite rare; this is the first example since [Kuz10].

Our second main result shows that the K3 categories attached to GM and cubic fourfolds
are not only analogous, but in some cases even coincide.

Theorem 1.3. Let X be a generic ordinary GM fourfold containing a plane of type Gr(2, 3).
Then there is a cubic fourfold X ′ such that AX ' AX′ .

For a more precise statement, see Theorem 5.8. The cubic fourfold X ′ is given explicitly by a
construction of Debarre et al. [DIM15]. In fact, X ′ is birational to X and we use the structure of
this birational isomorphism to establish the result. We note that GM fourfolds as in the theorem
form a 21-dimensional (codimension 3 in moduli) family. Theorem 1.3 can be considered as a
step toward a 4-dimensional analogue of [Kuz09a], which exhibits mysterious coincidences among
the derived categories of Fano threefolds.

1.5 Further directions
The above results relate the K3 categories attached to three different types of varieties: GM
fourfolds, cubic fourfolds, and K3 surfaces (in the last case the K3 category is the whole derived
category). We call two such varieties X1 and X2 derived partners if their K3 categories are
equivalent. There is also a notion of X1 and X2 being Hodge-theoretic partners. Roughly speaking,
this means that there is an ‘extra’ integral middle-degree Hodge class αi on Xi, such that
if Ki ⊂ Hdim(Xi)(Xi,Z) denotes the lattice generated by αi and certain tautological algebraic
cycles on Xi, then the orthogonals K⊥1 and K⊥2 are isomorphic as polarized Hodge structures
(up to a Tate twist). This notion was studied in [Has00, DIM15], under the terminology that
‘X2 is associated to X1’. Using lattice theoretic techniques, countably many families of GM
fourfolds with Hodge-theoretic K3 and cubic fourfold partners are produced in [DIM15].
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We expect that a GM fourfold has a derived partner of a given type if and only if it has a

Hodge-theoretic partner of the same type. Theorems 1.2 and 1.3 can be thought of as evidence for

this expectation, since by [DIM15, §§ 7.5 and 7.2] a GM fourfold as in Theorem 1.2 or Theorem 1.3

has a Hodge-theoretic K3 or cubic fourfold partner, respectively. Addington and Thomas [AT14]

proved (generically) the analogous expectation for K3 partners of cubic fourfolds. Their method

is deformation theoretic, and requires as a starting point an analogue of Theorem 1.2 for cubic

fourfolds.

Finally, we note that there are some other Fano varieties which fit into the above story, i.e.

whose derived category contains a K3 category. One example is provided by a hyperplane section

of the Grassmannian Gr(3, 10), see [DV10] for a discussion of related geometric questions and

[Kuz16a, Corollary 4.4] for the construction of a K3 category. To find other examples, one can

use available classification results for Fano fourfolds. In [Küc95] Küchle classified Fano fourfolds

of index 1 which can be represented as zero loci of equivariant vector bundles on Grassmannians.

Among these, three types, labeled (c5), (c7), and (d3) in [Küc95], have middle Hodge structure

of K3 type. In [Kuz15b] it was shown that fourfolds of type (d3) are isomorphic to the blowup of

the space P1 × P1 × P1 × P1 in a K3 surface, and those of type (c7) are isomorphic to the

blowup of a cubic fourfold in a Veronese surface. In particular, these fourfolds do indeed have a

K3 category in their derived category, but they reduce to known examples. Fourfolds of type (c5),

however, conjecturally give rise to genuinely new K3 categories (see [Kuz16c] for a discussion of

the geometry of these fourfolds).

1.6 Organization of the paper

In § 2, we define GM categories and study their basic properties. After recalling some facts

about GM varieties in § 2.1, we define GM categories in § 2.2. In §§ 2.3–2.7, we study some

basic invariants of GM categories (Serre functors, Hochschild homology and cohomology, and

Grothendieck groups) and as an application show that GM categories are usually not equivalent

to the derived category of a variety. In § 2.8 we show that GM categories are self-dual, i.e. admit

an equivalence with the opposite category.

In § 3, we formulate our conjectures about the duality and rationality of GM varieties. The

preliminary § 3.1 recalls from [DK18a, § 3] a description of the set of isomorphism classes of GM

varieties in terms of Lagrangian data. In § 3.2 we state the duality conjecture and discuss its

consequences, and in § 3.3 we discuss the rationality conjecture. This section is independent of

the material in §§ 2.3–2.8.

The purpose of § 4 is to prove Theorem 4.1, a more precise version of Theorem 1.2 from above.

The statement of Theorem 4.1 requires the duality terminology introduced in § 3.2. However, in

§ 4.2 we translate Theorem 4.1 into a statement that does not involve this terminology. From

then on, § 4 can be read independently from the rest of the paper.

The goal of § 5 is to prove Theorem 5.8, a more precise version of Theorem 1.3 from above.

This section can also be read independently from the rest of the paper.

Finally, in Appendix A, we prove that GM varieties of a fixed dimension form a smooth and

irreducible Deligne–Mumford stack, whose dimension we compute. This result is not used in an

essential way in the body of the paper, but it is psychologically useful.

1.7 Notation and conventions

We work over an algebraically closed field k of characteristic 0. A variety is an integral, separated

scheme of finite type over k. A vector bundle on a variety X is a finite locally free OX -module.
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The projective bundle of a vector bundle E on a variety X is

P(E) = Proj(Sym•(E∨))
π // X,

with OP(E)(1) normalized so that π∗OP(E)(1) = E∨. We often commit the following convenient

abuse of notation: given a divisor class D on a variety X, we denote still by D its pullback to

any variety mapping to X. Throughout the paper, we use Vn to denote an n-dimensional vector

space. We denote by G = Gr(2, V5) the Grassmannian of 2-dimensional subspaces of V5.

In this paper, triangulated categories are k-linear and functors between them are k-linear and

exact. For a variety X, by the derived category Db(X) we mean the bounded derived category

of coherent sheaves on X, regarded as a triangulated category. For a morphism of varieties

f : X → Y , we write f∗ : Db(X) → Db(Y ) for the derived pushforward (provided f is proper),

and f∗ : Db(Y ) → Db(X) for the derived pullback (provided f has finite Tor-dimension). For

objects F,G ∈ Db(X), we write F ⊗ G for the derived tensor product.
We write T = 〈A1, . . . ,An〉 for a semiorthogonal decomposition of a triangulated category T

with components A1, . . . ,An. For an admissible subcategory A ⊂ T we write

A⊥ = {F ∈ T | Hom(G,F) = 0 for all G ∈ A},
⊥A = {F ∈ T | Hom(F,G) = 0 for all G ∈ A},

for its right and left orthogonals, so that we have T = 〈A⊥,A〉 = 〈A,⊥A〉.
We regard graded vector spaces as complexes with trivial differential, so that any such vector

space can be written as W• =
⊕

nWn[−n], where Wn denotes the degree n piece. We often

suppress the degree 0 shift [0] from our notation.

2. GM categories

In this section, we define GM categories and study their basic properties. We start with a quick

review of the key features of GM varieties.

2.1 GM varieties

Let V5 be a 5-dimensional vector space and G = Gr(2, V5) the Grassmannian of 2-dimensional

subspaces. Consider the Plücker embedding G ↪→ P(∧2V5) and let Cone(G) ⊂ P(k⊕ ∧2V5) be

the cone over G. Further, let

W ⊂ k⊕ ∧2V5

be a linear subspace of dimension n+ 5 with 2 6 n 6 6, and Q ⊂ P(W ) a quadric hypersurface.

By Definition 1.1, if the intersection

X = Cone(G) ∩Q (2.1)

is smooth and transverse, then X is a GM variety of dimension n, and every GM variety can be

written in this form.

There is a natural polarization H on a GM variety X, given by the restriction of the

hyperplane class on P(k ⊕ ∧2V5); we denote by OX(1) the corresponding line bundle on X.

It is straightforward to check that

Hn = 10 and −KX = (n− 2)H. (2.2)
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Moreover, we have

if dim(X) > 3, then Pic(X) = ZH, and

if dim(X) = 2, then (X,H) is a Brill–Noether general K3 surface.
(2.3)

Conversely, by [DK18a, Theorem 2.16] any smooth projective polarized variety of dimension > 2
satisfying (2.3) and (2.2) is a GM variety.

The intersection Cone(G) ∩ Q does not contain the vertex of the cone, since X is smooth.
Hence projection from the vertex defines a regular map

f : X → G,

called the Gushel map. Let U be the rank 2 tautological subbundle on G. Then UX = f∗U is a
rank 2 vector bundle on X, called the Gushel bundle. By [DK18a, § 2.1], the Gushel map and the
Gushel bundle are canonically associated to X, i.e. only depend on the abstract polarized variety
(X,H) and not on the particular realization (2.1). In particular, so is the space V5 (being the
dual of the space of sections of U∨X), and we will sometimes write it as V5(X) to emphasize this.
The space W is also canonically associated to X, since its dual is the space of global sections of
the line bundle OX(1). The quadric Q, however, is not canonically associated to X, see § 3.1.

The intersection
MX = Cone(G) ∩P(W )

is called the Grassmannian hull of X. Note that X = MX ∩Q is a quadric section of MX . Let W ′

be the projection of W to ∧2V5. The intersection

M ′X = G ∩P(W ′) (2.4)

is called the projected Grassmannian hull of X. Again by [DK18a], both MX and M ′X are
canonically associated to X.

The Gushel map is either an embedding or a double covering of M ′X , according to whether
the projection map W → W ′ is an isomorphism or has 1-dimensional kernel. In the first case,
W ∼= W ′ and MX

∼= M ′X . Then considering Q as a subvariety of P(W ′), we have

X ∼= M ′X ∩Q. (2.5)

That is, X is a quadric section of a linear section of the Grassmannian G. A GM variety of this
type is called ordinary.

If the map W → W ′ has 1-dimensional kernel, then we have P(W ) = Cone(P(W ′)) and
MX = Cone(M ′X). As Q does not contain the vertex of the cone (by smoothness of X), projection
from the vertex gives a double cover

X
2:1−−−→ M ′X . (2.6)

That is, X is a double cover of a linear section of the Grassmannian G. A GM variety of this
type is called special.

Lemma 2.1 [DK18a, Proposition 2.22]. Let X be a GM variety of dimension n. Then the
intersection (2.4) defining M ′X is dimensionally transverse. Moreover:

(1) if n > 3, or if n = 2 and X is special, then M ′X is smooth;

(2) if n = 2 and X is ordinary, then M ′X has at worst rational double point singularities.
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By Lemma 2.1, if X is special then M ′X is smooth. Further, by [DK18a, § 2.5] the branch
divisor of the double cover (2.6) is the smooth intersection X ′ = G∩Q′, where Q′ = Q∩P(W ′)
is a quadric hypersurface in P(W ′). Hence, as long as n > 3, the branch divisor X ′ of (2.6) is an
ordinary GM variety of dimension n− 1. This gives rise to an operation taking a GM variety of
one type to the opposite type, by defining in this situation

Xop = X ′ and (X ′)op = X. (2.7)

Note that we have dimXop = dimX±1. The opposite GM variety is not defined for special GM
surfaces.

2.2 Definition of GM categories
By the discussion in § 2.1, any GM variety X of dimension n > 3 is obtained from a smooth linear
section M ′X of G by taking a quadric section or a branched double cover. To describe a natural
semiorthogonal decomposition of Db(X), we first recall that G and its smooth linear sections of
dimension at least 3 admit rectangular Lefschetz decompositions (in the sense of [Kuz07, § 4])
of their derived categories. Note that the bundles OG,U

∨ form an exceptional pair in Db(G),
where recall U denotes the tautological rank 2 bundle. Let

B = 〈OG,U
∨〉 ⊂ Db(G) (2.8)

be the triangulated subcategory they generate. The following result holds by [Kuz06, § 6.1].

Lemma 2.2. Let M be a smooth linear section of the Grassmannian G ⊂ P(∧2V5) of dimension
N > 3. Let i : M ↪→ G be the inclusion.

(1) The functor i∗ : Db(G) → Db(M) is fully faithful on B ⊂ Db(G).

(2) Denoting the essential image of B by BM , there is a semiorthogonal decomposition

Db(M) = 〈BM ,BM (1), . . . ,BM (N − 2)〉. (2.9)

The next result gives a semiorthogonal decomposition of the derived category of a GM variety.

Proposition 2.3. Let X be a GM variety of dimension n > 3. Let f : X → G be the Gushel
map.

(1) The functor f∗ : Db(G) → Db(X) is fully faithful on B ⊂ Db(G).

(2) Denoting the essential image of B by BX , so that BX = 〈OX ,U∨X〉, there is a semiorthogonal
decomposition

Db(X) = 〈AX ,BX ,BX(1), . . . ,BX(n− 3)〉, (2.10)

where AX is the right orthogonal category to 〈BX , . . . ,BX(n− 3)〉 ⊂ Db(X).

Thus Db(X) has a semiorthogonal decomposition with the category AX and 2(n−2) exceptional
objects as components.

Remark 2.4. If n = 2 we set AX = Db(X), so that (2.10) still holds.

Proof. The Gushel map factors through the map X → M ′X to the projected Grassmannian
hull M ′X defined by (2.4). By Lemma 2.1, M ′X is smooth and has dimension n+1 if X is ordinary,
or dimension n if X is special. In particular, Db(M ′X) has a semiorthogonal decomposition of
the form (2.9). Further, X → M ′X realizes X as a quadric section (2.5) if X is ordinary, or as a
double cover (2.6) if X is special. Now applying [KP17, Lemmas 5.1 and 5.5] gives the result. 2
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Definition 2.5. Let X be a GM variety. The GM category of X is the category AX defined by
the semiorthogonal decomposition (2.10).

More explicitly, using the definition (2.8) of B, the defining semiorthogonal decomposition
of a GM category AX can be written as

Db(X) = 〈AX ,OX ,U
∨
X , . . . ,OX(n− 3),U∨X(n− 3)〉. (2.11)

The GM category AX is the main object of study in this paper. As we will see below, its
properties depend strongly on the parity of dim(X). For this reason, we sometimes emphasize
the parity of dim(X) by calling AX an even or odd GM category according to whether dim(X)
is even or odd.

2.3 Serre functors of GM categories
Recall from [BK90] that a Serre functor for a triangulated category T is an autoequivalence ST

of T with bifunctorial isomorphisms

Hom(F, ST(G)) ∼= Hom(G,F)∨

for F,G ∈ T. If a Serre functor exists, it is unique. If X is a smooth proper variety, then Db(X)
has a Serre functor given by the formula

SDb(X)(F) = F ⊗ ωX [dimX]. (2.12)

Moreover, given an admissible subcategory A ⊂ T, if T admits a Serre functor then so does A.
Using [Kuz16a], we can describe the Serre functor of a GM category.

Proposition 2.6. Let X be a GM variety of dimension n.

(1) If n is even, the Serre functor of the GM category AX satisfies SAX
∼= [2].

(2) If n is odd, the Serre functor of the GM category AX satisfies SAX
∼= σ ◦ [2] for a non-trivial

involutive autoequivalence σ of AX . If in addition X is special, then σ is induced by the
involution of the double cover (2.6).

Proof. If n = 2, then AX = Db(X) and X is a K3 surface, so the result holds by (2.12). If n > 3,
then as in the proof of Proposition 2.3 we may express X as a quadric section or double cover
of the smooth variety M ′X . It is easy to see the length m of the semiorthogonal decomposition
of Db(M ′X) given by Lemma 2.2 satisfies KM ′X

= −mH, where H is the restriction of the ample
generator of Pic(G). Hence we may apply [Kuz16a, Corollaries 3.7 and 3.8] to see that the Serre
functors have the desired form.

If σ were trivial, then the Hochschild homology HH−2(AX) would be non-trivial (see
Proposition 2.10), which contradicts the computation of Proposition 2.9 below. 2

Proposition 2.6 shows that even GM categories can be regarded as ‘non-commutative K3
surfaces’, and odd GM categories can be regarded as ‘non-commutative Enriques surfaces’. This
analogy goes further than the relation between Serre functors. For instance, any Enriques surface
(in characteristic 0) is the quotient of a K3 surface by an involution. Similarly, the results
of [KP17] show that odd GM categories can be described as ‘quotients’ of even GM categories by
involutions. To state this precisely, recall from § 2.1 that unless X is a special GM surface, there
is an associated GM variety Xop of the opposite type and parity of dimension. The following
result is proved in [KP17, § 8.2].

Proposition 2.7. Let X be a GM variety which is not a special GM surface. Then there is

a Z/2-action on the GM category AX such that if A
Z/2
X denotes the equivariant category, then
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there is an equivalence

A
Z/2
X ' AXop .

If σ is the autoequivalence generating the Z/2-action on AX , then σ is induced by the involution
of the double covering X → M ′X if X is special, and σ = SAX

◦ [−2] if dim(X) is odd.

2.4 Hochschild homology of GM categories
Given a suitably enhanced triangulated category A, there is an invariant HH•(A) called its
Hochschild homology, which is a graded k-vector space. We will exclusively be interested in
admissible subcategories of the derived category of a smooth projective variety. For a definition
of Hochschild homology in this context, see [Kuz09b].

If A = Db(X), we write HH•(X) for HH•(A). The Hochschild–Kostant–Rosenberg (HKR)
isomorphism gives the following explicit description of Hochschild homology in this case [Mar09]:

HHi(X) ∼=
⊕
q−p=i

Hq(X,Ωp
X). (2.13)

An important property of Hochschild homology is that it is additive under semiorthogonal
decompositions.

Theorem 2.8 [Kuz09b, Theorem 7.3]. Let X be a smooth projective variety. Given a
semiorthogonal decomposition Db(X) = 〈A1,A2, . . . ,Am〉, there is an isomorphism

HH•(X) ∼=
m⊕
i=1

HH•(Ai).

By combining this additivity property with the HKR isomorphism for GM varieties, we can
compute the Hochschild homology of GM categories.

Proposition 2.9. Let X be a GM variety of dimension n. Then

HH•(AX) ∼=
{

k[2] ⊕ k22 ⊕ k[−2] if n is even,

k10[1] ⊕ k2 ⊕ k10[−1] if n is odd.

Proof. By (2.11) there is a semiorthogonal decomposition of Db(X) with AX and 2(n − 2)
exceptional objects as components. Since the category generated by an exceptional object is
equivalent to the derived category of a point, its Hochschild homology is just k. Hence by
additivity,

HH•(X) ∼= HH•(AX)⊕ k2(n−2).

By (2.13) the graded dimension of HH•(X) can be computed by summing the columns of the
Hodge diamond of X, which looks as follows (see [Log12, IM11, Nag98, DK17]):

dim(X) = 2 dim(X) = 3 dim(X) = 4 dim(X) = 5 dim(X) = 6

1
0 0

1 20 1
0 0

1

1
0 0

0 1 0
0 10 10 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 10 10 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 1 22 1 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

Now the lemma follows by inspection. 2
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2.5 Hochschild cohomology of GM categories
Given a suitably enhanced triangulated category A, there is also an invariant HH•(A) called its
Hochschild cohomology, which has the structure of a graded k-algebra. Again, for a definition in
the case where A is an admissible subcategory of the derived category of a smooth projective
variety, see [Kuz09b].

If A = Db(X), we write HH•(X) for HH•(A). There is the following version of the HKR
isomorphism for Hochschild cohomology [Mar09]:

HHi(X) ∼=
⊕
p+q=i

Hq(X,∧pTX). (2.14)

Hochschild cohomology is not additive under semiorthogonal decompositions, and so it is
generally much harder to compute than Hochschild homology. There is, however, a case when the
computation simplifies considerably. Recall that a triangulated category A is called n-Calabi–Yau
if the shift functor [n] is a Serre functor for A.

Proposition 2.10 [Kuz16a, Proposition 5.2]. Let A be an admissible subcategory of Db(X) for
a smooth projective variety X. If A is an n-Calabi–Yau category, then for each i there is an
isomorphism of vector spaces

HHi(A) ∼= HHi−n(A).

This immediately applies to even GM categories, as by Proposition 2.6 they are 2-Calabi–Yau.

Corollary 2.11. Let X be a GM variety of even dimension. Then

HH•(AX) ∼= k⊕ k22[−2]⊕ k[−4].

The Hochschild cohomology of odd GM categories is significantly harder to compute. Our
strategy is to exploit the fact that there is a Z/2-action on such a category, with invariants
an even GM category. By the results of [Per18], this reduces us to a problem involving the
Hochschild cohomology of an even GM category and the Hochschild homology of an odd GM
category.

Proposition 2.12. Let X be a GM variety of odd dimension. Then

HH•(AX) ∼= k⊕ k20[−2]⊕ k[−4].

Proof. Recall that by Proposition 2.7 there is a Z/2-action on AX such that if σ : AX → AX

denotes the corresponding involutive autoequivalence, then:

(1) SAX
= σ ◦ [2] is a Serre functor for AX ;

(2) A
Z/2
X ' AXop , where Xop is the opposite variety to X.

As stated, these are results at the level of triangulated categories, but they also hold
at the enhanced level. Namely, in the terminology of [Per18], there is a k-linear stable ∞-
category Db(X)enh (denoted Perf(X) in [Per18]) with homotopy category Db(X). The category
Db(X)enh admits a semiorthogonal decomposition of the same form as (2.10), which defines
a k-linear stable ∞-category Aenh

X whose homotopy category is AX . If σenh : Aenh
X → Aenh

X

denotes the corresponding involutive autoequivalence, then (1) and (2) above hold with AX ,
SAX

, σ, and AXop replaced by their enhanced versions, and (1) and (2) are recovered by
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passing to homotopy categories. The Hochschild (co)homology of AX and AXop agree with the

corresponding invariants of their enhancements. Hence [Per18, Corollary 1.3] gives

HH•(AXop) ∼= HH•(AX)⊕ (HH•(AX)Z/2[−2]), (2.15)

where the Z/2-action on HH•(AX) is induced by σ.

Since X has odd dimension (and hence Xop has even dimension), by Corollary 2.11 we have

HH•(AXop) ∼= k⊕ k22[−2]⊕ k[−4],

and by Proposition 2.9 we have

HH•(AX) ∼= k10[1]⊕ k2 ⊕ k10[−1].

Combined with (2.15), this immediately shows HH•(AX)Z/2 is concentrated in degree 0, i.e. we

have HH•(AX)Z/2 ∼= kd for some 0 6 d 6 2, and

HH•(AX) ∼= k⊕ k22−d[−2]⊕ k[−4].

To prove d = 2, we apply [Pol14, Corollary 3.11], which gives an equality∑
i

(−1)i dim HHi(AX) =
∑
i

(−1)i Tr((S−1
AX

)∗ : HHi(AX) → HHi(AX)). (2.16)

Note that since SAX
= σ ◦ [2], the map (S−1

AX
)∗ : HHi(AX) → HHi(AX) induced by S−1

AX
on

Hochschild homology coincides with the map induced by σ, and in particular squares to the

identity. It follows that the right side of (2.16) is bounded above by
∑

i dim HHi(AX) = 22. But

the left side of (2.16) equals 24− d where 0 6 d 6 2, so d = 2. 2

Remark 2.13. As a byproduct, the above proof shows that SAX
acts on HHi(AX) by (−1)i for

any GM category AX .

Remark 2.14. It is possible to show d = 2 in the above proof without appealing to the

equality (2.16), as follows. Note that the statement is deformation invariant, since it is equivalent

to the Euler characteristic
∑

i(−1)i dim HHi(AX) being 22. So we may assume X is special. Then

the Z/2-action on AX is induced by the involution of the double cover X → M ′X . We want to

show that Z/2 acts trivially on HH0(AX). But HH•(AX) is canonically a summand of HH•(X),

and we claim that the involution of the double cover acts trivially on HH0(X). Indeed, since X

is odd-dimensional, pullback under X → M ′X induces a surjection on even-degree cohomology

and hence on HH0. The claim follows.

Remark 2.15. Proposition 2.12 can also be deduced from Conjecture 3.7 stated below. Indeed,

the conjecture implies that the GM category of any GM variety of odd dimension is equivalent to

that of an ordinary GM threefold, whose Hochschild cohomology can be computed using [Kuz09b,

Theorem 8.8]. Yet another method for computing the Hochschild cohomology of GM categories is

via the normal Hochschild cohomology spectral sequence of [Kuz15a], but this method becomes

long and complicated for GM varieties of dimension bigger than 3.
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As an application, we discuss the indecomposability of GM categories. Recall that a
triangulated category T is called indecomposable if it admits no non-trivial semiorthogonal
decompositions, i.e. if T = 〈A1,A2〉 implies either A1 ' 0 or A2 ' 0. In general, there are very few
techniques for proving indecomposability of a triangulated category. However, for Calabi–Yau
categories, we recall a simple criterion below.

If A is an admissible subcategory of the derived category of a smooth projective variety, we
say A is connected if HH0(A) = k (see [Kuz16a, § 5.2]). By Corollary 2.11 and Proposition 2.12,
all GM categories are connected.

Proposition 2.16 [Kuz16a, Proposition 5.5]. Let A be a connected admissible subcategory of
the derived category of a smooth projective variety. Then A admits no non-trivial completely
orthogonal decompositions. If furthermore A is Calabi–Yau, then A is indecomposable.

Corollary 2.17. Let X be a GM variety of dimension n.

(1) If n is even, then AX is indecomposable.

(2) If n is odd, then AX admits no non-trivial completely orthogonal decompositions.

Proof. This follows from Proposition 2.16, the connectivity of AX , and the fact that AX is
Calabi–Yau if n is even. 2

Remark 2.18. It is plausible that AX is indecomposable if X is an odd-dimensional GM variety,
but we do not know how to prove this.

2.6 Grothendieck groups of GM categories
The Grothendieck group K0(T) of a triangulated category T is the free group on isomorphism
classes [F] of objects F ∈ T, modulo the relations [G] = [F] + [H] for every distinguished triangle
F → G → H.

Assume T is proper, i.e. that
⊕

i Hom(F,G[i]) is finite dimensional for all F,G ∈ T. For
instance, this holds if T is admissible in the derived category of a smooth projective variety.
Then for F,G ∈ T, we set

χ(F,G) =
∑
i

(−1)i dim Hom(F,G[i]).

This descends to a bilinear form χ : K0(T)×K0(T) → Z, called the Euler form. In general this
form is neither symmetric nor antisymmetric. However, if T admits a Serre functor (e.g. if T is
admissible in the derived category of a smooth projective variety), then the left and right kernels
of the form χ agree, and we denote this common subgroup of K0(T) by ker(χ). In this situation,
the numerical Grothendieck group is the quotient

K0(T)num = K0(T)/ker (χ).

Note that K0(T)num is torsion free, since ker(χ) is evidently saturated.
If X is a smooth projective variety, we write

K0(X) = K0(Db(X)) and K0(X)num = K0(Db(X))num.

Further, let CH(X) and CH(X)num denote the Chow rings of cycles modulo rational and
numerical equivalence. The following well-known consequence of Hirzebruch–Riemann–Roch
relates the (numerical) Grothendieck ring of X to its (numerical) Chow ring.
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Lemma 2.19. Let X be a smooth projective variety. Then there are isomorphisms

K0(X)⊗Q ∼= CH(X)⊗Q and K0(X)num ⊗Q ∼= CH(X)num ⊗Q.

Proof. The isomorphisms are induced by the Chern character ch: K0(X) → CH(X) ⊗ Q. For
the first, see [Ful98, Example 15.2.16(b)]. The second then follows from the observation that, by
Riemann–Roch, the kernel of the Euler form is precisely the preimage under the Chern character
of the ideal of numerically trivial cycles. 2

The following well-known lemma says that Grothendieck groups are additive.

Lemma 2.20. Let X be a smooth projective variety. Given a semiorthogonal decomposition
Db(X) = 〈A1,A2, . . . ,Am〉, there are isomorphisms

K0(X) ∼=
m⊕
i=1

K0(Ai) and K0(X)num
∼=

m⊕
i=1

K0(Ai)num.

Proof. The embedding functors Ai ↪→ Db(X) induce a map
⊕

i K0(Ai) → K0(X), whose inverse
is the map induced by the projection functors Db(X) → Ai. This isomorphism also descends to
numerical Grothendieck groups. 2

Now let X be a GM variety. If X is a surface then AX = Db(X), so the Grothendieck group
of AX coincides with that of X. Below we describe K0(AX)num if X is odd dimensional, or if X
is a fourfold or sixfold which is not ‘Hodge-theoretically special’ in the following sense.

First, we note that if n denotes the dimension of X, then by Lefschetz theorems (see [DK17,
Proposition 3.4(b)]) the Gushel map f : X → G induces an injection

Hn(G,Q) ↪→ Hn(X,Q).

If n is odd, then Hn(G,Q) simply vanishes. But if n = 4 or 6, then Hn(G,Q) = Q2 is generated
by Schubert cycles, and the vanishing cohomology Hn

van(X,Q) is defined as the orthogonal
to Hn(G,Q) ⊂ Hn(X,Q) with respect to the intersection form.

Definition 2.21 [DIM15]. Let X be a GM variety of dimension n = 4 or 6. Then X is Hodge-
special if

Hn/2,n/2(X) ∩Hn
van(X,Q) 6= 0.

Lemma 2.22 [DIM15]. If X is a very general GM fourfold or sixfold, then X is not Hodge-special.

Remark 2.23. Very general here means that the moduli point [X] ∈Mn(k) lies in the complement
of countably many proper closed substacks of Mn, where n = dim(X) and Mn is the moduli stack
of n-dimensional GM varieties discussed in Appendix A.

Proof. In the fourfold case, this is [DIM15, Corollary 4.6]. The main point of the proof is the
computation that the local period map for GM fourfolds is a submersion. The sixfold case can
be proved by the same argument. 2

Remark 2.24. Lemma 2.22 can also be proved by combining the description of the moduli of GM
varieties in terms of Eisenbud–Popescu–Walter (EPW) sextics (see Remark 3.3) with [DK17,
Theorem 5.1].
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Proposition 2.25. Let X be a GM variety of dimension n > 3. If n is even, assume also that X
is not Hodge-special. Then K0(AX)num ' Z2.

Proof. The proof is similar to that of Proposition 2.9. First, note that by Proposition 2.3 there is a
semiorthogonal decomposition of Db(X) with AX and 2(n−2) exceptional objects as components.
Since the category generated by an exceptional object is equivalent to the derived category of a
point, both its usual and numerical Grothendieck group is Z. Hence by additivity,

K0(X)num
∼= K0(AX)num ⊕ Z2(n−2).

On the other hand, K0(X)num ⊗ Q ∼= CH(X)num ⊗ Q. But under our assumptions on X,
the rational Hodge classes on X are spanned by the restrictions of Schubert cycles on G.
In particular, the Hodge conjecture holds for X. So numerical equivalence coincides with
homological equivalence, and

CH(X)num ⊗Q ∼=
⊕

k Hk,k(X,Q),

where Hk,k(X,Q) = Hk,k(X)∩H2k(X,Q). Thus using the Hodge diamond of X (recorded in the
proof of Proposition 2.9) and the assumption that X is not Hodge-special if n is even, we find

dim(K0(X)num ⊗Q) = 2n− 2.

Combined with the above, this shows the rank of K0(AX)num is 2. Since K0(AX)num is torsion
free, we conclude K0(AX)num

∼= Z2. 2

Remark 2.26. Let X be a GM variety of dimension n = 4 or 6. The proof of the proposition
shows that

rank(K0(AX)num) = dimQ Hn/2,n/2(X,Q)

if the Hodge conjecture holds for X. The Hodge conjecture holds for any uniruled smooth
projective fourfold [CM78], so for n = 4 the above equality is unconditional. If n = 6 the Hodge
conjecture can be proved using the correspondences studied in [DK17], but we do not discuss
the details here.

Lemma 2.27. Let X be a GM variety as in Proposition 2.25. Then in a suitable basis, the Euler
form on K0(AX)num = Z2 is given by(

−1 0
0 −1

)
if n = 3,

(
−2 0
0 −2

)
if n = 4.

Remark 2.28. The duality conjecture (Conjecture 3.7) implies that if X is as in Proposition 2.25,
then for n = 5 or 6 the lattice K0(AX)num = Z2 is isomorphic to the lattice described in
Lemma 2.27 for n = 3 or 4, respectively.

Proof. For n = 3, this is shown in the proof of [Kuz09a, Proposition 3.9].
For n = 4, we sketch the proof. First, note that any GM variety contains a line, since by

taking a hyperplane section we reduce to the case of dimension 3, where the result is well known.
Let P ∈ X be a point, L ⊂ X be a line, Σ be the zero locus of a regular section of U∨X , S be a
complete intersection of two hyperplanes in X, and H be a hyperplane section of X. The key
claim is that

K0(X)num = Z〈[OP ], [OL], [OΣ], [OS ], [OH ], [OX ]〉, (2.17)
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i.e. the structure sheaves of these subvarieties give an integral basis of K0(X)num. Once this

is known, as in the proof of [Kuz09a, Proposition 3.9], the lemma reduces to a (tedious)

computation, which we omit.

Using [Kuz09a, Remark 5.9] it is easy to see X is AK-compatible in the sense of [Kuz09a,

Definition 5.1], hence to prove the claim it is enough to show that

CH(X)num = Z〈[P ], [L], [Σ], [S], [H], 1〉.

Clearly, this is equivalent to CH2(X)num = Z〈[Σ], [S]〉. But CH2(X)num coincides with the

group CH2(X)hom ⊂ H4(X,Z) of 2-cycles modulo homological equivalence (see the proof of

Proposition 2.25), and Z〈[Σ], [S]〉 is the image of the inclusion H4(G,Z) ↪→ CH2(X)hom. Hence

it suffices to show the cokernel of this inclusion is torsion free. Even better, the cokernel of

H4(G,Z) ↪→ H4(X,Z)

is torsion free. Indeed, we may assume X is ordinary, and then the statement holds by the proof

of the Lefschetz hyperplane theorem, see [Laz04, Example 3.1.18]. 2

2.7 Geometricity of GM categories

Now we consider the question of whether AX is equivalent to the derived category of a variety.

The following two results show that in almost all cases, the answer is negative. In § 3.3 we will

discuss a related conjecture about the rationality of GM fourfolds.

Proposition 2.29. Let X be a GM variety of dimension n.

(1) If n is even and S is a variety such that AX ' Db(S), then S is a K3 surface.

(2) If n is odd, then AX is not equivalent to the derived category of any variety.

(3) If n = 4 or n = 6 and X is not Hodge-special (in particular, if X is very general), then AX

is not equivalent to the derived category of any variety.

Proof. Suppose S is a variety such that AX ' Db(S). Then S is smooth by [Kuz06, Lemma D.22],

and proper by [Orl16, Proposition 3.30]. In particular, Db(S) has a Serre functor given by

SDb(S)(F) = F ⊗ ωS [dim(S)],

which is unique up to isomorphism. Thus by Proposition 2.6, S is a surface with trivial (if n is

even) or 2-torsion (if n is odd) canonical class. Hence S is a K3, Enriques, abelian, or bielliptic

surface. Using the HKR isomorphism and the Hodge diamonds of such surfaces, we find

HH•(S) =


k[2] ⊕ k22 ⊕ k[−2] if S is K3,

k12 if S is Enriques,

k[2] ⊕ k4[1] ⊕ k6 ⊕ k4[−1] ⊕ k[−2] if S is abelian,

k2[1] ⊕ k4 ⊕ k2[−1] if S is bielliptic.

Now parts (1) and (2) follow by comparing with HH•(AX) as given by Proposition 2.9. For (3)

note that if AX ' Db(S), then K0(AX)num
∼= K0(S)num. But on a projective surface powers of

the hyperplane class give 3 independent elements in CH(S)num ⊗Q ∼= K0(S)num ⊗Q. Hence by

Proposition 2.25, X is Hodge-special. 2
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2.8 Self-duality of GM categories
The derived category of a smooth proper variety X is self-dual : if Db(X)op denotes the opposite
category of Db(X) (note that this has nothing to do with the opposite GM variety), there
is an equivalence Db(X) ' Db(X)op given by the dualization functor F 7→ RHom(F,OX). In
general, this self-duality property is not inherited by semiorthogonal components of Db(X).
Nonetheless, we show below that all GM categories are self-dual, which can be thought of as a
weak geometricity property.

For the proof, we recall some facts about mutation functors (see [Bon89, BK90] for more
details). For any admissible subcategory A ⊂ T of a triangulated category, there are associated
left and right mutation functors LA : T → T and RA : T → T. These functors annihilate A, and
their restrictions LA|⊥A : ⊥A → A⊥ and RA|A⊥ : A⊥ →

⊥A are mutually inverse equivalences
[BK90, Lemma 1.9]. If T = 〈A1, . . . ,An〉 is a semiorthogonal decomposition with admissible
components, then for 1 6 i 6 n− 1 there are semiorthogonal decompositions

T = 〈A1, . . . ,Ai−1,LAi
(Ai+1),Ai,Ai+2, . . . ,An〉,

T = 〈A1, . . . ,Ai−1,Ai+1,RAi+1
(Ai),Ai+2, . . . ,An〉,

and equivalences
LAi

(Ai+1) ' Ai+1 and RAi+1
(Ai) ' Ai (2.18)

induced by the mutation functors LAi
: T → T and RAi+1

: T → T. When T admits a Serre
functor ST, the effect of mutating An or A1 to the opposite side of the semiorthogonal
decomposition of T can be described as follows [BK90, Proposition 3.6]:

T = 〈ST(An),A1, . . . ,An−1〉 and T = 〈A2, . . . ,An, S
−1
T (A1)〉. (2.19)

That is, L〈A1,...,An−1〉(An) = ST(An) and R〈A2,...,An〉(A1) = S−1
T (A1).

Lemma 2.30. For any GM variety X the corresponding GM category AX is self-dual, i.e.

AX ' A
op
X .

Proof. If dim(X) = 2 then AX = Db(X), so the result holds by self-duality of Db(X). Now
assume dim(X) > 3. Applying the dualization functor F 7→ RHom(F,OX) to the semiorthogonal
decomposition (2.11), we obtain a new semiorthogonal decomposition

Db(X) = 〈UX(−(n− 3)),OX(−(n− 3)), . . . ,UX ,OX ,A
′
X〉 (2.20)

and an equivalence A′X ' A
op
X . It remains to show

A′X ' AX . (2.21)

We mutate the subcategory 〈UX(−(n−3)),OX(−(n−3)), . . . ,UX〉 to the far right side of (2.20).
By (2.19), the formula (2.12) for the Serre functor of Db(X), and the formula (2.2) for −KX ,
the result is

Db(X) = 〈OX ,A′X ,UX(1),OX(1), . . . ,UX(n− 2)〉.

Using the isomorphism UX(1) ∼= U∨X and comparing this decomposition with (2.11), we deduce
that AX = LOX

(A′X). Hence AX ' A′X by (2.18). 2

Remark 2.31. A similar argument shows that the K3 category associated to a cubic fourfold (as
defined by (3.1) below) is self-dual.
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3. Conjectures on duality and rationality

In this section, we propose two conjectures related to the variation of GM categories AX as X
varies in moduli. We begin by briefly recalling a description of the moduli of GM varieties in
terms of EPW sextics from [DK18a, § 3] (see Appendix A for some basic results about the moduli
stack of GM varieties). Using this, we formulate a duality conjecture (Conjecture 3.7), which
in particular implies that AX is constant in families of GM varieties with the same associated
EPW sextic. Next we discuss the rationality problem for GM varieties in terms of GM categories.
This problem is most interesting for GM fourfolds, where by analogy with cubic fourfolds we
conjecture that the GM category of a rational GM fourfold is equivalent to the derived category
of a K3 surface (Conjecture 3.12).

3.1 EPW sextics and moduli of GM varieties
Let V6 be a 6-dimensional vector space. Its exterior power ∧3V6 has a natural det(V6)-valued
symplectic form, given by wedge product. For any Lagrangian subspace A ⊂ ∧3V6, we consider
the following stratification of P(V6):

Y>kA = {v ∈ P(V6) | dim(A ∩ (v ∧ (∧2V6))) > k} ⊂ P(V6).

We write YkA for the complement of Y>k+1
A in Y>kA , and YA for Y>1

A . The variety YA is called an
EPW sextic (for Eisenbud, Popescu, and Walter, who first defined it), and the sequence YkA is
called the EPW stratification.

We say A has no decomposable vectors if P(A) does not intersect Gr(3, V6) ⊂ P(∧3V6).
O’Grady [O’Gr06, O’Gr08, O’Gr16, O’Gr12, O’Gr13, O’Gr15] extensively investigated the
geometry of EPW sextics, and proved in particular that (see also [DK18a, Theorem B.2]) if A
has no decomposable vectors, then:
• YA = Y>1

A is a normal irreducible sextic hypersurface, smooth along Y1
A;

• Y>2
A = Sing(YA) is a normal irreducible surface of degree 40, smooth along Y2

A;

• Y3
A = Sing(Y>2

A ) is finite and reduced, and for general A is empty;

• Y>4
A = ∅.

For any Lagrangian subspace A ⊂ ∧3V6, its orthogonal A⊥ = ker(∧3V ∨6 → A∨) ⊂ ∧3V ∨6 is
also Lagrangian, and A has no decomposable vectors if and only if the same is true for A⊥. In
particular, A⊥ gives rise to an EPW sequence of subvarieties of P(V ∨6 ), which can be written in
terms of A as follows:

Y>k
A⊥

= {V5 ∈ P(V ∨6 ) | dim(A ∩ ∧3V5) > k} ⊂ P(V ∨6 ).

This stratification has the same properties as the stratification Y>kA . By O’Grady’s work YA⊥

is projectively dual to YA, and for this reason is called the dual EPW sextic to YA. We note
that YA⊥ is not isomorphic to YA for general A (see [O’Gr08, Theorem 1.1]).

One of the main results of [DK18a] is the following description of the set of all isomorphism
classes of smooth ordinary GM varieties. If X ⊂ P(W ) is a GM variety, then the space of
quadrics in P(W ) containing X is a 6-dimensional vector space [DK18a, Theorem 2.3], which we
denote by V6(X). The space of Plücker quadrics defining the Grassmannian G = Gr(2, V5(X))
is canonically identified with V5(X), so since X ⊂ Cone(G) we have an embedding

V5(X) ⊂ V6(X).

The hyperplane V5(X) is called the Plücker hyperplane of X and the corresponding point

pX ∈ P(V6(X)∨)
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is called the Plücker point of X. Furthermore, in [DK18a, Theorem 3.10] it is shown that there
is a natural Lagrangian subspace

A(X) ⊂ ∧3V6(X)

associated to X. If Xop is the opposite variety of X as defined by (2.7), then A(Xop) = A(X)
and pXop = pX .

Theorem 3.1 [DK18a, Theorem 3.10]. For any n > 2 the maps X →Xop and X 7→ (A(X),pX)
define bijections between:

(1) the set of ordinary GM varieties X of dimension n > 2 whose Grassmannian hull MX is
smooth, up to isomorphism;

(2) the set of special GM varieties of dimension n+ 1 > 3, up to isomorphism; and

(3) the set of pairs (A,p), where A ⊂ ∧3V6 is a Lagrangian subspace with no decomposable
vectors and p ∈ Y5−n

A⊥
, up to the action of PGL(V6).

Note that by Lemma 2.1, the Grassmannian hull MX is automatically smooth for ordinary
GM varieties of dimension n > 3.

Remark 3.2. To include all GM surfaces into the above bijection, we must allow a more
general class of Lagrangian subspaces in Theorem 3.1, namely those that contain finitely many
decomposable vectors, cf. [DK18a, Theorem 3.16 and Remark 3.17].

Remark 3.3. Theorem 3.1 suggests there is a morphism from the moduli stack Mn of n-
dimensional GM varieties (see Appendix A) to the quotient stack LG(∧3V6)/PGL(V6) (where
LG(∧3V6) is the Lagrangian Grassmannian) given by X 7→ A(X) at the level of points, whose
fiber over a point A is the union of two EPW strata Y5−n

A⊥
tY6−n

A⊥
, modulo the action of the finite

stabilizer group of A in PGL(V6). This morphism will be discussed in detail in [DK18b]. Let us
simply note that it gives a geometric way to compute dimMn (cf. Proposition A.2). Namely, the
quotient stack LG(∧3V6)/PGL(V6) has dimension 20, and the fibers of the supposed morphism
have dimension 5, 5, 4, or 2 for n = 6, 5, 4, or 3, respectively. Finally, for n = 2 the morphism is
no longer dominant, as its image is the divisor of those A such that Y3

A⊥
6= ∅, and its fibers are

finite.

The above discussion shows the utility of the EPW stratification of P(V ∨6 ) from the point
of view of moduli. The following proposition gives a geometric interpretation of the EPW
stratification of P(V6), which will be essential later.

As mentioned before, the quadric Q defining X in (2.1) is not unique; such quadrics are
parameterized by the affine space P(V6(X))\P(V5(X)) of non-Plücker quadrics. In other words,
a quadric Q defining X in (2.1) corresponds to a quadric point

q ∈ P(V6(X))

such that (q,pX) does not lie on the incidence divisor in P(V6(X))×P(V6(X)∨).

Proposition 3.4 [DK18a, Proposition 3.13(b)]. LetX be a GM variety. Under the identification
of the affine space P(V6(X))\P(V5(X)) with the space of non-Plücker quadrics containing X,
the stratum

YkA(X) ∩ (P(V6(X))\P(V5(X)))

corresponds to the quadrics Q such that dim(ker(Q)) = k.

The symmetry between the Plücker point pX and the quadric point q is the basis for the
duality of GM varieties, discussed below.
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3.2 The duality conjecture
The following definition extends [DK18a, Definitions 3.22 and 3.26].

Definition 3.5. Let X1 and X2 be GM varieties.

(1) If there exists an isomorphism V6(X1) ∼= V6(X2) identifying A(X1) ⊂ ∧3V6(X1)
with A(X2) ⊂ ∧3V6(X2), then we say:
• X1 and X2 are period partners if dim(X1) = dim(X2), and
• X1 and X2 are generalized partners if dim(X1) ≡ dim(X2) (mod 2).

(2) If there exists an isomorphism V6(X1) ∼= V6(X2)∨ identifying A(X1) ⊂ ∧3V6(X1)
with A(X2)⊥ ⊂ ∧3V6(X2)∨, then we say:
• X1 and X2 are dual if dim(X1) = dim(X2), and
• X1 and X2 are generalized dual if dim(X1) ≡ dim(X2) (mod 2).

Remark 3.6. If X is a GM variety, then either A(X) does or does not contain decomposable
vectors, and these two cases are preserved by generalized partnership and duality. The first
case happens only when X is an ordinary surface with singular Grassmannian hull or X is a
special surface, see [DK18a, Theorem 3.16 and Remark 3.17]. In this paper, we focus on the case
where A(X) does not contain decomposable vectors.

One of the main results of [DK18a, § 4] is that period partners or dual GM varieties of
dimension at least 3 are birational. Our motivation for defining generalized partners and duals
is the following conjecture.

Conjecture 3.7. Let X1 and X2 be GM varieties such that the subspaces A(X1) and A(X2)
do not contain decomposable vectors, and let AX1 and AX2 be their GM categories.

(1) If X1 and X2 are generalized partners, there is an equivalence AX1 ' AX2 .

(2) If X1 and X2 are generalized duals, there is an equivalence AX1 ' AX2 .

By Proposition 2.6, GM varieties with equivalent GM categories must have dimensions of
the same parity, which explains the parity condition in Definition 3.5. We note that part (1) of
the conjecture follows from part (2), since by Definition 3.5 and Theorem 3.1 generalized period
partners have a common generalized dual GM variety. For this reason, we refer to Conjecture 3.7
as the duality conjecture.

As evidence for the duality conjecture, we prove in § 4 the special case where X1 is an
ordinary GM fourfold and X2 is a (suitably generic) generalized dual GM surface. In fact, the
approach of § 4 can be used to attack the full conjecture, but is quite unwieldy to carry out
in the general case. In forthcoming work, we establish the general case as a consequence of a
theory of ‘categorical joins’ [KP18]. This approach is based on the observation from [DK18a,
Proposition 3.28] that duality of ordinary GM varieties can be interpreted in terms of projective
duality of quadrics (see also § 4.2). We show that this extends to generalized duality by replacing
classical projective duality with homological projective duality.

In the rest of this subsection we discuss some consequences of the duality conjecture. We
start by describing all generalized duals and partners of a given GM variety.

Lemma 3.8. Let X be an n-dimensional GM variety, and assume A(X) has no decomposable
vectors. Then any quadric point q ∈ P(V6(X)) corresponds to a generalized dual X∨q of X. If q

lies in the stratum YkA(X) for some k, we have:
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• if 5− k ≡ n (mod 2), then X∨q is an ordinary GM variety of dimension 5− k;
• if 6− k ≡ n (mod 2), then X∨q is a special GM variety of dimension 6− k.

Similarly, any point p ∈ P(V6(X)∨) corresponds to a generalized partner Xp of X.
Conversely, any generalized dual of X arises as X∨q for some q ∈ P(V6(X)) and any

generalized partner of X arises as Xp for some p ∈ P(V6(X)∨).

Proof. The variety X∨q corresponding to a quadric point q ∈ P(V6) is just the ordinary GM
variety of dimension 5−k or the special GM variety of dimension 6−k associated by Theorem 3.1
to the pair (A(X)⊥,q) (with V6 = V6(X)∨). It also follows from Theorem 3.1 that any generalized
dual of X arises in this way.

The same argument also works for generalized partners. 2

The argument of Lemma 3.8 shows that the set of isomorphism classes of generalized duals
of X can be identified with the quotient of P(V6(X)) by the action of the finite stabilizer group
of A(X) in PGL(V6(X)). Analogously, the isomorphism classes of generalized partners of X are
parameterized by a quotient of P(V6(X)∨) by the same group.

Let us list more explicitly the type of X∨q according to the stratum YkA(X) of q and the parity
of n = dimX:

k X∨q for n even X∨q for n odd

0 Special sixfold Ordinary fivefold

1 Ordinary fourfold Special fivefold

2 Special fourfold Ordinary threefold

3 Ordinary surface Special threefold

Recall that the stratum YkA(X) is always non-empty for k = 0, 1, 2, generically empty for

k = 3, and always empty for k > 4 (under our assumption that A(X) contains no decomposable
vectors). In fact, the condition that Y3

A(X) is non-empty is divisorial in Mn (see Remark 4.3).
In the same way, one can describe the types of generalized partners Xp of X depending on the
stratum Yk

A(X)⊥
of p and the parity of n.

Conjecture 3.7 says there are equivalences

AX ' AXp ' AX∨q

for every p ∈ P(V6(X)∨) and every q ∈ P(V6(X)). In particular, it predicts that often GM
categories are equivalent to those of lower-dimensional GM varieties, namely that:

(1) if X is a sixfold, then its GM category is equivalent to a fourfold’s GM category;

(2) if X is a fivefold, then its GM category is equivalent to a threefold’s GM category;

(3) if X is a fourfold such that Y3
A(X)⊥

6= ∅ or Y3
A(X) 6= ∅, then its GM category is equivalent

to the derived category of a GM surface.

As mentioned above, in § 4 we prove (3) in case Y3
A(X) 6= ∅ and an additional genericity

assumption holds, namely Y3
A(X) 6⊂ P(V5(X)).

Remark 3.9. Using Theorem 3.1, it is easy to see that to prove the duality conjecture in full
generality, it is enough to prove AX ' AX∨q for all X and q ∈ P(V6(X))\P(V5(X)). A similar
reduction was used in [DK18a, § 4] to prove birationality of period partners and of dual GM
varieties.
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Remark 3.10. A GM variety X as in (1)–(3) above is rational (see the discussion below and
Lemma 4.7). It seems likely that for such an X there is a rationality construction that involves
a blowup of a generalized partner or dual variety of dimension 2 less, and gives rise to an
equivalence of GM categories. Our approach to (3) in § 4 takes a completely different route.

3.3 Rationality conjectures
Let us recall what is known about rationality of GM varieties. A general GM threefold is
irrational by [Bea77, Theorem 5.6], while every GM fivefold or sixfold is rational by [DK18a,
Proposition 4.2] (for a general GM fivefold or sixfold this was already known to Roth). The
intermediate case of GM fourfolds is more mysterious, and closely parallels the situation for cubic
fourfolds: some rational examples are known [DIM15], but while a very general GM fourfold is
expected to be irrational, it has not been proven that a single GM fourfold is irrational. Below,
we analyze this state of affairs from the point of view of derived categories.

Following [Kuz16b, § 3.3], we use the following terminology.
• For a triangulated category A, the geometric dimension gdim(A) is defined as the minimal

integer m such that there exists an m-dimensional connected smooth projective variety M
and an admissible embedding A ↪→ Db(M).

• If Y is a smooth projective variety and Db(Y ) = 〈A1, . . . ,Am〉 is a maximal semiorthogonal
decomposition (i.e. the components are indecomposable), then Ai is called a Griffiths
component if gdim(Ai) > dimY − 1.

If the set of Griffiths components of Y did not depend on the choice of maximal semiorthogonal
decomposition, then it would be a birational invariant [Kuz16b, Lemma 3.10]; in particular,
it would be empty if Y is rational of dimension at least 2. Unfortunately, there are examples
showing this is not true (see [Kuz16b, § 3.4], [BGS14]). It may be possible to salvage the situation
by modifying the definition of a Griffiths component (some possibilities are discussed in [Kuz16b,
§ 3.4]), but this remains an important question.

Nonetheless, the existence of a Griffiths component appears to be related to irrationality in
several examples. For instance, if X ′ ⊂ P5 is a smooth cubic fourfold, there is a semiorthogonal
decomposition

Db(X ′) = 〈AX′ ,OX′ ,OX′(1),OX′(2)〉, (3.1)

where AX′ is a K3 category (see [Kuz04, Corollary 4.3] or [Kuz16a, Corollary 4.1]). If AX′

is equivalent to the derived category of a K3 surface, then gdim(AX′) = 2 and hence (3.1)
contains no Griffiths components. If AX′ is not geometric (which holds for a very general cubic
fourfold by an argument similar to Proposition 2.29), then we expect AX′ to be a Griffiths
component, although this remains an interesting open problem, cf. [Kuz16a, Conjecture 5.8].
These considerations motivated the following conjecture.

Conjecture 3.11 [Kuz10]. If X ′ is a rational cubic fourfold, then AX′ is equivalent to the
derived category of a K3 surface.

As evidence, this conjecture was proved in [Kuz10] for all rational X ′ known at the time.
Since then, a nearly complete answer to when AX′ is equivalent to the derived category of a
K3 surface has been given [AT14], and some new families of rational cubic fourfolds have been
produced [AHTV16].

The same philosophy can be applied to GM fourfolds. If the GM category AX of a GM fourfold
X is geometric, then (2.11) contains no Griffiths components, and otherwise we expect AX to
be a Griffiths component. This suggests the following analogue of Conjecture 3.11.
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Conjecture 3.12. If X is a rational GM fourfold, then the GM category AX is equivalent to
the derived category of a K3 surface.

One of the main results of this paper, Theorem 1.2 (or rather Theorem 4.1), verifies
Conjecture 3.12 for a certain family of rational GM fourfolds. Another result, Theorem 1.3 (or
rather Theorem 5.8), builds a bridge between Conjectures 3.12 and 3.11. Finally, recall that we
proved the GM category of a very general GM fourfold is not equivalent to the derived category
of a K3 surface (Proposition 2.29). Hence Conjecture 3.12 is consistent with the expectation that
a very general GM fourfold is irrational.

Now we consider GM varieties of other dimensions from the perspective of derived categories.
The next result shows that for a GM threefold X, any maximal semiorthogonal decomposition
of Db(X) obtained by refining (2.11) contains a Griffiths component. We view this as evidence
that any smooth GM threefold is irrational.

Lemma 3.13 (Cf. [Kuz16b, Proposition 3.12]). Let X be a GM threefold. Then AX does not
admit a semiorthogonal decomposition with all components of geometric dimension at most 1.

Proof. It is easy to see that any category of geometric dimension 0 is equivalent to Db(Spec(k)).
Further, by [Oka11] any category of geometric dimension 1 is equivalent to the derived category
of a curve. Note that HH•(Spec(k)) = k, and if C is a curve of genus g then

HH•(C) = kg[1]⊕ k2 ⊕ kg[−1].

Thus if AX has a semiorthogonal decomposition with all components of geometric dimension
at most 1, Proposition 2.9 and Theorem 2.8 imply AX ' Db(C) for a genus 10 curve C. This
cannot happen by Proposition 2.29. 2

If X is a GM fivefold or sixfold, then by the discussion in § 3.2, X has a generalized dual X∨

with dim(X∨)6 dim(X)−2. The duality conjecture (Conjecture 3.7(2)) predicts that AX 'AX∨ ,
and hence gdim(AX) 6 dim(X)− 2. So assuming the duality conjecture, we see that (2.11) has
no Griffiths components, which is consistent with the rationality of X.

4. Fourfold-to-surface duality

In this section we prove Conjecture 3.7 for ordinary fourfolds with a generalized dual surface
corresponding to a quadric point not lying on the Plücker hyperplane.

4.1 Statement of the result
Recall that for any GM fourfold X and a quadric point q ∈ P(V6(X)), we associated in § 3.2 a
generalized dual variety X∨q , which is an ordinary GM surface if q ∈ Y3

A(X).

Theorem 4.1. Let X be an ordinary GM fourfold such that

Y3
A(X) ∩ (P(V6(X))\P(V5(X))) 6= ∅.

Then for any point q ∈ Y3
A(X) ∩ (P(V6(X))\P(V5(X))), there is an equivalence

AX ' Db(X∨q ).
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The proof of this theorem takes the rest of this section. We start by noting an immediate
consequence for period partners.

Corollary 4.2. Assume X and q are as in Theorem 4.1, and let Xp be a period partner of X
such that (q,p) does not lie on the incidence divisor in P(V6(X)) × P(V6(X)∨). Then there is
an equivalence of GM categories AXp ' AX .

Proof. By Theorem 4.1 applied to X and Xp we have a pair of equivalences AX ' Db(X∨q )

and AXp ' Db(X∨q ). Combining them we obtain an equivalence AXp ' AX . 2

A key ingredient in the proof of Theorem 4.1 is the theory of homological projective
duality [Kuz07]. Very roughly, this theory relates the derived categories of linear sections of
an ambient variety to those of orthogonal linear sections of a ‘dual’ variety. As we explain below,
the varieties X and X∨q from Theorem 4.1 can be thought of as intersections of G ⊂ P(∧2V5)
and its dual G∨ = Gr(2, V ∨5 ) ⊂ P(∧2V ∨5 ) with projectively dual quadric subvarieties. To prove
Theorem 1.2, we thus establish a ‘quadratic’ version of homological projective duality, in the
case where the ambient variety is G. Much of our argument is not special to G, however, and
should have interesting applications in other settings.

Remark 4.3. GM fourfolds X as in the theorem form a 23-dimensional (codimension 1 in moduli)
family. This can be seen using Theorem 3.1. Indeed, by [O’Gr13, Proposition 2.2] Lagrangian
subspaces A ⊂ ∧3V6 with no decomposable vectors such that Y3

A 6= ∅ form a divisor in the moduli
space of all A, and hence form a 19-dimensional family. Having fixed such an A there are finitely
many q ∈ Y3

A, and in order for q ∈ P(V6(X))\P(V5(X)) the Plücker point p of X can be any
point of Y1

A⊥
such that (q,p) is not on the incidence divisor. In other words, p ∈ Y1

A⊥
\q⊥, so we

have a 4-dimensional family of choices.

Recall from § 2.1 that if X is an ordinary GM fourfold, there is a (canonical) hyperplane
W ⊂ ∧2V5(X) and a (non-canonical) quadric Q ⊂ P(W ) such that X = G ∩ Q. The fourfolds
satisfying the assumption of Theorem 4.1 admit several different characterizations.

Lemma 4.4. Let X be an ordinary GM fourfold. The following are equivalent:

(1) Y3
A(X) ∩ (P(V6(X))\P(V5(X))) 6= ∅;

(2) there is a rank 6 quadric Q ⊂ P(W ) such that X = G ∩Q;

(3) X contains a quintic del Pezzo surface, i.e. a smooth codimension 4 linear section of the
Grassmannian G ⊂ P(∧2V5(X)).

Proof. The equivalence of (1) and (2) follows from Proposition 3.4 since dimW = 9. Note that
since Y4

A(X) = ∅, the same proposition also shows that if X = G ∩Q then rank(Q) > 6.

We show (2) is equivalent to (3). First assume (2) holds. Then a maximal isotropic space
I ⊂W for Q has dimension 6, so G∩P(I) is a quintic del Pezzo surface contained in X, provided
this intersection is transverse. By the argument of [DK18a, Lemma 4.1] (or by Lemma 4.6 below),
this is true for a general I.

Conversely, assume (3) holds, i.e. assume there is a 6-dimensional subspace I ⊂W such that
Z = G ∩ P(I) ⊂ X is a quintic del Pezzo. The restriction map V6(X) → H0(IZ/P(I)(2)) from
quadrics in P(W ) containing X to those in P(I) containing Z is surjective with one-dimensional
kernel. If Q ⊂ P(W ) is the quadric corresponding to this kernel, then X = G∩Q and P(I) ⊂ Q.
It follows that rank(Q) 6 6. But as we noted above, the reverse inequality also holds. 2
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For the rest of the section, we fix an ordinary GM fourfold X satisfying the equivalent
conditions of Lemma 4.4 and a point q ∈ Y3

A(X) ∩ (P(V6(X))\P(V5(X))). Further, to ease

notation, we denote the generalized dual of X corresponding to the quadric point q (see
Lemma 3.8) by

Y = X∨q .

Note that Y is a GM surface.

4.2 Setup and outline of the proof
We outline here the strategy for proving Theorem 4.1.

The starting point is the following explicit geometric relation between X and Y . By
Proposition 3.4, the point q corresponds to a rank 6 quadric Q cutting out X, and the Plücker
point pX ∈ P(V6(X)∨) ∼= P(V6(Y )) of X corresponds to a quadric Q′ cutting out Y . Because X
and Y are ordinary, we may regard Q as a subvariety of P(∧2V5(X)) and Q′ as a subvariety
of P(∧2V5(Y )). Then [DK18a, Proposition 3.28] (which is stated for dual varieties but works
just as well for generalized duals) says that there is an isomorphism V5(X) ∼= V5(Y )∨ identifying
Q′ ⊂ P(∧2V5(Y )) with the projective dual to Q ⊂ P(∧2V5(X)). Hence, fixing V5 = V5(X), our
setup is as follows: there is a hyperplane W ⊂ ∧2V5 and a rank 6 quadric Q ⊂ P(W ) such that

X = G ∩Q and Y = G∨ ∩Q∨,

where Q∨ ⊂ P(∧2V ∨5 ) is the projectively dual quadric to Q ⊂ P(∧2V5), and

G∨ = Gr(2, V ∨5 ) ⊂ P(∧2V ∨5 )

is the dual Grassmannian.
From this starting point, the main steps of the proof are as follows. First, by considering

families of maximal linear subspaces of Q and Q∨, we find P1-bundles X̂ → X and Ŷ → Y ,
together with morphisms X̂ → P3 and Ŷ → P3 realizing X̂ and Ŷ as families of mutually
orthogonal linear sections of G and G∨. This allows us to apply homological projective duality to
obtain a semiorthogonal decomposition of Db(X̂) with Db(Ŷ ) as a component. By comparing this
(via mutation functors) with the decomposition of Db(X̂) coming from its P1-bundle structure
over X, we show Db(Ŷ ) has a decomposition into two copies of AX . On the other hand, as
Ŷ → Y is a P1-bundle, Db(Ŷ ) also decomposes into two copies of Db(Y ). We show these two
decompositions of Db(Ŷ ) coincide, and hence AX ' Db(Y ). Our proof gives an explicit functor
inducing this equivalence, see (4.15).

4.3 Maximal linear subspaces of the quadrics
We start by discussing a geometric relation between Q and Q∨. Let K ⊂W be the kernel of Q,
regarded as a symmetric linear map W → W∨. Since dimW = 9 and rank(Q) = 6, we have
dimK = 3. The filtration

0 ⊂ K ⊂W ⊂ ∧2V5

induces a filtration
0 ⊂W⊥ ⊂ K⊥ ⊂ ∧2V ∨5 ,

where K⊥ and W⊥ are the annihilators of K and W , so that dimK⊥ = 7 and dimW⊥ = 1. The
pairing between the dual spaces ∧2V5 and ∧2V ∨5 induces a non-degenerate pairing between W/K
and K⊥/W⊥, and hence an isomorphism

K⊥/W⊥ ∼= (W/K)∨.
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The quadric Q induces a smooth quadric Q̄ in the 5-dimensional projective space P(W/K).
The quadric Q̄ can be identified with the Grassmannian Gr(2, 4); more precisely, we can find an
isomorphism

W/K ∼= ∧2S

for a 4-dimensional vector space S, with an identification

Q̄ = Gr(2, S) ⊂ P(∧2S).

The projective dual of Q̄ is then the dual Grassmannian

Q̄∨ = Gr(2, S∨) ⊂ P(∧2S∨) = P((W/K)∨) = P(K⊥/W⊥).

It follows that the projective dual of

Q = ConeP(K) Q̄ ⊂ P(∧2V5) (4.1)

is given by
Q∨ = ConeP(W⊥) Q̄

∨ ⊂ P(∧2V ∨5 ). (4.2)

Projective 3-space P(S) is (a connected component of) the space of maximal linear subspaces
of the quadric Q̄ = Gr(2, S). The universal family is the flag variety Fl(1, 2;S) → P(S), with
fiber over a point s ∈ P(S) the plane P(s ∧ S) ⊂ P(∧2S). Analogously, the same flag variety
Fl(2, 3;S∨) ∼= Fl(1, 2;S) is (a connected component of) the space of maximal linear subspaces of
Q̄∨ = Gr(2, S∨), this time with fiber over a point s ∈ P(S) being the plane P(∧2s⊥) ⊂ P(∧2S∨).
Note that the fibers of these two correspondences over a point s ∈ P(S) are mutually orthogonal
with respect to the pairing between ∧2S and ∧2S∨. We summarize this discussion by the diagram

Fl(1, 2;S)
pQ̄

{{

πQ̄

%%

Fl(2, 3;S∨)
πQ̄∨

yy

pQ̄∨

%%
P(∧2S) ⊃ Q̄ P(S) Q̄∨ ⊂ P(∧2S∨)

(4.3)

with the inner arrows being P2-bundles with mutually orthogonal fibers (as linear subspaces
of P(∧2S) and P(∧2S∨)), and the outer arrows being P1-bundles.

By (4.1) every maximal isotropic subspace of Q̄ gives a maximal isotropic subspace of Q by
taking its preimage under the projection W →W/K = ∧2S. Analogously, by (4.2) every maximal
isotropic subspace of Q̄∨ gives a maximal isotropic subspace of Q∨ by taking its preimage under
the projection K⊥ → K⊥/W⊥ = ∧2S∨. Note that for the pairing between W and K⊥ induced
by the pairing between ∧2V5 and ∧2V ∨5 , the subspace K ⊂W is the left kernel, and the subspace
W⊥ ⊂ K⊥ is the right kernel. Hence any s ∈ P(S) gives mutually orthogonal maximal isotropic
spaces Is and I⊥s of Q and Q∨ respectively. These spaces form the fibers of vector bundles I

and I⊥ over P(S) of ranks 6 and 4, which are mutually orthogonal subbundles of ∧2V5 ⊗ OP(S)

and ∧2V ∨5 ⊗ OP(S). We can summarize this discussion by the following diagram.

PP(S)(I)
pQ

||

πQ

$$

PP(S)(I
⊥)

πQ∨

yy

pQ∨

$$
P(∧2V5) ⊃ Q P(S) Q∨ ⊂ P(∧2V ∨5 )

(4.4)

Here the inner arrows are P5- and P3-bundles with mutually orthogonal fibers, and the outer
arrows are P1-bundles (induced by the P1-bundles of diagram (4.3)) away from the vertices
P(K) and P(W⊥) of the quadrics (over which the fibers are isomorphic to P(S) ∼= P3).
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4.4 Families of linear sections of the Grassmannians
Now define

X̂ := G×P(∧2V5) PP(S)(I) and Ŷ := G∨ ×P(∧2V ∨5 ) PP(S)(I
⊥) (4.5)

to be the induced families of linear sections of G and G∨. They fit into a diagram

X̂
pX

��

πX

!!

Ŷ
πY

}}

pY

��
X P(S) Y

(4.6)

with the maps induced by those in (4.4) (remember that X = G ∩Q and Y = G∨ ∩Q∨).
We will denote by H,H ′, and h the ample generators of Pic(G), Pic(G∨), and P(S).

Lemma 4.5. There are rank 2 vector bundles SX and SY on X and Y with c1(SX) = −H and
c1(SY ) = −H ′, and isomorphisms

X̂ ∼= PX(SX) and Ŷ ∼= PY (SY ),

such that OPX(SX)(1) = π∗XOP(S)(h) and OPY (SY )(1) = π∗Y OP(S)(h). In particular, X̂ is a smooth

fivefold, Ŷ is a smooth threefold, and

K
X̂

= −H − 2h and K
Ŷ

= H ′ − 2h. (4.7)

Proof. Since X and Y are smooth, they do not intersect the vertices P(K) and P(W⊥) of
the quadrics Q and Q∨, hence the maps pX and pY are P1-fibrations induced by those in
diagram (4.4). In other words, we have fiber product squares

X̂ //

pX

��

Fl(1, 2;S)

pQ̄
��

X // Q̄

and

Ŷ //

pY

��

Fl(2, 3;S∨)

pQ̄∨

��
Y // Q̄∨.

The map pQ̄ is the projectivization of the tautological subbundle of S ⊗O on Q̄ = Gr(2, S), and
pQ̄∨ is the projectivization of the annihilator of the tautological subbundle of S∨⊗O on the dual
Grassmannian Q̄∨ = Gr(2, S∨). So we can take SX and SY to be the pullbacks to X and Y of
these bundles.

To compute the canonical classes, note that the determinant of the tautological bundle (and
of its annihilator) on Gr(2, S) is OGr(2,S)(−1), hence c1(SX) = −H and c1(SY ) = −H ′. Now
apply the standard formula for the canonical bundle of the projectivization of a vector bundle,
taking into account that KX = −2H and KY = 0 by (2.2). 2

Lemma 4.6. The map πX : X̂ → P(S) is flat with general fiber a smooth quintic del Pezzo
surface. The map πY : Ŷ → P(S) is generically finite of degree 5.

Proof. The fiber of πX over a point s ∈ P(S) is the intersection G ∩P(Is), where the subspace
P(Is) ⊂ P(∧2V5) has codimension 4. Thus the dimension of π−1

X (s) is at least 2. If the dimension
were greater than 2, this fiber would give a divisor in X of degree at most 5, but by (2.3)
and (2.2) every divisor in X has degree divisible by 10. Thus every fiber is a dimensionally
transverse intersection, and flatness follows.

Furthermore, since X̂ is smooth, the general fiber of πX is a smooth quintic del Pezzo
surface. Then by [DK18a, Proposition 2.24] the general fiber of πY is a dimensionally transverse
and smooth linear section of G∨ of codimension 6, hence is just 5 reduced points. 2
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As a byproduct of the above, we obtain the following.

Lemma 4.7. The variety X is rational.

Proof. The same argument as in [DK18a, Proposition 4.2] works. Let X̃ ⊂ X̂ be the preimage
under the map πX of a general hyperplane P2 ⊂ P(S). By Lemma 4.6, the general fiber of the
morphism X̃ → P2 is a smooth quintic del Pezzo surface. Hence by a theorem of Enriques [She92],
X̃ is rational over P2, and so over k as well. On the other hand, the map X̃ → X is birational
(in fact, it is a blowup of a quintic del Pezzo surface), so X is rational too. 2

4.5 Homological projective duality
Homological projective duality (HPD) is a key tool in the proof of Theorem 4.1. Very roughly,
HPD relates the derived categories of linear sections of a given variety to those of orthogonal
linear sections of an ‘HPD variety’. We refer to [Kuz07] for the details of this theory, and
to [Kuz14] or [Tho17] for an overview. For us, the relevant point is that the dual Grassmannian
G∨ is HPD to G. We spell out the precise consequence of this that we need below.

Recall that by Lemma 2.2 there is a semiorthogonal decomposition

Db(G) = 〈B,B(H),B(2H),B(3H),B(4H)〉.
Let

i : H(G,G∨) ↪→ G×G∨ ⊂ P(∧2V5)×P(∧2V ∨5 )

be the incidence divisor defined by the canonical section of O(H + H ′). Recall that U denotes
the tautological rank 2 bundle on G, and let V denote the tautological rank 2 bundle on G∨.
The following was proved in [Kuz06, § 6.1]. See [Kuz07, Definition 6.1] for the definition of HPD.

Theorem 4.8. The Grassmannian G∨ → P(∧2V ∨5 ) is HPD to G → P(∧2V5) with respect to
the above semiorthogonal decomposition. Moreover, the duality is implemented by a sheaf E

on H(G,G∨) whose pushforward to G×G∨ fits into an exact sequence

0 → OG � V → U∨ � OG∨ → i∗E → 0.

In fact, we shall only need a consequence of HPD, which we formulate below as Corollary 4.9.
Note that the natural map

X̂ ×P(S) Ŷ → X × Y → G×G∨

factors through H(G,G∨). Indeed, the fiber of X̂ ×P(S) Ŷ over any point s ∈ P(S) is

(P(Is)×P(I⊥s )) ∩ (G×G∨) ⊂ H(G,G∨).

Note also that
dim(X̂ ×P(S) Ŷ ) = 5, (4.8)

since the map X̂ ×P(S) Ŷ → Ŷ is flat of relative dimension 2 by Lemma 4.6, and dim(Ŷ ) = 3 by
Lemma 4.5.

Denote by Ê the pullback of the HPD object E to X̂ ×P(S) Ŷ and by Φ̂ : Db(Ŷ ) → Db(X̂)

the corresponding Fourier–Mukai functor. Note that Φ̂ is P(S)-linear (since Ê is supported on
the fiber product X̂ ×P(S) Ŷ ), i.e.

Φ̂(F ⊗ π∗Y G) ∼= Φ̂(F)⊗ π∗XG
for all F ∈ Db(Ŷ ) and G ∈ Db(P(S)). By Lemma 4.5 and (4.8), the families X̂ and Ŷ of linear
sections of G and G∨ satisfy the dimension assumptions of [Kuz07, Theorem 6.27]. Hence we
obtain the following.
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Corollary 4.9. The functor Φ̂ : Db(Ŷ ) → Db(X̂) is fully faithful, and there is a semiorthogonal
decomposition

Db(X̂) = 〈Φ̂(Db(Ŷ )),BX(H)�Db(P(S))〉, (4.9)

where BX(H)�Db(P(S)) denotes the triangulated subcategory generated by objects of the form
p∗X(F)⊗ π∗X(G) for F ∈ BX(H) and G ∈ Db(P(S)).

4.6 Mutations

Since pX : X̂ → X is a P1-bundle (Lemma 4.5), we also have a semiorthogonal decomposition

Db(X̂) = 〈p∗XDb(X), p∗XDb(X)(h)〉.

Inserting the decomposition (2.10) of Db(X), we obtain

Db(X̂) = 〈A
X̂
,B,B(H),A

X̂
(h),B(h),B(H + h)〉, (4.10)

where to ease notation we write A
X̂

for p∗XAX and simply B for p∗XBX . We find a sequence
of mutations bringing this decomposition into the form of (4.9). In doing so we will use several
times KX = −2H, which holds by (2.2), and K

X̂
= −H − 2h, which holds by (4.7). For a brief

review of mutation functors and references, see the discussion in § 2.8.

Step 1. Mutate B(H) to the left of A
X̂

in (4.10). Since this is a mutation in p∗XDb(X) and
KX = −2H, by (2.19) we get

Db(X̂) = 〈B(−H),A
X̂
,B,A

X̂
(h),B(h),B(H + h)〉.

Step 2. Mutate B(H + h) to the far left. Since K
X̂

= −H − 2h, by (2.19) we get

Db(X̂) = 〈B(−h),B(−H),A
X̂
,B,A

X̂
(h),B(h)〉.

Step 3. Mutate B(−H) to the left of B(−h). Since these two subcategories are completely
orthogonal (see the lemma below), we get

Db(X̂) = 〈B(−H),B(−h),A
X̂
,B,A

X̂
(h),B(h)〉.

Lemma 4.10. The categories B(−H) and B(−h) in Db(X̂) are completely orthogonal.

Proof. By Step 2, the pair (B(−h),B(−H)) is semiorthogonal. On the other hand, by Serre
duality and (4.7), semiorthogonality of (B(−H),B(−h)) is equivalent to that of (B(−h),B(2h)),
which follows from (4.9) as (O(−h),O(2h)) is semiorthogonal in Db(P(S)). 2

Step 4. Mutate B(−H) to the far right. Again by (2.19), we get

Db(X̂) = 〈B(−h),A
X̂
,B,A

X̂
(h),B(h),B(2h)〉.

Step 5. Mutate A
X̂

and A
X̂

(h) to the far left. We get

Db(X̂) = 〈LB(−h)(AX̂
),L〈B(−h),B〉(AX̂

(h)),B(−h),B,B(h),B(2h)〉
= 〈LB(−h)(AX̂

),L〈B(−h),B〉(AX̂
(h)),BX �Db(P(S))〉,

where we used the standard decomposition Db(P(S)) = 〈O(−h),O,O(h),O(2h)〉.
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Step 6. Twist the decomposition by O(H). We get

Db(X̂) = 〈LB(H−h)(AX̂
(H)),L〈B(H−h),B(H)〉(AX̂

(H + h)),BX(H)�Db(P(S))〉. (4.11)

To rewrite the first two components here, we used the following general fact: If A ⊂ T is an
admissible subcategory of a triangulated category and F is an autoequivalence of T (in our case F
is the autoequivalence of Db(X̂) given by tensoring with O(H)), then there is an isomorphism
of functors

F ◦ LA
∼= LF (A) ◦ F. (4.12)

Finally, we obtain the following.

Proposition 4.11. The functor Φ̂∗ ◦ (−⊗ O(H)) : Db(X̂) → Db(Ŷ ) induces an equivalence

〈A
X̂
,A

X̂
(h)〉 ' Db(Ŷ ),

where Φ̂∗ : Db(X̂) → Db(Ŷ ) denotes the left adjoint of Φ̂.

Proof. Comparing the decompositions (4.11) and (4.9), we see that Φ̂ induces an equivalence

Φ̂ : Db(Ŷ )
∼−−→ 〈LB(H−h)(AX̂

(H)),L〈B(H−h),B(H)〉(AX̂
(H + h))〉.

Therefore its left adjoint Φ̂∗ gives an inverse equivalence. On the other hand, by semiorthogonality
of (4.9) the functor Φ̂∗ vanishes on B(H−h) and B(H), hence its composition with the mutation
functors through these categories is isomorphic to Φ̂∗. Thus Φ̂∗ induces an equivalence from the
subcategory 〈A

X̂
(H),A

X̂
(H + h)〉 ⊂ Db(X̂) to Db(Ŷ ). This is equivalent to the claim. 2

4.7 Proof of the theorem

Since pY : Ŷ → Y is a P1-bundle (Lemma 4.5), we have

Db(Ŷ ) = 〈p∗Y Db(Y ), p∗Y Db(Y )(h)〉. (4.13)

We aim to prove that this semiorthogonal decomposition coincides with the one obtained by
applying the fully faithful functor (−⊗ O(−h)) ◦ Φ̂∗ ◦ (−⊗ O(H)) to 〈A

X̂
,A

X̂
(h)〉. For this, we

consider the composition of functors

F := pY ∗ ◦ (−⊗ O(−2h)) ◦ Φ̂∗ ◦ (−⊗ O(H)) ◦ p∗X : Db(X) → Db(Y ). (4.14)

Proposition 4.12. The functor F vanishes on the subcategory AX ⊂ Db(X).

Before proving the proposition, let us show how it implies the equivalence AX ' Db(Y ).

Proof of Theorem 4.1. We claim that

pY ∗ ◦ (−⊗ O(−h)) ◦ Φ̂∗ ◦ (−⊗ O(H)) ◦ p∗X : Db(X) → Db(Y ) (4.15)

induces an equivalence AX ' Db(Y ). Note that the functor p∗X is fully faithful on AX . So by

Proposition 4.11 the functor (−⊗O(−h)) ◦ Φ̂∗ ◦ (−⊗O(H)) ◦ p∗X gives a fully faithful embedding

AX ↪→ Db(Ŷ ), whose image A satisfies

Db(Y ) = 〈A,A(h)〉. (4.16)

On the other hand, by Proposition 4.12 the functor pY ∗ annihilates A(−h). But the kernel of
the functor pY ∗ is p∗Y Db(Y )(−h), so A(−h) ⊂ p∗Y Db(Y )(−h), and thus

A ⊂ p∗Y Db(Y ) and A(h) ⊂ p∗Y Db(Y )(h).

In view of the decompositions (4.16) and (4.13), we see that equality holds in the above inclusions.
Since pY ∗ induces an equivalence p∗Y Db(Y ) ' Db(Y ), this finishes the proof. 2
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Now we turn to the proof of Proposition 4.12, which takes the rest of the section. Let
fX : X → G and fY : Y → G∨ be the Gushel maps, and let pXY : X̂ ×P(S) Ŷ → X × Y be the
natural morphism. Recall from § 4.5 that the composition

X̂ ×P(S) Ŷ
pXY−−−−→ X × Y fX×fY−−−−−→ G×G∨

factors through the incidence divisor H(G,G∨). Hence there is a commutative diagram

X̂ ×P(S) Ŷ
p //

ĝ &&

H(X,Y )

g

��

j // X × Y

fX×fY
��

H(G,G∨)
i // G×G∨

(4.17)

where H(X,Y ) is by definition the pullback of H(G,G∨) along fX × fY , and pXY = j ◦ p. We
will need the following two lemmas.

Lemma 4.13. There is an isomorphism p∗OX̂×P(S)Ŷ
∼= OH(X,Y ).

Proof. We have a diagram

X̂ ×P(S) Ŷ
∆̂ //

��

X̂ × Ŷ

πX×πY
��

pX×pY // X × Y

P(S)
∆ // P(S)×P(S)

where the square is Cartesian, and also Tor-independent as the fiber product has expected
dimension by (4.8). To prove the lemma, we must show (pX ×pY )∗(∆̂∗OX̂×P(S)Ŷ

) ∼= OH(X,Y ). By

Tor-independence, we have an isomorphism

∆̂∗OX̂×P(S)Ŷ
∼= (πX × πY )∗∆∗OP(S).

Pulling back the standard resolution of the diagonal on P(S)×P(S), we obtain an exact sequence

0 → π∗XOP(S)(−3h)� π∗Y Ω3
P(S)(3h) → π∗XOP(S)(−2h)� π∗Y Ω2

P(S)(2h)

→ π∗XOP(S)(−h)� π∗Y Ω1
P(S)(h) → O

X̂×Ŷ → ∆̂∗OX̂×P(S)Ŷ
→ 0

on X̂ × Ŷ . Using the identifications pX : X̂ = PX(SX) → X and pY : Ŷ = PY (SY ) → Y of
Lemma 4.5, it is easy to compute:

pY ∗π
∗
Y Ω3

P(S)(3h) ∼= pY ∗π
∗
Y O(−h) = 0,

pX∗π
∗
XOP(S)(−2h) ∼= det(SX)[−1] ∼= OX(−H)[−1],

pY ∗π
∗
Y Ω2

P(S)(2h) ∼= det(SY ) ∼= OY (−H ′),
pX∗π

∗
XOP(S)(−h) = 0,

(pX × pY )∗(OX̂×Ŷ ) ∼= OX×Y .

It follows that in the spectral sequence computing (pX × pY )∗(∆̂∗OX̂×P(S)Ŷ
) from the above

resolution, the only non-trivial terms are
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R1(pX × pY )∗(π
∗
XO(−2h)� π∗Y Ω2

P(S)(2h)) ∼= OX×Y (−H −H ′),
R0(pX × pY )∗(OX̂×Ŷ ) ∼= OX×Y ,

and we get an exact sequence

0 → OX×Y (−H −H ′) → OX×Y → (pX × pY )∗(∆̂∗OX̂×P(S)Ŷ
) → 0,

which gives the required isomorphism (pX × pY )∗(∆̂∗OX̂×P(S)Ŷ
) ∼= OH(X,Y ). 2

Lemma 4.14. The functor F[−2] is given by a Fourier–Mukai kernel K ∈ Db(X × Y ), which fits
into a distinguished triangle

UX(−H)� OY (−H ′) → OX(−H)� V∨Y (−H ′) → K.

Proof. The main term in the definition (4.14) of F is the left adjoint Φ̂∗ of Φ̂. By definition Φ̂

is given by the Fourier–Mukai kernel Ê ∈ Db(X̂ ×P(S) Ŷ ), so by Grothendieck duality we find

that Φ̂∗ is given by the kernel

Ê∨ ⊗ ω
X̂×P(S)Ŷ /Ŷ

[2] = Ê∨(2h−H)[2] ∈ Db(X̂ ×P(S) Ŷ ),

where Ê∨ = RHom(Ê,O) is the derived dual of Ê on X̂×P(S) Ŷ . Using this, it follows easily from
the definition of F that F[−2] is given by the kernel

K := pXY ∗(Ê
∨) ∈ Db(X × Y ).

Using the diagram (4.17) and the definition of Ê, we can rewrite this as

K ∼= j∗p∗RHom(p∗g∗E,O
X̂×P(S)Ŷ

)

∼= j∗RHom(g∗E, p∗OX̂×P(S)Ŷ
)

∼= j∗RHom(g∗E,OH(X,Y )),

where the second line holds by the local adjunction between p∗ and p∗, and the third by
Lemma 4.13. Now Grothendieck duality for the inclusion j : H(X,Y ) → X × Y of the incidence
divisor (which has class H +H ′) gives

K ∼= j∗RHom(g∗E, j!OX×Y (−H −H ′)[1]) ∼= RHom(j∗g
∗E,OX×Y (−H −H ′)[1]).

On the other hand, the fiber square in diagram (4.17) is Tor-independent because H(X,Y )
has expected dimension. Hence we have an isomorphism

j∗g
∗E ∼= (fX × fY )∗i∗E,

and so, by the explicit resolution of i∗E from Theorem 4.8, a distinguished triangle

OX � VY → U∨X � OY → j∗g
∗E.

Dualizing, twisting by OX×Y (−H − H ′), and rotating this triangle, we obtain a distinguished
triangle

UX(−H)� OY (−H ′) → OX(−H)� V∨Y (−H ′) → RHom(j∗g
∗E,OX×Y (−H −H ′)[1]),

which combined with the above expression for K finishes the proof. 2
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Finally, we prove Proposition 4.12.

Proof of Proposition 4.12. By Lemma 4.14, it suffices to show the Fourier–Mukai functors with
kernels

UX(−H)� OY (−H ′) and OX(−H)� V∨Y (−H ′)
vanish on AX . This is equivalent to the vanishing

H•(X,UX(−H)⊗ F) = 0 and H•(X,OX(−H)⊗ F) = 0

for all F ∈ AX , which holds since AX is right orthogonal to BX(H) = 〈OX(H),U∨X(H)〉 by
definition (see (2.10) and (2.8)). 2

5. Cubic fourfold derived partners

In this section, we show that the K3 categories attached to GM and cubic fourfolds not only
behave similarly, but sometimes even coincide. For this, we will consider ordinary GM fourfolds
satisfying the following condition: there is a 3-dimensional subspace V3 ⊂ V5(X) such that

Gr(2, V3) ⊂ X. (5.1)

Remark 5.1. GM fourfolds that satisfy (5.1) for some V3 form a 21-dimensional (codimension 3
in moduli) family. This can be seen using Theorem 3.1, as follows. Let V6 = V6(X). Then by
[DK17, Theorem 4.5(c)], for a 3-dimensional subspace V3 ⊂ V6 condition (5.1) holds if and only
if

dim(A ∩ ((∧2V3) ∧ V6)) > 4 and pX ∈ P(V ⊥3 ) ⊂ P(V ∨6 ). (5.2)

By [IKKR16, Lemma 3.6] Lagrangian subspaces A ⊂ ∧3V6 with no decomposable vectors such
that the first part of (5.2) holds for some V3 ⊂ V6 form a non-empty divisor in the moduli space
of all A, and hence form a 19-dimensional family. Having fixed such an A there are finitely many
points V3 ∈ Gr(3, V6) such that the first part of (5.2) holds (G. Kapustka and M. Kapustka,
private communication 2016). By Theorem 3.1, for such a V3, the ordinary GM fourfolds X such
that the second part of (5.2) holds are parameterized by Y1

A⊥
∩P(V ⊥3 ). By [DK17, Lemma 2.3]

we have P(V ⊥3 ) ⊂ YA⊥ . Further, since Y>2
A⊥

is an irreducible surface of degree 40, we have

P(V ⊥3 ) 6⊂ Y>2
A⊥

. Thus Y1
A⊥
∩P(V ⊥3 ) is a non-empty open subset of the projective plane P(V ⊥3 ).

From now on we write V5 = V5(X) and fix a 3-dimensional subspace V3 ⊂ V5 such that (5.1)
holds. We associate to X a birational cubic fourfold X ′ following [DIM15, § 7.2]. Generically X ′

is smooth, and in this case we prove (Theorem 5.8) there is an equivalence AX ' AX′ where
AX′ is the K3 category of the cubic fourfold defined by (3.1). The cubic X ′ is simply the image
of the linear projection from the plane Gr(2, V3) in X. We begin by studying this projection as
a map from the entire Grassmannian G.

5.1 A linear projection of the Grassmannian
Set

P = P(∧2V3) = Gr(2, V3) ⊂ G.

Choose a complement V2 to V3 in V5, and set

B = ∧2V5/∧2V3 = ∧2V2 ⊕ (V2 ⊗ V3).

Then the linear projection from P gives a birational isomorphism from G to P(B). Its structure
can be described as follows.
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Lemma 5.2. Let p : G̃ → G be the blowup with center in P . Then the linear projection from
P induces a regular map q : G̃ → P(B) which identifies G̃ with the blowup of P(B) in the
subvariety P(V2)×P(V3) ⊂ P(V2 ⊗ V3) ⊂ P(B). In other words, we have a diagram

E //

��

G̃
p

��

q

!!

E′oo

''
P // G P(B) P(V2)×P(V3)oo

(5.3)

where:
• E is the exceptional divisor of the blowup p, and is mapped birationally by q onto the

hyperplane P(V2 ⊗ V3) ⊂ P(B);
• E′ is the exceptional divisor of the blowup q, and is mapped birationally by p onto the

Schubert variety
Σ = {U ∈ G | U ∩ V3 6= 0} ⊂ G.

Proof. Straightforward. 2

We denote by H and H ′ the ample generators of Pic(G) and Pic(P(B)).

Lemma 5.3. On G̃ we have the relations{
H ′ = H − E,
E′ = H − 2E,

or equivalently

{
H = 2H ′ − E′,
E = H ′ − E′, (5.4)

as divisors modulo linear equivalence. Moreover, we have

K
G̃

= −5H + 3E = −7H ′ + 2E′. (5.5)

Proof. The equalities (5.5) follow from the standard formula for the canonical class of a blowup,
and the equality H ′ = H − E holds by definition of p. Using these, the other equalities in (5.4)
follow directly (note that Pic(G̃) ∼= Z2 is torsion free). 2

Later in this section we will need an expression for the vector bundle p∗U∨ on G̃ in terms of
the blowup q. For this, we consider the composition

φ : (V ∨2 ⊕ V ∨3 )⊗ OP(B) ↪→ V2 ⊗ V ∨2 ⊗ (V ∨2 ⊕ V ∨3 )⊗ OP(B)

→ V2 ⊗ (∧2V ∨2 ⊕ (V ∨2 ⊗ V ∨3 ))⊗ OP(B) → V2 ⊗ OP(B)(H
′),

where the first morphism is induced by the map k → V2 ⊗ V ∨2 corresponding to the identity
of V2, the second is induced by the map V ∨2 ⊗ V ∨2 → ∧2V ∨2 , and the third is induced by the
composition

(∧2V ∨2 ⊕ (V ∨2 ⊗ V ∨3 ))⊗ OP(B) = B∨ ⊗ OP(B) → OP(B)(H
′).

Lemma 5.4. The cokernel of φ is the sheaf OP(V2)×P(V3)(2, 1).

Proof. Write

φ′ : V ∨2 ⊗ OP(B) → V2 ⊗ OP(B)(H
′),

φ′′ : V ∨3 ⊗ OP(B) → V2 ⊗ OP(B)(H
′),
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for the components of φ. The first component φ′ is an isomorphism away from the hyperplane
P(V2 ⊗ V3) ⊂ P(B), and zero on it. Hence coker(φ′) = V2 ⊗ OP(V2⊗V3)(H

′). It follows that the
cokernel of φ coincides with the cokernel of the morphism

φ′′|P(V2⊗V3) : V ∨3 ⊗ OP(V2⊗V3) → V2 ⊗ OP(V2⊗V3)(H
′).

But the morphism φ′′|P(V2⊗V3) is generically surjective with degeneracy locus the Segre subvariety

P(V2)×P(V3) ⊂ P(V2 ⊗ V3), and its restriction to this locus factors as the composition

V ∨3 ⊗ OP(V2)×P(V3) � OP(V2)×P(V3)(0, 1) ↪→ V2 ⊗ OP(V2)×P(V3)(1, 1) = V2 ⊗ OP(V2)×P(V3)(H
′).

It follows that the cokernel of φ′′|P(V2⊗V3) is isomorphic to OP(V2)×P(V3)(2, 1). 2

Let F denote the class of a fiber of the natural projection E′ → P(V2)×P(V3) → P(V2).

Proposition 5.5. On G̃ there is an exact sequence

0 → p∗U∨ → V2 ⊗ O
G̃

(H ′) → OE′(H
′ + F ) → 0. (5.6)

Proof. By Lemma 5.4, we have an exact sequence

V ∨5 ⊗ OP(B)
φ−→ V2 ⊗ OP(B)(H

′) → OP(V2)×P(V3)(2, 1) → 0.

Pulling back to G̃, we obtain an exact sequence

V ∨5 ⊗ O
G̃

→ V2 ⊗ O
G̃

(H ′) → OE′(H
′ + F ) → 0.

Since E′ is a divisor on G̃, the kernel K of the epimorphism V2 ⊗ O
G̃

(H ′) → OE′(H
′ + F ) is a

rank 2 vector bundle on G̃, which by the above exact sequence is a quotient of the trivial bundle
V ∨5 ⊗ O

G̃
. Hence K induces a morphism G̃ → G. This morphism can be checked to agree with

the blowdown morphism p, so K ∼= p∗U∨. 2

5.2 Setup and statement of the result
Recall that X is an ordinary GM fourfold containing the plane P = Gr(2, V3). The following
proposition describes the structure of the rational map from X to P5 given by projection from P .
We slightly abuse notation by using the same symbols for the exceptional divisors and blowup
morphisms as in the above discussion of G.

Proposition 5.6. Let p : X̃ → X be the blowup with center in P . Then the linear projection
from P induces a regular map q : X̃ → X ′ to a cubic fourfold X ′ containing a smooth cubic
surface scroll T , and identifies X̃ as the blowup of X ′ in T . In other words, we have a diagram

E
i //

pE

��

X̃
p

��

q

  

E′
joo

qE′

��
P // X X ′ Too

where p and q are blowups with exceptional divisors E and E′. Moreover, the relations (5.4)
continue to hold on X̃, and

K
X̃

= −2H + E = −3H ′ + E′. (5.7)

Finally, if X does not contain planes of the form P(V1 ∧ V4) where V1 ⊂ V3 ⊂ V4 ⊂ V5, then X ′

is smooth.
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Proof. By § 2.1 there is a hyperplane P(W ) ⊂ P(∧2V5) and a quadric hypersurface Q ⊂ P(W )
such that X = G ∩Q and P ⊂ Q. Consider the subspace

C = W/∧2V3 ⊂ ∧2V5/∧2V3 = B,

so that P(C) ⊂ P(B) is a hyperplane. We claim that the corresponding hyperplane section

T = (P(V2)×P(V3)) ∩P(C)

of P(V2)×P(V3) ⊂ P(B) is a smooth cubic surface scroll. For this it is enough to show
that P(C)∩P(V2⊗ V3) is a hyperplane in P(V2⊗ V3) whose equation, considered as an element
in V ∨2 ⊗ V ∨3 ∼= Hom(V3, V

∨
2 ), has rank 2. Assume on the contrary that the rank of this equation

is at most 1. Then its kernel is a subspace of V3 of dimension at least 2, which is contained in the
kernel of the skew form ω on V5 defining W . So the rank of ω is 2. But then the Grassmannian
hull MX = G∩P(W ) of X is singular along P2 = Gr(2, ker(ω)), and X is singular along P2∩Q.
This contradiction proves the claim.

The proper transform of the Grassmannian hull M = MX under p : G̃ → G coincides with
the proper transform of P(C) under q : G̃ → P(B). Thus if M̃ = BlP (M) → M is the blowup

in P , then projection from P gives an identification M̃ ∼= BlT (P(C)) → P(C). Further, the

proper transform of X = M ∩Q under M̃ → M is cut out by a section of the line bundle

O
M̃

(2H − E) = O
M̃

(3H ′ − E′), (5.8)

and therefore coincides with the proper transform under the morphism M̃ → P(C) of a cubic
fourfold X ′ ⊂ P(C) containing T . This proves the first part of the lemma.

The relations (5.4) clearly restrict to X̃, and the equalities (5.7) follow from the standard
formula for the canonical class of a blowup.

It remains to show that X ′ is smooth if X does not contain planes of the form P(V1 ∧ V4)
where V1 ⊂ V3 ⊂ V4 ⊂ V5. For this, first note that the blowup of X ′ in T is smooth, since it
coincides with the blowup of X in P . Therefore, X ′ is smooth away from T . On the other hand,
T is also smooth, so it is enough to check that T ⊂ X ′ is a locally complete intersection, i.e. that
its conormal sheaf is locally free. Since E′ → T is the exceptional divisor of the blowup of X ′

in T , it is enough to check that the map E′ → T is a P1-bundle. Since by (5.8) E′ is cut out
in the exceptional divisor of (5.3) by fiberwise linear conditions, it is enough to show that there
are no points in T ⊂ P(V2)×P(V3) over which the fiber of E′ is isomorphic to P2. But such a
point would correspond to a choice of a V1 ⊂ V3 (giving a point in P(V3)) and V3 ⊂ V4 (giving
a point of P(V5/V3) = P(V2)), such that the plane P(V1 ∧ V4) is in X. Since we assumed there
are no such planes in X, we conclude that X ′ is smooth. 2

The condition guaranteeing smoothness of X ′ in the final statement of Proposition 5.6 holds
generically.

Lemma 5.7. If X is a general ordinary GM fourfold containing P = Gr(2, V3) for some V3 ⊂ V5,
then X does not contain planes of the form P(V1 ∧ V4) where V1 ⊂ V3 ⊂ V4 ⊂ V5.

Proof. By Theorem 3.1, an ordinary GM fourfold X corresponds to a pair (A,p) such that A
has no decomposable vectors and p ∈ Y1

A⊥
. By Remark 5.1, X contains the plane Gr(2, V3) if

and only if (5.2) holds. Similarly, by [DK17, Theorem 4.3(c)], X contains a plane P(V1 ∧ V4) if
and only if Y3

A ∩P(V5) 6= ∅.
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By [IKKR16, Lemma 3.6] Lagrangians A ⊂ ∧3V6 with no decomposable vectors such that
there is V3 ⊂ V6 for which the first part of (5.2) holds are parameterized by an open subset of a
divisor Γ ⊂ LG(10,∧3V6), and by [IKKR16, Lemma 3.7] this divisor has no common components
with the divisor ∆ ⊂ LG(10,∧3V6) parameterizing A such that Y3

A 6= ∅. Choose any A with no
decomposable vectors such that there is V3 ⊂ V6 for which the first part of (5.2) holds, but Y3

A = ∅.
Then as explained in Remark 5.1, there is a 2-dimensional family of ordinary GM fourfolds
containing Gr(2, V3); none of these contain a plane of the form P(V1 ∧ V4) since Y3

A = ∅. 2

Our goal is to prove the following result.

Theorem 5.8. Assume the cubic fourfold X ′ associated to X by Proposition 5.6 is smooth. Then
there is an equivalence AX ' AX′ , where AX is the GM category defined by (2.11) and AX′ is
defined by (3.1).

Remark 5.9. Theorem 5.8 is of an essentially different nature than Theorem 4.1, in that it does
not ‘come from’ K3 surfaces. More precisely, for a very general GM fourfold X satisfying (5.1)
for some V3, the category AX is not equivalent to the derived category of a K3 surface, or even
a twisted K3 surface. Indeed, the construction of Proposition 5.6 dominates the locus of cubic
fourfolds containing a smooth cubic surface scroll, so it suffices to prove that given a very general
such cubic, its K3 category is not equivalent to the twisted derived category of a K3 surface.
Since cubic fourfolds containing a cubic scroll have discriminant 12 by [Has00, Example 4.1.2],
this follows from [Huy17, Theorem 1.4].

5.3 Strategy of the proof
From now on, we assume the hypothesis of Theorem 5.8 is satisfied. The proof of this theorem
occupies the rest of this section. Here is our strategy.

By Orlov’s decomposition of the derived category of a blowup, we have

Db(X̃) = 〈p∗Db(X), i∗p
∗
EDb(P )〉.

Inserting (2.11) and the standard decomposition of Db(P ) into the above decomposition, we
obtain

Db(X̃) = 〈p∗AX ,O,U
∨,O(H),U∨(H),OE ,OE(H),OE(2H)〉. (5.9)

Here and below, to ease notation we write U∨ for p∗U∨X . This decomposition of Db(X̃) consists
of a copy of AX and 7 exceptional objects.

On the other hand, from the expression of X̃ as a blowup of X ′, we have

Db(X̃) = 〈q∗Db(X ′), j∗q
∗
E′D

b(T )〉.

Inserting the decomposition (3.1) for Db(X ′), we obtain

Db(X̃) = 〈q∗AX′ ,O,O(H ′),O(2H ′), j∗q
∗
E′D

b(T )〉. (5.10)

Note that Db(T ) has a decomposition consisting of 4 exceptional objects, hence the
decomposition (5.10) consists of one copy of AX′ and again 7 exceptional objects.

To prove the equivalence AX ' AX′ , we will find a sequence of mutations transforming the
exceptional objects of (5.9) into those of (5.10). In doing so, we will explicitly identify a functor
giving the desired equivalence, see (5.15).
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5.4 Mutations
We perform a sequence of mutations, starting with (5.9). For a brief review of mutation functors
and references, see the discussion in § 2.8.

Step 1. Mutate U∨(H) to the far left in (5.9). Since this is a mutation in Db(X) and since we have
KX = −2H, by (2.19) the result is

Db(X̃) = 〈U∨(−H), p∗AX ,O,U
∨,O(H),OE ,OE(H),OE(2H)〉.

Step 2. Mutate U∨(−H) to the far right. Again by (2.19) and (5.7), the result is

Db(X̃) = 〈p∗AX ,O,U
∨,O(H),OE ,OE(H),OE(2H),U∨(H − E)〉.

Step 3. Left mutate OE through 〈O,U∨,O(H)〉. We have

Ext•(O(H),OE) = H•(P,OP (−H)) = 0,

Ext•(U∨,OE) = H•(P,UP ) = 0,

Ext•(O,OE) = H•(P,OP ) = k,

where in the second line UP is the tautological rank 2 bundle on P = Gr(2, V3), i.e. the restriction
of U from G to P . Hence by the definition of the mutation functor

L〈O,U∨,O(H)〉(OE) = Cone(O → OE) = O(−E)[1],

and the resulting decomposition is

Db(X̃) = 〈p∗AX ,O(−E),O,U∨,O(H),OE(H),OE(2H),U∨(H − E)〉.

Step 4. Left mutate OE(2H) through 〈O,U∨,O(H),OE(H)〉.

Lemma 5.10. We have L〈O,U∨,O(H),OE(H)〉(OE(2H)) ∼= OE′(E
′ − F )[2].

Proof. There is an isomorphism of functors

L〈O,U∨,O(H),OE(H)〉 ∼= LO ◦ LU∨ ◦ LO(H) ◦ LOE(H).

Hence to prove the result we successively left mutate OE(2H) through OE(H),O(H),U∨,O.
To compute LOE(H)(OE(2H)), we may compute LOP (H)(OP (2H)) and pull back the result.

We have Ext•(OP (H),OP (2H)) = H•(P,OP (H)) = V3, so

LOP (H)(OP (2H)) = Cone(OP (H)⊗ V3 → OP (2H)).

The morphism OP (H)⊗ V3 → OP (2H) is the twist by H of the tautological morphism, hence it
is surjective with kernel UP (H) ∼= U∨P . Thus the above cone is U∨P [1], and

LOE(H)(OE(2H)) = U∨E [1].

Next note Ext•(O(H),U∨E) = H•(P,U∨P (−H)) = 0, hence

LO(H)(U
∨
E) = U∨E .
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Further, we have Ext•(U∨,U∨E) = H•(P,UP ⊗ U∨P ) = k, hence

LU∨(U∨E) = Cone(U∨ → U∨E) = U∨(−E)[1].

Now we are left with the last and most interesting step: the mutation of U∨(−E) through O.
First, using the exact sequence

0 → O(−E) → O → OE → 0

tensored by U∨, we find

Ext•(O,U∨(−E)) = H•(X̃,U∨(−E)) = ker(V ∨5 → V ∨3 ) = V ∨2 . (5.11)

Thus we need to understand the cone of the natural morphism V ∨2 ⊗ O → U∨(−E).

Restricting (5.6) to X̃, dualizing, twisting by H ′ =H−E, and using the isomorphism U(H)∼= U∨,
we obtain a distinguished triangle

V ∨2 ⊗ O → U∨(−E) → OE′(E
′ − F ).

Thus
LO(U∨(−E)) = OE′(E

′ − F ), (5.12)

which completes the proof of the lemma. 2

By the lemma, the result of the above mutation is

Db(X̃) = 〈p∗AX ,O(−E),OE′(E
′ − F ),O,U∨,O(H),OE(H),U∨(H − E)〉.

Step 5. Left mutate OE(H) through O(H). We have

LO(H)(OE(H)) = Cone(O(H) → OE(H)) = O(H − E)[1] = O(H ′)[1],

so the result is

Db(X̃) = 〈p∗AX ,O(−E),OE′(E
′ − F ),O,U∨,O(H ′),O(H),U∨(H − E)〉.

Step 6. Right mutate U∨ through O(H ′). We have

Ext•(U∨,O(H ′)) = Ext•(O,U(H − E)) = Ext•(O,U∨(−E)) = V ∨2 ,

where the last equality holds by (5.11). Hence

RO(H′)(U
∨) = Cone(U∨ → V2 ⊗ O(H ′))[−1].

Now restricting (5.6) to X̃ shows RO(H′)(U
∨) = OE′(H

′+F )[−1]. Thus under the above mutation
our decomposition becomes

Db(X̃) = 〈p∗AX ,O(−E),OE′(E
′ − F ),O,O(H ′),OE′(H

′ + F ),O(H),U∨(H − E)〉.

Step 7. Left mutate U∨(H − E) through O(H). By (5.12) and (4.12) we have

LO(H)(U
∨(H − E)) = OE′(H + E′ − F ) = OE′(2H

′ − F ),

1400

https://doi.org/10.1112/S0010437X18007091 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007091


Derived categories of Gushel–Mukai varieties

so the result is

Db(X̃) = 〈p∗AX ,O(−E),OE′(E
′ − F ),O,O(H ′),OE′(H

′ + F ),OE′(2H
′ − F ),O(H)〉.

Step 8. Right mutate p∗AX through 〈O(−E),OE′(E
′ − F )〉. The result is

Db(X̃) = 〈O(−E),OE′(E
′ − F ),Ψp∗AX ,O,O(H ′),OE′(H

′ + F ),OE′(2H
′ − F ),O(H)〉,

where Ψ = R〈O(−E),OE′ (E
′−F )〉.

Step 9. Mutate 〈O(−E),OE′(E
′ − F )〉 to the far right. By (2.19), the result is

Db(X̃) = 〈Ψp∗AX ,O,O(H ′),OE′(H
′ + F ),OE′(2H

′ − F ),O(H),O(2H ′),OE′(3H
′ − F )〉.

Step 10. Right mutate O(H) through O(2H ′). We have

Ext•(O(H),O(2H ′)) = H•(X̃,O(E′)) = k

and hence
RO(2H′)(O(H)) = Cone(O(H) → O(2H ′))[−1].

The morphism O(H) → O(2H ′) is the twist by 2H ′ of O(−E′) → O, hence

RO(2H′)(O(H)) = OE′(2H
′)[−1].

Thus the result of the mutation is a decomposition

Db(X̃) = 〈Ψp∗AX ,O,O(H ′),OE′(H
′ + F ),OE′(2H

′ − F ),O(2H ′),OE′(2H
′),OE′(3H

′ − F )〉.

Step 11. Left mutate O(2H ′) through 〈OE′(H ′ + F ),OE′(2H
′ − F )〉. By the semiorthogonality

of q∗Db(X ′) and j∗q
∗
E′D

b(T ) in Db(X̃), this mutation is just a transposition. Thus the result is

Db(X̃) = 〈Ψp∗AX ,O,O(H ′),O(2H ′),OE′(H
′ + F ),OE′(2H

′ − F ),OE′(2H
′),OE′(3H

′ − F )〉.

It is straightforward to check that

Db(T ) = 〈OT (H ′ + F ),OT (2H ′ − F ),OT (2H ′),OT (3H ′ − F )〉,

so the above decomposition can be written as

Db(X̃) = 〈Ψp∗AX ,O,O(H ′),O(2H ′), j∗q
∗
E′D

b(T )〉. (5.13)

This completes the proof of Theorem 5.8. Indeed, comparing the decompositions (5.13)
and (5.10) shows

q∗ ◦ R〈O
X̃

(−E),OE′ (E
′−F )〉 ◦ p∗ : AX → AX′ (5.14)

is an equivalence. 2

Remark 5.11. The functor (5.14) is in fact isomorphic to

q∗ ◦ RO
X̃

(−E) ◦ p∗ : AX → AX′ . (5.15)

To see this, observe that q∗ kills OE′(E
′ − F ): if j0 : T ↪→ X ′ denotes the inclusion, then

q∗(OE′(E
′ − F )) = j0∗qE′∗(OE′(E

′ − F )) = j0∗(qE′∗(OE′(E
′))⊗ OT (F )) = 0

since qE′∗(OE′(E
′)) = 0. Thus q∗ ◦ ROE′ (E

′−F )
∼= q∗, and the claim follows since there is an

isomorphism of functors R〈O
X̃

(−E),OE′ (E
′−F )〉 ∼= ROE′ (E

′−F ) ◦ RO
X̃

(−E).
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Appendix A. Moduli of GM varieties

Let (Sch/k) denote the category of k-schemes.

Definition A.1. For 2 6 n 6 6, the moduli stack Mn of smooth n-dimensional GM varieties

is the fibered category over (Sch/k) whose fiber over a scheme S ∈ (Sch/k) is the groupoid

of pairs (π : X → S,L), where π : X → S is a smooth proper morphism of schemes and

L ∈ PicX/S(S), such that for every geometric point s̄ ∈ S the pair (Xs̄,Ls̄) is isomorphic to

a smooth n-dimensional GM variety with its natural polarization (equivalently, (Xs̄,Ls̄) satisfies

conditions (2.3) and (2.2) with H the divisor corresponding to Ls̄). Here, PicX/S denotes the

relative Picard functor of X → S. A morphism from (π′ : X ′ → S′,L′) to (π : X → S,L) is a

fiber product diagram

X ′

π′

��

g′ // X

π
��

S′
g // S

such that (g′)∗(L) = L′ ∈ PicX′/S′(S
′).

The following result gives the basic properties of the moduli stack Mn. An explicit description

of Mn will be given in [DK18b]. We follow [Sta17] for our conventions on algebraic stacks.

Proposition A.2. The moduli stack Mn is a smooth and irreducible Deligne–Mumford stack

of finite type over k. Its dimension is given by dimMn = 25− (6− n)(5− n)/2, i.e.

dimM2 = 19, dimM3 = 22, dimM4 = 24, dimM5 = 25, dimM6 = 25.

We will use the following lemma.

Lemma A.3. Let X be a smooth GM variety of dimension n > 3. Then:

(1) the automorphism group scheme Autk(X) is finite and reduced;

(2) Hi(X,TX) = 0 for i 6= 1;

(3) dim H1(X,TX) = 25− (6− n)(5− n)/2.

Proof. As our base field k has characteristic 0, Autk(X) is automatically reduced by a theorem of

Cartier [Mum66, Lecture 25], and it is finite by [DK18a, Proposition 3.21(c)]. Hence H0(X,TX),

being the tangent space to Autk(X) at the identity, vanishes. Further, TX
∼= Ωn−1

X (n−2) by (2.2)

and hence Hi(X,TX) = 0 for i> 2 by Kodaira–Akizuki–Nakano vanishing. Finally, the dimension

of H1(X,TX) is straightforward to compute using Riemann–Roch. 2
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Proof of Proposition A.2. First consider the case n = 2. Then by (2.3), M2 is the Brill–Noether
general locus (and hence Zariski open) in the moduli stack of polarized K3 surfaces of degree 10.
It is well known that all the properties in the proposition hold for the moduli stack of primitively
polarized K3 surfaces of a fixed degree (see [Huy16, ch. 5]), so they also hold for M2.

From now on assume n > 3. A standard Hilbert scheme argument shows that Mn is an
algebraic stack of finite type over k, whose diagonal is affine and of finite type. To prove Mn is
Deligne–Mumford, by [Sta17, Tag 06N3] it suffices to show its diagonal is unramified. As a finite
type morphism is unramified if and only if all of its geometric fibers are finite and reduced, we
are done by Lemma A.3(1) (note that for a GM variety of dimension n > 3, all automorphisms
preserve the natural polarization).

Next we check smoothness of Mn. Let (X,L) be a point of Mn, i.e. X is a GM n-fold
and L ∈ Pic(X) is the ample generator. Let AL be the Atiyah extension of L, i.e. the extension

0 → OX → AL → TX → 0

given by the Atiyah class of L. Further, recall that H1(X,AL) classifies first order deformations
of the pair (X,L), and H2(X,AL) is the obstruction space for such deformations (see [Ser06,
§ 3.3.3]). Taking cohomology in the above sequence shows that Hi(X,AL) ∼= Hi(X,TX) for i > 1.
In particular, H2(X,AL) = 0 by Lemma A.3(2), so the formal deformation space of Mn at (X,L)
is smooth of dimension dim H1(X,AL) = dim H1(X,TX). This implies the smoothness of Mn

and, using Lemma A.3(3), the formula for its dimension.
It remains to show that Mn is irreducible. This follows from the defining expression (2.1)

of any GM variety. Indeed, let Pn be the space of pairs (W,Q) where W ⊂ k ⊕ ∧2V5 is an
(n+ 5)-dimensional linear subspace and Q ⊂ P(W ) is a quadric hypersurface, and let Un ⊂ Pn
be the open subset where Cone(G)∩Q is smooth of dimension n. The natural projection
Pn → Gr(n + 5,k ⊕ ∧2V5) is a projective bundle, hence Pn and Un are irreducible. On the
other hand, by (2.1), Un maps surjectively onto Mn. Hence Mn is irreducible as well. 2
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