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ON ELLIPTICALLY EMBEDDED SUBGROUPS OF 
SOLUBLE GROUPS 

A. H. RHEMTULLA AND J. S. WILSON 

1. Introduction. We call a subset X of a group an elliptic set if there is an 
integer n such that each element of the group generated by X can be 
written as a product of at most n elements of X U X~ . The terminology is 
due to Philip Hall, who investigated elliptic sets in lectures given in 
Cambridge in the 1960's. Hall was chiefly interested in sets X which are 
unions of conjugacy classes, but among other things he proved that if // , K 
are subgroups of a finitely generated nilpotent group then their union 
H U K is elliptic. We shall say that a subgroup H of an arbitrary group G 
is elliptically embedded in G, and we write H ee G, if H U K is an elliptic 
set for each subgroup K of G. Thus H ee G if for each subgroup K there is 
an integer n (depending on K) such that 

(H,K) = HK...HK 

where the product has 2n factors. 
The concept of elliptic embedding has no significance for finite groups 

and our principal results concern groups which are close to being 
torsion-free. Every quasinormal subgroup H of a group G is ellipti­
cally embedded, for to say that H is quasinormal is just to say that 
(H, K) = HK for each subgroup K. Further instances of elliptically 
embedded subgroups are given in Section 2. From the result of Hall 
mentioned above it follows easily that every subgroup of a finitely 
generated finite by nilpotent group is elliptically embedded (see Proposi­
tion 1 in Section 2). Our first main result is a partial converse to this: 

THEOREM 1. Let G = (g l9 . . . , gs) be soluble and suppose that (gf) is 
elliptically embedded in G for i = 1, . . . , s. Then G is finite by nilpotent. 

This has the immediate 

COROLLARY 1. Let G be a locally soluble group having no non-trivial 
normal torsion subgroup. If (g) ee G then the normal closure of (g) in G is 
locally nilpotent. 

This follows since each subgroup generated by finitely many conjugates 
of g satisfies the hypothesis of Theorem 1. Our second main result is a 
stronger result for the case where G is soluble: 
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THEOREM 2. Let G be a soluble group having no non-trivial normal torsion 
subgroup. If (g) is elliptically embedded in G then (g) is subnormal in G. 

As a consequence of the above theorem and Proposition 3 we have the 
following result: 

COROLLARY 2. Let G be a torsion-free group and (g) a cyclic subgroup 
whose normal closure in G is soluble and either finitely generated or 
minimax. Then (g) ee G if and only if (g) is a subnormal subgroup of G. 

Let N be the normal closure of (g) in G. If (g) is subnormal in G then N 
is locally nilpotent ([3], Section 2.3, p. 61), and so nilpotent (see for 
example [3], Theorem 6.36), and we shall prove in Proposition 3 that any 
subgroup of G whose normal closure is a nilpotent minimax group is 
elliptically embedded in G. The other implication of the corollary follows 
from Theorem 2. 

We have already explained why torsion presents an obstacle in the study 
of elliptically embedded subgroups. A more serious restriction is the 
restriction to cyclic subgroups. Our treatment of cyclic subgroups rests on 
some delicate calculations with complex numbers of bounded modulus 
(Lemma 1 and Lemma 2). It is likely that results like Corollary 1 and 
Theorem 2 also hold for elliptically embedded free abelian subgroups of 
finite rank; but this appears to be a difficult problem. They certainly do 
not hold for free abelian subgroups of countably infinite rank. Let G be 
the group of matrices 

(w, a e Q and u > 0), 

and let H be the subgroup of diagonal matrices in G. It is straightforward, 
if a little tedious, to verify that H is elliptically embedded in G. On the 
other hand G is torsion-free and not locally nilpotent, and yet the normal 
closure HG of H in G equals G so that H is not subnormal in G. 

2. Some sufficient conditions for elliptic embedding. 

PROPOSITION 1. (a) If H is a subnormal subgroup of G and HG satisfies 
the maximal condition for subnormal subgroups then H ee G. 

(b) Let F be a finite normal subgroup of G. If H ^ G and HF/F ee GIF 
then H ee G. 

Proof (a) Let K ^ G and define Gx = (//, K). We show by induction 
on the defect of H in Gx (that is, the least d for which there is a series 

H = Hd O . . . <a H] <3 H0 = G,) 

that G] = (HK)n for some n. This is clear if d = 1, so we assume d > 1. 
Write 

; ; 
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L = HMd\ 

For each g e Hd_2 we have Hg <3 H<i-h an(^ since HG satisfies the 
maximal condition for subnormal subgroups there is a finite set 
{g1? . . . , gr} of elements of Hd_2 such that 

L = Hgl . . . #*' . 

Since Gx = (H, K)9 some set (HK)S contains all the elements gt and their 
inverses. Thus 

Hgi ^ (HK)SH(HK)S = (HK)2s 

for each /, and L ^ (HK) rs. On the other hand L is subnormal of defect at 
most d — 1 and therefore Gl = (LK)m for some m. It follows that 
Gx = (HK)2rsm as required. 

(b) We have </f, #> ^ {HKfF for some integer n, so that 

<//, *> = (HKf(F n <#, *> ). 

There is an integer s such that the finite set (F n (H, K) ) lies in (HK)\ 
and so 

(H9 K) = (HK)nJrs. 

Proposition 1 shows in particular that all subgroups of finitely 
generated finite by nilpotent groups are elliptically embedded. However 
a direct approach yields a little more. Let C be nilpotent of class c and let 
C = (A, B) where 

A = (al9 . . . , ar) and B = (bl9 . . . , br). 

If 

yA(C) ^ 042?/modulo Y* + I ( C ) 

for some &, then modulo Y&+2(C) w e n a v e 

y, + 1(C) = {A,Yk(C)][yk(C),B] 

r r 

- r i k , Y*(c)]n[y*(c),ô,] 
^ (A(AB)fA(AB)fY((AB)fB(AB)fB)r 

= (^5)4 / r . 

It follows that C = 042?)' where / = (4r)c. This leads to the first assertion 
in the next result: 

PROPOSITION 2. (a) Let G be nilpotent of finite (Prufer) rank. Then every 
subgroup of G is elliptically embedded', indeed for all 2/, K ^ G one has 
(22, K) = (HK)1 where t = (4r)c and r, c are respectively the rank and 
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class of G 
(b) If G is nilpotent of class 2 then every finitely generated subgroup H of 

G is elliptic ally embedded. 

Proof, (a) Let g e (H, K). There are finitely generated subgroups A, B, 
of H, K respectively such that g e (A, B}, and each oî A, B can be 
generated by r elements. Thus from above g Œ (AB)* ^ (HK)*. 

(b) Let H = (A,,. . . , Aw> ^ G and ^ ë G. Then each element of the 
subgroup [//, K] may be written in the form [hx, kx] . . . [hn, kn] for suitable 
ku...9kninK. Thus [H, K] ^ (HK)2" and 

(H, K) = H[H, K]K ^ H(HK)2nK = (HK)2n. 

It is not true in general that a subgroup of a nilpotent group of class 2 is 
elliptically embedded. For let A and B be abelian groups of exponent an 
odd prime p with bases {ax, a2,. . } and {/?], Z>2> • . •} respectively, and 
let 

G = (A, B- [ai9 bj] = cij9 [cip G] = 1 for all ij). 

Then (AB) ¥= G for each integer k. To see this, pick n > 2k and let 

A„ = (an+l,...) B„ = (b„+l,. . .> and G = G/(A°, Bc'). 

Then 

\G\ = p" • p" • / = p2" + "2 

while 

A similar example shows that cyclic subgroups of a group of class 3 are 
not in general elliptically embedded. 

PROPOSITION 3. If H is a subgroup of a group G such that HG is a 
nilpotent minimax group, then H ee G. 

Proof Let K ^ G and write J = (H, K). We need to show that 
J ^ {HK)n for some integer n. The proof is by induction on the nilpotency 
class c of HJ. Let L be the cth term of the lower central series of HJ. Since 
HJ is generated by 

X = {hk\ h e H, k e ^ } , 

the subgroup L is generated by 

7 = { [x,, . . . , xc]; Xi G X, /, = 1, 2, . . . , c}. 

Let Â  be a finitely generated subgroup of L such that L/N is periodic. By 
Lemma 11 of [2] there is an integer/, depending only on the Priifer rank 
and number of non-trivial Sylow subgroups of L/N, such that every 
finitely generated subgroup of L/N is generated by the images in L/N of 
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/ sui tably chosen elements of Y. It is easy to see that each element of Y, 
and indeed each power of an element of Y, lies in K(HK)1 where 

t = (3/2)(c2 - c) + 1, 

and so we have L ^ NK(HK)1. However N lies in a join of finitely many 
conjugates H of H under elements of K, and since each H is elliptic in 
H by Proposition 2, this join is a product of finitely many subgroups H 
and so lies in (HK)S for some s. It follows that 

L ^ (HK)s + t. 

Uc= 1 we therefore have HJ ^ {HK)s+t and so 

(H, K) ^ HJK ^ (HK)sJt\ 

as required. If c > 1 then by induction we have / = L(HK)" for some 
integer n, so that 

/ ^ (HK)s+t+n 

and again the result follows. 

In Section 3 we shall need to study groups which are split extensions 
A(g) of an abelian normal subgroup A by a cyclic group (g) which is 
elliptically embedded in A{g). The following result is therefore of some 
interest. 

PROPOSITION 4. Let G be a split extension of an abelian normal subgroup 
A by a cyclic subgroup (g). If G is nilpotent then (g) ee (G). 

Proof Let K ^ G. If K ^ A then 

where c is the nilpotency class of G, and so 

(K, (g) > = K[K, (g) ](g) ^ K(K(g) t\g) = (^(g> )2 '̂. 

H K ^ A, then (X n ^ 4 ) ^ is normal and lies in (K(g) ) 2 c . Passing to the 
quotient group G/((K n Ay8'), we may therefore assume K n A = 1. 
However K is then cyclic and (K, g) is a finitely generated nilpotent 
group, so that 

(K, g) = (K(g) )m for some integer m. 

3. Proofs of the theorems. We approach Theorem 1 through a series 
of lemmas. The first two lemmas which deal with complex numbers of 
bounded modulus are crucial for the proof of Theorem 1. 

LEMMA 1. Let k, t be positive integers and let X e C with \\\ < 1. There is 
a number co = <o(/c, t, X) > 0 such that \0\ i? co for each non-zero 
expression 
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k 

0 = 2 aiX
r' 

with 

i 

2 fl,Ar'" ^ 0 fori ^ l^ k, 
= i 

with at an integer satisfying \at\ = t for each i, and with 0 = rx < 
r2< ...rk. 

Proof. We prove the result by induction on k. Clearly we may take 

<o(l, /, X) = 1. 

Suppose that co(k — 1, t, X) = co' is defined, and let m be the least integer 
with |\m | < <o72f. Thus if 0 is an expression 

i = \ 

of the sort under consideration and if rh ^ m then we have 

\9\ ^ 

k 

k-\ 

- \akY
k\ ^ w' - / (w720 = <o72. 2 fl|A

r-
1 = 1 

Since there are only finitely many expressions 

k 

2 a^ 
i = \ 

with rk < m the result follows. 

LEMMA 2. L^/ a, 6 be complex numbers with \a\ > 1 ûwd 0 ¥= 0, ûwd fer / 
Z>£ # positive integer. Then there exists a positive integer n such that n6 is not 
of the form 

2 tjcTJ 
7 = 1 

with each e- G {0, 1, — 1}. 

Proof. Let TV be a positive integer. We shall estimate the number of 
integers n with \n\ = N for which nO can have the required form. Each 
sum 

7 = 1 
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can be written in the form 

(*) .v = axa
1' + . . . + aka"\ 

with k ^ /, 1̂ 1 = /, m] > m2 > . . . > mk, and no partial sum equal to 
zero. Fix k and consider the s with \s\ ^ N\6\. We have 

A A 

where X = 1/a, and so 

where coA = co(/c, /, X) is as defined in Lemma 1. Thus 

<oA.|aP ^ J ^ JV|0| 

so that 

m, + log <oA < log N + log|0| 

where logarithms are to base |a|. Let dk = dk(k, /, a, 6) be the least integer 
such that 

l\a\~dk < |0|/2*. 

Thus the sum of the terms in (*) with exponent mi = — dA has absolute 
value bounded by 

A 

2 (max|tf,| ) | « r ^ < |0|/2. 
/ = i 

The number of possibilities for the sum of the remaining terms is at 
most 

[2/(log N + log|0| - log coA + dk + 1) ]* = [2l(fk + log yV) ]A 

say, where/A = 7A (^ ^ a> ^)- Thus the number of «# with \n\ = N of form 
(*) is at most [2/(/A + log N) ]k and the number of nO with \n\ ë TV of the 
form 

.7 = 1 

is at most l[2l(f + log TV) / where 

/ = max{/ , , . . . , / ; } . 

If the result is false we therefore have, for large N, 

N g / [2/ ( / + log N) ]l ë /[2/ • 2 log AH7 
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^ /(logÀ02/ ^ (logiV)2/+1 

which is clearly a contradiction. 

LEMMA 3. Let (g) be a cyclic group and A a torsion-free abelian group of 
finite rank on which (g) acts rationally irreducibly. If (g) is elliptically 
embedded in the split extension G of A by (g), then (g) acts trivially on 
A. 

Proof. Suppose otherwise, and choose a e A\\. If (g, ga) = (g) then 

[a, g] e A n <g> = 1, 

so that CA(g) is a non-trivial (g)-invariant subgroup of A and a 
contradiction ensues. Thus 

<g> < <g, ga) = <*M n <g, g
a> = <g>(,4 n <g, g"> ), 

and so 

B = A n <g, ga> 

is a non-trivial subgroup of ^4. Since (g) ee G there is an integer n such 
that each element of (g, g a) is a product of « terms of the form 

g V / = gk+'aa-s'. 

Collecting the powers of g in such a product on the left, we see that each 
element of (g, ga) is a product of a power of g and In conjugates of a± 

under elements of (g). Thus, in additive notation, each element of B is of 
the form 

In 

a 2 ± g"' 

with each ut in Z. 
Now V = A X z Q is an irreducible Q(g)-module, and by Schur's 

Lemma the centralizer ring 

r = EndQ(g> V 

is a division ring finite dimensional over Q. The image of (g) in Endg V 
clearly lies in and spans T so that T is an algebraic number field. Further, 
regarded as a T-vector space, V must be one dimensional. Let a be the 
image of g in T and choose b e 2?\0, so that b = a<p for some <p in T. Thus 
for each integer m we can write may in the form 

In 

a 2 ± a"', 
/ = i 

so that each m<p has the form 
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In 

2 ± a\ 
i=\ 

If a is not a root of 1 then T can be embedded in C so that \a\ > 1 (see for 
instance [1], p. 122), and we have contradiction to Lemma 2. If a is a root 
of 1 then in any embedding of T in C we have 

I In I In 

2 ± au\ ^ 2 Wu'\ = 2A2 

so that \m<p\ = 2n for each m. This too yields a contradiction and the 
lemma follows. 

LEMMA 4. L^/ (g) Z?e # cyclic group and A a finitely generated 
Z(g) -module. If (g) is elliptically embedded in the split extension G of A by 
(g), then A is finitely generated as an abelian group. 

Proof. We suppose the result false. Since A is a noetherian module it has 
a maximal submodule L with respect to A/L not being finitely generated 
as an abelian group. Of course (g) will be elliptically embedded in the 
split extension of A/L by (g), and so we may replace A by A/L. 

Let a e A and consider the group (a, g). Since (g) ee G, there is an 
integer n such that each element of {a, g) is a product of n terms g (3 with 
k, I in Z. Collecting powers of g in such a product on the left, we can see 
that each element of (a, g) is a product of a power of g and « conjugates of 
powers of a under elements of (g). Thus, in additive notation, each 
element of the Z(g)-module A0 generated by a has the form 

n 

^ 2 ljgUi with //5 ut in Z for each /'. 
i = \ 

Suppose that A is not Z-torsion-free and choose a to have prime order p. 
Then A0 can be regarded as an F (g)-module. The map 6\ r \-+ ar from 
F (g) to v40 is surjective, but cannot be injective since each element of A0 

has the form 

Z ' = l 

with « fixed. The kernel of 0 is an ideal / =£ 0 of F (g), and so both 
¥ (g)/I and y40 are finite. However A/A0 is finitely generated as an abelian 
group; so therefore is A, and this is a contradiction. 

It follows that A is torsion-free. We choose a ¥= 0 and consider the 
Q(g)-module A0 X z Q, each of whose elements has the form 

n 

a 2 /,#"' with /, G Q and ui e Z for each /'. 
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Exactly the same argument as in the above paragraph shows that A0 XZQ 
has finite dimension, so that A0 has finite torsion-free rank. Let A} be a 
non-zero cyclic submodule of A0 of least possible rank, generated by an 
element b, say. Then (g) acts rationally irreducibly on Av and so acts 
trivially on Ax by Lemma 3. Thus Ax is just the cyclic group generated by 
b. Since A/Ax is finitely generated as a group so also must be Ax, and with 
this contradiction proof of the lemma is complete. 

Proof of Theorem 1. We must prove that if G = (gj, . . . , gs) is soluble 
and (gt) is elliptically embedded in G for i = 1, . . . , s, then G is finite by 
nilpotent. 

Arguing by induction on the derived length of G, we may suppose that 
G has an abelian normal subgroup A such that G/A is finite by nilpotent. 
Since (gz) ee G for each /', we have 

G = (g,) • • • (g,) 

for some n and some choice of / j , . . . , in. Because G is abelian by 
polycyclic and finitely generated we have A = BG for some finitely 
generated subgroup B. Write 

B0 = B and Bj = Bp\ for j = 1, . . . , n9 

so that Bn = A. If Bj_x is a finitely generated group then so is Bj by 
Lemma 4. We conclude by induction that A is a finitely generated group. 
Its torsion subgroup T is finite, and since we want to prove that G is a 
finite by nilpotent, there is no harm in assuming that T = 1. 

We claim that each (gz) acts nilpotently on A. If A n (g,) = 1 this 
follows by applying Lemma 3 to each factor in a maximal (gz)-invariant 
series for A with torsion-free factors. If instead g™ e A for some m then 
gi centralizes both (gf2) and its isolator J in A since A is torsion-free. 
Thus (A, gj)/J is the split extension of A/J by (g/ / ) , and the result follows 
from Lemma 3. 

Let HI A be a nilpotent normal subgroup of G/A of finite index /, say, 
and let L/M be a factor in a maximal G-invariant series for A with torsion 
free factors. Fix / with i ^ s. Since 

(A, g{> S tf <J G, 

the subgroup (A, g7) is subnormal in G. From above it is also nilpotent, so 
it lies in the Fitting subgroup F of G. Thus g- acts trivially on L/M. It 
follows that the minimal polynomial / ( / ) of the action of gz on L/M 
divides tl — 1. Moreover g, acts nilpotently on A, so / ( / ) also divides 
(/ — 1)* for some integer k. Therefore we must have/( / ) = t — 1, and g, 
centralizes L/M. Since this holds for each /, L/M is a central factor of G 
and it follows that A is in the hypercentre of G. Since G/A is finite by 
nilpotent and since a group is finite by nilpotent if and only if a finite term 
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of its upper central series has finite index ( [3], Theorem 4.25), the proof of 
the theorem is complete. 

The next lemma provides the key to Theorem 2. 

LEMMA 5. Let (g) be an infinite cyclic group and A a Z(g) -module which 
is Z-torsion free. If (g) is elliptically embedded in the split extension G of A 
by (&)•> then G ^ nilpotent. 

Proof. If B is a finitely generated submodule of A then B is a finitely 
generated abelian group by Lemma 4 and so it has a finite series whose 
factors are Z-torsion-free and rationally irreducible. It follows from 
Lemma 3 that (g) acts nilpotently and that B ^ f,2(G) for some n. 
Thus 

CO 

A = wu] (?„((,) n A) 

and G is hypercentral. If 

Si(G) n A = fy-^G) n ^ for some /, 

then G is nilpotent. Suppose then that 

f,(G) n A > Çi-xiG) n ^ for each /. 

For each k choose 

fk G M G ) \ f c H ( G ) ) C\A, 

and for each / find the integer k with (k — 1) < i ta k and define 

^ = [A, g, • • • , g]-

k2 - i 

Thus ^. G ^(GyxX^CG) for each /. 
Since the terms of the upper central series are isolated, the elements et 

freely generate a free abelian group V. Define U to be the group generated 
by the elements^. Clearly UZ(g) = V, or in multiplicative notation, 

U<z) = y 

Consider the group (U, g) = (V9 g>. Since (g) ee G there is an integer n 
such that each element of (V, g) is a product of « elements of the form g'u 
with / e Z and u ^ U. Collecting powers of g on the left we see that each 
element of ( V, g) is a product of a power of g and n conjugates of elements 
of U under elements of (g). Thus, writing Fadditively again, we conclude 
that each element of F is a sum of n elements ugl with u e U and i e Z. 
We consider the element e 2+ of V; say 
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£„2 n" + n 2 u,gy, 
/ = ! 

Collecting terms with the same yt together and deleting zero terms, we may 
assume 

m 

en2+„ = 2 utg
yi 

i = \ 

where m ^ n, the yi are distinct, and ut =£ 0 for each /. Let k be the greatest 
integer such that ut £ (ff,j < k) for some i. Clearly k > n. Renumbering 
the uh if necessary, we may assume that 

ul9...9us « <^-;7 < k) 

and that 

*/, + , , . . . , wm e <^.;7 < fc>. 

Thus 

"/ ~ '//* e (f/J <k) 
for / = 1, . . . , s and some non-zero integers lu . . . , ls. Thus modulo 
W = ^_ 1 }2(G), we have 

m s 

en2+n = 2 u,gy' = 2 / ^ g y ' . 

Now (g — 1) induces a nilpotent map on V + WIW, and so 

AgY = / * 0 + fe - 1))Y - 2 M e ^ -modulo ^ 

for each y G. Z. Thus 
.ç 2 A - 2 

S ' < 2 M 

Since /c > «, we have 

£2 > (n + l)2 - 1 = n1 + 2w 

and hence k — n > n2 + n. Now s ^ n; hence 

2 / ,(]) = 0 fory = 0, 1,...,*. 

From these equations we deduce successively that 

<y+„ = 2 /, 2 I V modulo W. 
; _ 1 ; _ n \ / / 
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2 W = o 

for j = 0, l , . . . , s . Since the 7, are distinct, the Vandermonde 
determinant 

II . . . I I 

Y i • • • Y.v 

Irr' ••• rî'-'l 
is non-zero. Thus lf = 0 for each /. However, this is a contradiction, and 
the lemma follows. 

We mention an immediate consequence of Lemma 5, which should be 
compared with Proposition 4. 

PROPOSITION 4. Let G be a split extension of a torsion-free nilpotent group 
N by infinite cyclic group (g). If (g) is elliptically embedded in G then G is 
nilpotent. 

Proof This follows from Lemma 5 by induction on the nilpotency class 
oi N. 

Proof of Theorem 2. We know from Theorem 1 that TV = (g)° is locally 
finite-by-nilpotent. Thus the torsion elements of TV form a normal 
subgroup of G, and we conclude that TV is torsion-free and locally 
nilpotent. It suffices to show that (g) is subnormal in TV. We argue by 
induction on the derived length of TV. Let A be the isolator in TV of the last 
non-trivial term of the derived series for TV. Thus N/A is torsion-free and 
(gA) ee N/A, so that (A, g) is subnormal in TV by induction. If g G A then 
clearly (g) is subnormal in TV since A is abelian. Otherwise the extension 
of A by (g) is split and Lemma 5 applies; it shows that (A, g) is nilpotent, 
hence (g) is subnormal in (A, g). This concludes the proof of Theorem 2. 
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