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The Arbitrary Linear Plasma Solver (ALPS) is a parallelised numerical code that
solves the dispersion relation in a hot (even relativistic) magnetised plasma with an
arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution
functions for any direction of wave propagation with respect to the background
field. ALPS reads the background momentum distributions as tables of values on
a (p⊥, p‖) grid, where p⊥ and p‖ are the momentum coordinates in the directions
perpendicular and parallel to the background magnetic field, respectively. We present
the mathematical and numerical approach used by ALPS and introduce our algorithms
for the handling of poles and the analytic continuation for the Landau contour
integral. We then show test calculations of dispersion relations for a selection of
stable and unstable configurations in Maxwellian, bi-Maxwellian, κ-distributed and
Jüttner-distributed plasmas. These tests demonstrate that ALPS derives reliable plasma
dispersion relations. ALPS will make it possible to determine the properties of waves
and instabilities in the non-equilibrium plasmas that are frequently found in space,
laboratory experiments and numerical simulations.
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1. Introduction
The vast majority of the visible matter in the universe is in the plasma state. The

solar wind is an example of such an astrophysical plasma. Due to its accessibility to
spacecraft, it is the perfect environment for making comparisons between theoretical
plasma-physics predictions and in situ observations in the astrophysical context with
access to wide scale separations (see, for example, Marsch 2006). Plasmas can deviate
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2 D. Verscharen and others

from thermodynamic equilibrium if the relaxation due to particle collisions occurs on
time scales that are larger than the characteristic time scales of the collective plasma
behaviour. Such a collisionless plasma is characterised by non-Maxwellian features in
its velocity distribution functions. In the fast solar wind, this condition is frequently
fulfilled, and, consequently, the observed distribution functions often deviate from the
entropically favoured Maxwellian shape (Vasyliunas 1968; Gosling et al. 1981; Lui &
Krimigis 1981; Marsch et al. 1982a,b; Armstrong et al. 1983; Lui & Krimigis 1983;
Christon et al. 1988; Williams, Mitchell & Christon 1988). In particular, beams and
temperature anisotropies are some of the observed features in the distributions of ions
and electrons in the solar wind (Pilipp et al. 1987a,b; Hellinger et al. 2006; Marsch
2006; Bale et al. 2009). If these deviations from equilibrium are suitably extreme, the
plasma becomes unstable and generates waves or non-propagating structures that react
back upon the plasma to reduce the deviations from equilibrium (Eviatar & Schulz
1970; Schwartz 1980; Gary 1993; Hellinger & Trávníček 2011, 2013). Also laboratory
and fusion plasmas often show non-Maxwellian features in their velocity distribution
functions. These include, for example, fast particles resulting from neutral-beam
injections, alpha-particle beams from fusion reactions or non-Maxwellian distributions
resulting from active ion/electron-cyclotron heating (Stix 1975; Gaffey 1976a,b; Tang
1978; Seki et al. 1989; Heidbrink & Sadler 1994).

The behaviour of plasma waves and instabilities is typically studied with the
help of numerical codes that solve the hot-plasma dispersion relation. Traditionally,
these codes (like WHAMP, PLUME or NHDS) use a shifted bi-Maxwellian
background distribution function as the zeroth-order description for the plasma
state (Roennmark 1982; Quataert 1998; Klein et al. 2012; Verscharen & Chandran
2018). For nearly collisionless plasmas, however, the bi-Maxwellian distribution
function is a mathematical convenience rather than a reliable representation of
the true plasma distribution function, and many space-plasma observations show
that the bi-Maxwellian representation is not accurate (Hundhausen 1970; Leubner
1978; Marsch et al. 1982b; Pilipp et al. 1987a; Marsch & Tu 2001; Štverák et al.
2009). Some previous approaches in non-Maxwellian solvers treated certain limits or
geometries (Dum, Marsch & Pilipp 1980; Summers & Thorne 1991; Xue, Thorne
& Summers 1993; Summers, Xue & Thorne 1994; Xue, Thorne & Summers 1996;
Hellberg, Mace & Cattaert 2005; Cattaert, Hellberg & Mace 2007; Lazar & Poedts
2009; Mace & Sydora 2010; Lazar, Poedts & Schlickeiser 2011; Galvaõ et al. 2012;
Xie 2013; Lazar & Poedts 2014; Gaelzer & Ziebell 2016; Gaelzer, Ziebell & Meneses
2016) or faced challenges in the weakly damped limit (Hellinger & Trávníček 2011).

We present our numerical code ALPS (Arbitrary Linear Plasma Solver), which
solves the full hot-plasma dispersion relation in a plasma consisting of an arbitrary
number of particle species with arbitrary background distribution functions f0j and
with arbitrary directions of wave propagation with respect to the uniform background
magnetic field. ALPS is also able to solve the dispersion relation for relativistic
plasmas. Matsuda & Smith (1992) developed a code similar to ALPS that calculates
the dispersion relation in an arbitrary plasma with relativistic effects. Their code uses
a cubic-spline fit to both fill data gaps and approximate the analytic continuation,
while ALPS uses a novel method called hybrid analytic continuation. The spline
method forfeits its accuracy for strongly damped solutions since the calculation of
the dispersion relation requires the evaluation of the spline at a complex value that
is distant from the real grid points by which the spline is supported. Our method
does not suffer from this problem. Astfalk & Jenko (2017) also use a cubic-spline
interpolation for the analytic continuation and as the basis for the integration in their
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code LEOPARD. This procedure allows for algebraic simplifications that enhance
the speed of the integration significantly. LEOPARD, however, does not capture
relativistic effects.

In § 2, we review the underlying theory of the hot-plasma dispersion relation. § 3
presents ALPS’s numerical approach. In § 4, we compare ALPS results to known
limits of the hot-plasma dispersion relation such as Maxwellian, bi-Maxwellian,
κ-distributed, and relativistic pair plasmas. In § 5, we discuss our results and the
applicability of ALPS to measured plasma distributions. The appendices describe how
ALPS solutions depend on the resolution of the background distributions, discuss the
Levenberg–Marquardt-fit routine used in our hybrid analytic continuation method and
describe our strategy for numerically refining coarse-grained distribution functions
obtained from spacecraft measurements.

2. The linear dispersion relation of a hot plasma
In this section, we discuss the mathematical basis for the calculation of the

hot-plasma dispersion relation following the presentation and notation of Stix (1992).
The determination of the kinetic wave dispersion relation in a hot plasma is based
on the linearised set of Maxwell’s equations and the linearised Vlasov equation
(Trubnikov 1959; Drummond & Rosenbluth 1963; Shkarofsky 1966; Stix 1992; Gary
1993). A wave or instability is then associated with a first-order perturbation δfj in
the distribution function of species j about a prescribed time-averaged background
distribution function f0j,

fj(r, p, t)= f0j(p)+ δfj(r, p, t), (2.1)

where r is the spatial coordinate and p is the momentum coordinate. As with the
distribution function fj in (2.1), we take the magnetic field B to be the sum of a
uniform background magnetic field B0 and a fluctuating magnetic field δB. We assume
that E = δE; i.e. the average electric field is zero. Linear theory expresses δfj as a
function of f0j and the electromagnetic field components.

The distribution function fj in a collisionless plasma evolves according to the Vlasov
equation,

∂fj

∂t
+ v ·

∂fj

∂r
+ qj

(
E+

v

c
×B

)
·
∂fj

∂p
= 0, (2.2)

where qj is the charge of a particle of species j, c is the speed of light and v is
the velocity coordinate. We assume that all fluctuating quantities behave like plane
waves; i.e. ∝ exp(ik · r − iωt), where k is the wave vector and ω is the (complex)
frequency. Linearising equation (2.2), using Faraday’s law and applying the method
of characteristics, we obtain

δfj = −qjeik·r−iωt
∫
∞

0
dτ eiα

{
ExU cos(φ +Ωjτ)+ EyU sin(φ +Ωjτ)

+Ez

[
∂f0j

∂p‖
− V cos(φ − ϑ +Ωjτ)

]}
, (2.3)

where E= (Ex,Ey,Ez) is the electric field, φ is the azimuthal angle of the momentum
vector p, ϑ is the azimuthal angle of the wave vector k, the index ⊥ (‖) refers to the
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direction perpendicular (parallel) with respect to the background magnetic field B0,

Ωj ≡
qjB0

mjc
√

1+ (p2
⊥ + p2

‖)/m2
j c2

(2.4)

is the relativistic gyrofrequency, mj is the rest mass of a particle of species j,

α ≡−
k⊥v⊥
Ωj
[sin(φ − ϑ +Ωjτ)− sin(φ − ϑ)] + (ω− k‖v‖)τ , (2.5)

U ≡
∂f0j

∂p⊥
+

k‖
ω

(
v⊥
∂f0j

∂p‖
− v‖

∂f0j

∂p⊥

)
(2.6)

and

V ≡
k⊥
ω

(
v⊥
∂f0j

∂p‖
− v‖

∂f0j

∂p⊥

)
. (2.7)

We normalise fj so that
∫

d3p f0j = 1. The first velocity moments of the distribution
functions of all species define the current density j through

j=
∑

j

qjn0j

∫
d3p v δfj =−

iω
4π

∑
j

χj · E, (2.8)

where χj is the contribution of species j to the plasma susceptibility and n0j is the
background density of species j. Without loss of generality, we choose a cylindrical
coordinate system in which ky=ϑ = 0 and apply a set of Bessel-function identities in
order to facilitate the integration over φ and τ in (2.3). This allows us to rewrite the
plasma susceptibilities as (provided that Im(ω) > 0)

χj =
ω2

pj

ωΩ0j

∫
∞

0
2πp⊥ dp⊥

∫
+∞

−∞

dp‖

[
ê‖ê‖

Ωj

ω

(
1
p‖

∂f0j

∂p‖
−

1
p⊥

∂f0j

∂p⊥

)
p2
‖

+

+∞∑
n=−∞

Ωjp⊥U
ω− k‖v‖ − nΩj

Tn

]
, (2.9)

where ωpj ≡

√
4πn0jq2

j /mj is the plasma frequency of species j, Ω0j ≡ qjB0/mjc is the
non-relativistic gyrofrequency and the tensor Tn is defined as

Tn ≡



n2J2
n

z2

inJnJ′n
z

nJ2
np‖

zp⊥

−
inJnJ′n

z
(J′n)

2
−

iJnJ′np‖
p⊥

nJ2
np‖

zp⊥

iJnJ′np‖
p⊥

J2
np2
‖

p2
⊥


, (2.10)

where z ≡ k⊥v⊥/Ωj and Jn ≡ Jn(z) is the nth-order Bessel function. For Im(ω) 6 0,
the integral over p‖ is executed as the Landau integral after analytic continuation
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(for details, see chapter 8 of Stix 1992). Equation (2.9) describes the susceptibility
for a general background distribution function f0j in a relativistic plasma. The only
assumptions are gyrotropy in f0j and small amplitudes in the fluctuations so that
linearisation is applicable, and a uniform, stationary equilibrium. The numerical
challenge in the solution of the plasma dispersion relation results from the integrals
over p⊥ and p‖ in (2.9). We note that, in numerous classical codes for calculation
of the linear hot-plasma dispersion relation (Roennmark 1982; Gary 1993; Klein &
Howes 2015; Verscharen & Chandran 2018), these integrals are greatly simplified by
assuming that f0j is a (bi)-Maxwellian.

The dielectric tensor ε of the plasma is related to the plasma susceptibilities
from (2.9) through

ε= 1+
∑

j

χj. (2.11)

Finally, combining Faraday’s law and Ampère’s law leads to the wave equation,

nr × (nr ×E)+ ε · E≡D · E= 0, (2.12)

where nr≡ kc/ω is the refractive index. By setting detD= 0, we obtain the dispersion
relations ω= ω(k) for non-trivial solutions to (2.12). We write these solutions in the
form ω=ωr + iγ , where ωr =Re(ω) and γ = Im(ω).

3. Numerical approach
In order to find the solutions to the hot-plasma dispersion relation, ALPS determines

the values of ωr and γ that solve (2.12) for specified background distributions f0j at a
given set of values for k, mj, qj, n0j and vA/c, where vA≡B0/

√
4πn0pmp. ALPS uses

an efficient iterative Newton-secant algorithm to solve (2.12) based on an initial guess
for ωr and γ (Press et al. 1992). The numerically challenging part for this calculation
is the evaluation of χj in (2.9). In the following, we present ALPS’s strategy for this
evaluation in the non-relativistic case. We discuss the extension to relativistic cases
with poles in the integration domain in § 3.3, which is equivalent to the non-relativistic
case with the exception that the coordinate system is transformed from (p⊥, p‖) to
(Γ , p̄‖), where Γ is the Lorentz factor and p̄‖≡ p‖/mjc, and that (3.16) below is used
instead of (2.9).

We prescribe the shape of f0j in input files for each species (called ‘f0 table’) as
an ASCII table that lists p⊥, p‖ and the associated values of f0j. From this table, we
calculate ∂f0j/∂p⊥ and ∂f0j/∂p‖ on the same grid as the f0 table using second-order
finite differencing. We do not include the derivatives at the outer boundaries of the
(p⊥, p‖) domain. The resolution of the f0 table is given by N⊥ points in the p⊥-
direction and N‖ points in the p‖-direction. The table spans from p⊥=0 to p⊥=Pmax,⊥j
in the perpendicular direction and from p‖ = −Pmax,‖j to p‖ = Pmax,‖j in the parallel
direction.

The integration in (2.9) allows us to integrate separately and independently for each
n and j. This provides us with a very natural way to parallelise the calculation scheme
by assigning the separate integrations to different processors. We use MPI for the
parallelisation. The integrating nodes return their contributions to χj to the master
node, which then sums up the contributions, determines the value of ε and updates
the values of ωr and γ through a Newton-secant step. The updated values for ωr and
γ are then returned to the integrating nodes, which afterwards evaluate the integration
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of their updated contribution to χj. We evaluate all values of n up to a value of
±nmax, which is determined as the value of n for which the maximum value of |Jn|

is smaller than the user-defined parameter Jmax. The necessary value of nmax depends
on the wavenumber, the direction of propagation of the treated wave and the thermal
speeds of the plasma components. In bi-Maxwellian codes under typical solar-wind
conditions, the accuracy of the dispersion relation is better than 1|ω|/|ω| ∼ 10−5 for
Jmax ∼ 10−45 (which typically corresponds to nmax & 10 at proton scales).

We use a standard two-dimensional trapezoidal integration scheme to integrate
over p⊥ and p‖. However, this scheme breaks down near the poles of the integrand
in (2.9) and requires a special treatment of the analytic continuation when γ 6 0. In
the remainder of this section, we discuss our strategies to resolve these numerical
difficulties.

3.1. Integrating near poles
A challenge concerning the numerical integration is the treatment of the poles that
occur in the term proportional to Tn in (2.9). The integrals in question are of the form

I(p⊥)≡
∫
+∞

−∞

dp‖
ΩjUTn

ω− k‖v‖ − nΩj
≡

∫
+∞

−∞

dp‖G(p⊥, p‖) (3.1)

for γ > 0. For sufficiently small γ , the denominator in (3.1) can become very small
along the real p‖ axis so that the grid sampling leads to large numerical errors in the
integration. To describe how we evaluate these integrals, we first rewrite the integral
in (3.1) in the more generic form

I ≡
∫
+∞

−∞

dx
g(x)

x− tr − iti
, (3.2)

where x, tr and ti are real, g(x) is a smooth function and the integration is performed
along the real axis. We choose a symmetric interval [tr −∆, tr +∆] around tr where
∆� g(tr)/g′(tr), and write

I =
∫ tr−∆

tr−∆
dx

g(x)
x− tr − iti

+ rest, (3.3)

where ‘rest’ refers to the integration outside the interval [tr −∆, tr +∆]. We define a
function f (x) to be odd with respect to tr if f (x)=−f (2tr− x), and even with respect
to tr if f (x)= f (2tr − x). Following Longman (1958) and Davis & Rabinowitz (1984),
we then separate the integrand into its odd and even parts with respect to tr as

I =
1
2

∫ tr+∆

tr−∆
dx
[

g(x)
x− tr − iti

−
g(2tr − x)
−x+ tr − iti

]
+

1
2

∫ tr+∆

tr−∆
dx
[

g(x)
x− tr − iti

+
g(2tr − x)
−x+ tr − iti

]
+ rest. (3.4)

The integrand in the first integral in (3.4) is odd with respect to tr and thus vanishes
after the integration over the symmetric interval around tr. The second integral, on the
other hand, is even with respect to tr and thus

I =
∫ tr+∆

tr

dx
[

g(x)
x− tr − iti

−
g(2tr − x)
x− tr + iti

]
+ rest. (3.5)
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We define ∆ through a user-defined parameter MI so that ∆≡MI1p‖, where 1p‖ is
the size of a grid step in the parallel direction. We then define δ≡∆/MP, where MP
is another user-defined parameter. Except for cases in which |ti| is extremely small,
we apply a trapezoidal integration over MP steps of width δ to the integral in (3.5).
The smoothness of g(x) allows us to expand g(x) around the nearest grid point of the
MI grid points in the interval [tr, tr +∆] using a Taylor series. By taking 1p‖ to be
sufficiently small, we can retain just the first two terms in the series without losing
significant accuracy. Since the integral in (3.5) does not converge numerically if |ti|

is extremely small, we implement the following procedure when |ti|6 tlim, where tlim
is a user-defined parameter. We first rewrite (3.5) using truncated Taylor expansions
of g(x) and g(2tr − x) around x= tr as

I =
∫ tr+∆

tr

dx
[

2itig(tr)

(x− tr)2 + t2
i
+

2g′(tr)(x− tr)
2

(x− tr)2 + t2
i

]
+ rest. (3.6)

We determine g(tr) and g′(tr) through linear interpolation between the neighbouring
grid points to tr. The term proportional to g′(tr) in (3.6) converges numerically for any
value of ti. We set the term proportional to g(tr) equal to its small-ti limit, namely∫ tr+∆

tr

dx
2itig(tr)

(x− tr)2 + t2
i
= iπg(tr)sgn(ti). (3.7)

We use this method for both the integration of χj near poles and the principal-value
integration that is necessary if γ = 0.

3.2. Analytic continuation
If γ 6 0, the integration in (2.9) requires an analytic continuation into the complex
plane. If f0j were given as a closed algebraic expression, the analytic continuation
would simply entail the evaluation of f0j(p⊥, p‖) at a complex value for p‖ in the
non-relativistic case. In our case, however, f0j is only defined on a real grid in p⊥
and p‖, yet the analytic continuation of f0j is still uniquely defined. This leads to the
known mathematical problem of numerical analytic continuation (Cannon & Miller
1965; Reichel 1986; Fujiwara et al. 2007; Fu et al. 2012; Zhang & Ma 2013; Kranich
2014). Our solution for this problem is our hybrid analytic continuation scheme. We
note that this approach is only relevant for damped modes, i.e. γ 6 0.

Landau’s rule of integration around singularities (Landau 1946; Lifshitz & Pitaevskii
1981) leads to the following three cases with the appropriate residues for the
evaluation of I(p⊥) for general γ :

I(p⊥)=
∫

CL

dp‖G(p⊥, p‖)=



∫
+∞

−∞

dp‖G(p⊥, p‖) if γ > 0,

P
∫
+∞

−∞

dp‖G(p⊥, p‖)+ iπ
∑

ResA(G) if γ = 0,∫
+∞

−∞

dp‖G(p⊥, p‖)+ 2iπ
∑

ResA(G) if γ < 0,

(3.8)

where CL is the contour of the Landau integration, which lies below the complex poles
in the integrand. The integrations on the right-hand side of (3.8) are performed along
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the real axis, and P indicates the principal-value integral. The sum sign indicates the
summation over the residues of all poles A of the function G. In a non-relativistic
plasma, G has one simple pole, and thus∑

ResA(G)=−
mj

|k‖|
ΩjUTn|p‖=ppole, (3.9)

where ppole =mj(ω− nΩj)/k‖ is the parallel momentum associated with pole A.
It is a common approach to decompose the background distribution functions in

terms of analytical expressions and then to evaluate these at the complex poles.
Complete orthogonal basis functions such as Hermite, Legendre or Chebyshev
polynomials are the prime candidates for such a decomposition since they can
represent f0j to an arbitrary degree of accuracy (Robinson 1990; Weideman 1995;
Xie 2013). These approaches are useful when f0j deviates only slightly from a
Maxwellian. They require, however, very high orders of decomposition and are thus
slow in the presence of typical structures that we see in the solar wind such as a
proton core–beam configuration. Therefore, they are unsuitable for ALPS’s purpose,
and we pursue a different approach, which we call the hybrid analytic continuation.
The basic idea behind this approach is to integrate I numerically along the real axis
whenever possible and to resort to an algebraic function for the sole purpose of the
evaluation of ResA(G) when necessary.

For the determination of an appropriate algebraic function, ALPS allows the user
to choose an arbitrary combination of fit functions to represent f0j and automatically
evaluates the fits before the integration begins. The code evaluates the fits separately
at each p⊥, so that no assumption is made as to the structure of f0j in the p⊥-direction.
ALPS uses these functions only if a pole is within the integration domain and only
if γ 6 0. The intrinsic fit functions that the code can combine include a Maxwellian
distribution,

f0j =
1

π3/2m3
j w2
⊥jw‖

exp
(
−

p2
⊥

m2
j w2
⊥j
−
(p‖ −mjUj)

2

m2
j w2
‖j

)
, (3.10)

where w⊥j≡
√

2kBT⊥j/mj (w‖j≡
√

2kBT‖j/mj) is the thermal speed of species j in the
direction perpendicular (parallel) with respect to B0, T⊥j (T‖j) is the temperature of
species j perpendicular (parallel) to B0, kB is the Boltzmann constant and Uj is the
B0-parallel drift speed of species j; a κ-distribution (Summers et al. 1994; Astfalk,
Görler & Jenko 2015),

f0j =
1

m3
j w2
⊥jw‖j

[
2

π(2κ − 3)

]3/2
Γ̃ (κ + 1)

Γ̃ (κ − 1/2)

×

{
1+

2
2κ − 3

[
p2
⊥

m2
j w2
⊥j
+
(p‖ −mjUj)

2

m2
j w2
‖j

]}−(κ+1)

; (3.11)

and a Jüttner distribution (Jüttner 1911; Chacón-Acosta, Dagdug & Morales-Técotl
2010),

f0j =
1

2πm3
j cw2

j K2(2c2/w2
j )

exp

(
−2

c2

w2
j

√
1+
|p|2

m2
j c2

)
; (3.12)

where κ is the κ-index and K2 is the modified Bessel function of the second kind.
The Jüttner distribution is the thermodynamic equilibrium distribution if kBTj & mjc2.
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The exponential in (3.12) reduces to the Maxwellian exp(−v2/w2
j ) with a different

p-independent normalisation factor for p2/m2
j c2
� 1. We use an automated Levenberg–

Marquardt-fit algorithm (Levenberg 1944; Marquardt 1963) and describe the details of
the fit routine in appendix B.

3.3. The poles in a relativistic plasma
The analytic continuation and pole handling in the relativistic case entail a further
complication due to the non-trivial p-dependence of the resonant denominator in (2.9)
(Buti 1962; Lerche 1968). We define a plasma to be relativistic when there is a
significant number of particles at relativistic velocities. This can be the case in
plasmas with relativistic temperatures (kBTj & mjc2) or in plasmas with relativistic
beams (Pj & mjc, where Pj is the drift momentum). Using the relativistic expression
for Ωj in (2.4) shows that we can write for the pole of the function under the integral
sign in (3.1)

1
ω− k‖v‖ − nΩj

=−
1
k‖

Γmj(
p‖ −

ω

k‖
Γmj + n

Ω0j

k‖
mj

) , (3.13)

where

Γ ≡

√
1+

p2
⊥ + p2

‖

m2
j c2

(3.14)

is the Lorentz factor. We define the dimensionless parallel momentum p̄‖ ≡ p‖/mjc.
The dimensionless parallel momentum associated with the relativistic pole is given by

p̄pole = Γ
ω

k‖c
−

nΩ0j

k‖c
. (3.15)

We apply the technique proposed by Lerche (1967) to transform (2.9) from the
(p⊥, p‖) coordinate system to the (Γ , p̄‖) coordinate system (see also Swanson 2002;
Lazar & Schlickeiser 2006; López et al. 2014, 2016). This transformation yields

χj = 2πm3
j c3 ω

2
pj

ωΩ0j

∫
∞

1
dΓ
∫
+

√
Γ 2−1

−

√
Γ 2−1

dp̄‖

ê‖ê‖
Ω0j

ω
p̄‖
∂f0j

∂ p̄‖

−

+∞∑
n=−∞

Ω0j

k‖c

(
∂f0j

∂Γ
+

k‖c
ω

∂f0j

∂ p̄‖

)
1

p̄‖ − Γ
ω

k‖c
+

nΩ0j

k‖c

T̄n

 , (3.16)

where

T̄n ≡



n2J2
n

z̄2

inJnJ′n
z̄

p̄⊥
nJ2

np̄‖
z̄

−
inJnJ′n

z̄
p̄⊥ (J′n)

2p̄2
⊥
−iJnJ′np̄‖p̄⊥

nJ2
np̄‖
z̄

iJnJ′np̄‖p̄⊥ J2
np̄2
‖


, (3.17)
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p̄⊥≡
√
Γ 2 − 1− p̄2

‖, z̄≡ k⊥c/Ω0j and the Bessel functions are evaluated as Jn≡ Jn(z̄p̄⊥).
Whenever ALPS performs a relativistic calculation and

−Pmax,‖j 6 Re(p̄pole)6+Pmax,‖j, (3.18)

the code automatically transforms from (p⊥, p‖) to (Γ , p̄‖) coordinates and applies the
polyharmonic-spline algorithm described in appendix C to create an equally spaced
and homogeneous grid in (Γ , p̄‖) coordinates. In this coordinate system, we perform
the integration near poles and the analytic continuation in the same way as described
in §§ 3.1 and 3.2, but using the relativistic parallel momentum associated with the
pole from (3.15). For reasons of numerical performance, we use the integration based
on (3.16) only if there is a pole within the integration domain. Otherwise, we employ
the faster integration method based on (2.9) even in the relativistic case.

4. Test cases and results
In this section, we compare ALPS with known reference cases based on either our

own or previously published results.

4.1. Maxwellian distributions
There are numerous codes for the hot-plasma dispersion relation in a plasma with
Maxwellian or bi-Maxwellian background distributions. We use our code PLUME
(Klein & Howes 2015) for an electron–proton plasma and calculate the dispersion
relations of Alfvén/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W)
waves. We then set up Maxwellian f0 tables with the same parameters as those
used with PLUME and calculate the dispersion relations based on these f0 tables
with ALPS. We compare the PLUME and ALPS results for quasi-parallel and
quasi-perpendicular propagation in figure 1. The panels show both the real part
of the frequency ωr and its imaginary part γ as functions of the parallel and
perpendicular wavenumbers, respectively. We use β⊥j = β‖j = 1 for both protons
and electrons, and vA/c = 10−4, where β⊥j ≡ 8πn0jkBT⊥j/B2

0 and β‖j ≡ 8πn0jkBT‖j/B2
0.

We normalise all frequencies in units of the proton-cyclotron frequency Ω0p and all
length scales in units of the proton skin depth dp ≡ vA/Ω0p. The momentum-space
resolution for the ALPS calculation in the quasi-parallel limit is N⊥ = 320, N‖ = 640,
Pmax,‖p = 8mpvA and Pmax,‖e = 0.19mpvA. In the quasi-perpendicular limit, we use
N⊥ = 240, N‖ = 480, Pmax,‖p = 6mpvA and Pmax,‖e = 0.14mpvA. In both cases, we
set Pmax,⊥j = Pmax,‖j, Jmax = 10−45, MI = 5, MP = 100, tlim = 0.01 and scan through
k-space in 256 logarithmically spaced steps from k‖dp = 10−2 to k‖dp = 10 and
k⊥dp= 10−2 to k⊥dp= 10, respectively. We study the accuracy of the results depending
on the resolution in § A.1. Figure 1 shows that ALPS reproduces these Maxwellian
examples very well. We note that these plasma parameters represent typical solar-wind
conditions at 1 au.

In order to illustrate another representation of the plasma dispersion relation,
we show a comparison of dispersion maps from PLUME and ALPS in figure 2.
Dispersion maps are diagrams of isocontours of constant lg |detD|, where D is
the tensor from (2.12), in the ωr–γ plane. Solutions to the hot-plasma dispersion
relation appear as local minima in these diagrams. After calculating a dispersion
map for a given k, ALPS automatically determines the locations of its local
minima in terms of ωr and γ . These minima represent ideal initial guesses for
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(a) (b)

FIGURE 1. Dispersion relations for the A/IC wave and the FM/W wave in a Maxwellian
plasma in quasi-parallel (a) and quasi-perpendicular (b) propagation. For the calculations
shown on (a), we keep k⊥dp = 10−3 constant and scan through k‖. For the calculations
shown on (b), we keep k‖dp = 10−3 constant and scan through k⊥. The A/IC mode in
quasi-perpendicular propagation corresponds to the kinetic Alfvén wave (KAW) at k⊥dp &
1/
√
β‖p. We compare ALPS with the standard Maxwellian solutions from PLUME for an

electron–proton plasma with the same plasma parameters. Both numerical models agree
well in both the real part ωr of the frequency and its imaginary part γ .

(a) (b)

FIGURE 2. Comparison of dispersion maps from PLUME (a) and ALPS (b) for k⊥dp =

k‖dp = 10−3. The lines show isocontours of constant lg |detD|. The colour scheme varies
from small lg |detD| in blue to large lg |detD| in red. Minima in this map correspond to
solutions to the hot-plasma dispersion relation.

the Newton-secant root-finding search when scanning through k. Although the
calculation of a dispersion map still requires the calculation of all χj, it does
not entail the application of the Newton-secant root-finding algorithm itself. We
use a Maxwellian plasma model with β⊥j = β‖j = 1 for both protons and electrons,
k⊥dp = k‖dp = 10−3 and vA/c = 10−4. For the ALPS calculation, we use N⊥ = 240,
N‖ = 480, Pmax,‖p = Pmax,⊥p = 6mpvA, Pmax,‖e = Pmax,⊥e = 0.14mpvA, Jmax = 10−45,
MI = 5, MP = 100 and tlim = 0.01. Both the PLUME and the ALPS calculations
reveal seven solutions to the dispersion relation. We note that the point ωr = γ = 0
is a maximum and does not represent a solution to the dispersion relation. The
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(a) (b)

FIGURE 3. Comparison of dispersion relations for the A/IC instability (a) and the mirror-
mode instability (b) from PLUME and ALPS. We use T⊥p/T‖p= 3. For the calculation of
the A/IC instability, we keep k⊥dp=10−3 constant and scan through k‖. For the calculation
of the mirror-mode instability, we keep the angle θ = 75◦ constant and scan through |k|.

solutions at ωr = ±10−3Ω0p and γ = −2.3 × 10−10Ω0p are the forward and
backward propagating A/IC waves. The solutions at ωr = ±2 × 10−3Ω0p and
γ = −5.4 × 10−5Ω0p are the forward and backward propagating FM/W waves. The
solutions at ωr = ±1.2 × 10−3Ω0p and γ = −7.3 × 10−4Ω0p are the forward and
backward propagating slow waves (ion-acoustic waves). Lastly, the solution at ωr = 0
and γ = −7.2 × 10−4Ω0p is the non-propagating slow mode, which is sometimes
denoted ‘entropy mode’, (Verscharen et al. 2016; Verscharen, Chen & Wicks 2017).
The comparison of both panels in figure 2 shows that ALPS reproduces these seven
plasma modes under typical solar-wind conditions in the Maxwellian limit.

4.2. Anisotropic bi-Maxwellian distributions
PLUME, like most other standard hot-plasma dispersion-relation solvers, allows us
to use anisotropic bi-Maxwellian representations for the background distribution
functions. Such a configuration can lead to instability if the temperature anisotropy
exceeds the threshold for an anisotropy-driven plasma instability. As an example
for a propagating instability, we calculate the dispersion relation for the parallel
A/IC instability (Harris 1961; Davidson & Ogden 1975; Yoon et al. 2010), and as
an example for a non-propagating instability, we calculate the dispersion relation
for the mirror-mode instability (Rudakov & Sagdeev 1961; Tajiri 1967; Southwood
& Kivelson 1993). The thresholds for both of these instabilities fulfil T⊥p > T‖p.
For this demonstration, we use PLUME to calculate ωr and γ as functions of the
wavenumber in a plasma with bi-Maxwellian protons and Maxwellian electrons using
β‖p = β‖e = β⊥e = 1, T⊥p/T‖p = 3 and vA/c = 10−4. We then set-up bi-Maxwellian
f0 tables with the same parameters and calculate the dispersion relations for
both instabilities with ALPS. We show the results in figure 3. For the ALPS
calculation, we use N⊥ = 320, N‖ = 640, Pmax,‖p = 8mpvA, Pmax,⊥p = 13.9mpvA,
Pmax,‖e = Pmax,⊥e = 0.19mpvA, Jmax = 10−45, MI = 5, MP = 100 and tlim = 0.01. For
the A/IC instability, we scan through k‖ from k‖dp = 10−2 to k‖dp = 10 in 256
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(a)

(b)

FIGURE 4. Comparison of dispersion relations of the FM/W instability in a κ-distributed
plasma from DSHARK and ALPS. In both plasma models, we keep θ = 0.001◦ constant
and scan through k‖. (a) shows the real part of the wave frequency, and (b) shows its
imaginary part.

logarithmically spaced steps. For the mirror-mode instability, we scan through k
from kdp = 10−2 to kdp = 5 in 154 logarithmically spaced steps and keep the angle
θ ≡ arcsin(k⊥/k)= 75◦ constant. We study the accuracy of these results depending on
the resolution in § A.2.

Both PLUME and ALPS show that the A/IC wave and the mirror mode are unstable
in different wave-vector ranges for the given parameter set. The good agreement
between the PLUME solutions and the ALPS solutions shows that ALPS successfully
calculates the dispersion relations of both instabilities in a bi-Maxwellian plasma.
Although the correct mirror mode exhibits ωr = 0, the ALPS solution shows a very
small yet finite ωr. We discuss this error and its dependence on the velocity-space
resolution in § A.2.

4.3. Anisotropic κ-distributions

Astfalk et al. (2015) developed the code DSHARK to calculate dispersion relations
in plasmas with bi-κ-distributions. As one example, these authors discuss the FM/W
instability in an anisotropic electron–proton plasma with κp = κe = 8, β‖p = 2, β‖e =
4, T⊥p/T‖p = 0.4 and T⊥e/T‖e = 0.5 (see figure 1 from Astfalk et al. 2015). The
angle between k and B0 is constant for this calculation and set to θ = 0.001◦. We
use DSHARK to reproduce this test case and set up κ-distributed f0 tables with the
same parameters in order to compare the DSHARK results with ALPS. We show this
comparison in figure 4. In ALPS, we use N⊥ = 400, N‖ = 800, Pmax,‖p = 10mpvA,
Pmax,⊥p = 6.32mpvA, Pmax,‖e = 0.33mpvA, Pmax,⊥e = 0.23mpvA, Jmax = 10−45, MI = 5,
MP = 500, tlim = 0.01 and vA/c = 10−4. We scan through k‖ from k‖dp = 10−1 to
k‖dp ≈ 3.42, where ωr changes its sign after 87 logarithmically spaced steps.

ALPS reproduces the DSHARK results for the FM/W instability well. The results
also agree with the previous work by Lazar et al. (2011).
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(a) (b)

FIGURE 5. Dispersion relations of the quasi-parallel A/IC wave (solutions at low ωr) and
the ordinary wave (solutions at high ωr) in a relativistic electron–positron pair plasma with
Jüttner distributions. We keep k⊥dp=10−3 constant and scan through k‖. (a) shows the real
part of the frequency, and (b) shows the imaginary part of the frequency. The lines show
ALPS solutions, and the crosses show the results from figure 1 of López et al. (2014). The
three colours correspond to β‖p=β‖e=0.2 (red), β‖p=β‖e=0.4 (green) and β‖p=β‖e=1.0
(blue) in both panels and for both modes.

4.4. Relativistic Jüttner distributions
As one example for a dispersion relation in a relativistic plasma, we reproduce the
results by López et al. (2014) for an electron–positron pair plasma with a Jüttner
distribution using vA/c = 1, mp = me, β‖p = β‖e = (0.2, 0.4, 1.0) and T⊥j = T‖j for
both positrons and electrons. We set up a Jüttner-distributed f0 table with the same
parameters and calculate the dispersion relations of the A/IC wave and the Ordinary
wave (O-mode) in the plasma, keeping the perpendicular wavenumber constant at
k⊥dp= 10−3. We use N⊥= 30, N‖= 60, Pmax= 5mpvA, Jmax= 10−45, MI= 5, MP= 300
and tlim = 0.01. Our interpolation method transforms the (p⊥, p‖) grid to the (Γ , p̄‖)
grid with NΓ = 500 and Np̄‖ = 500 steps in Γ and p̄‖, respectively. We scan through
k‖ from k‖dp = 10−1 to k‖dp = 10 in 128 logarithmically spaced steps. We show the
results in figure 5. López et al. (2014) show their results for these parameters in
their figure 1. Our comparison with the ALPS dispersion relation in figure 5 shows
a good agreement and confirms our relativistic model. The deviation between the
results from López et al. (2014) and ALPS is only visible in the real part of the
frequency at the large-k‖/low-ωr end of the A/IC branches.

5. Discussion and conclusions
ALPS solves the relativistic and non-relativistic hot-plasma dispersion relations in a

plasma with arbitrary background distribution functions. We have benchmarked ALPS
against existing codes by comparing dispersion relations for waves and instabilities in
Maxwellian, bi-Maxwellian, κ-distributed and relativistic Jüttner-distributed plasmas.
In all cases, we find that ALPS agrees well with existing codes. This finding
encourages us to apply ALPS to yet unexplored plasma environments in future work.
We note that we have only tested ALPS in the regime kρe� 1 and kde� 1 thus far,
where ρe ≡ w⊥e/|Ω0e|. There is no numerical limitation, however, that prevents us
from applying the code to larger wavenumbers at or beyond electron scales.

An important application of ALPS will be the analysis of distribution functions
measured by spacecraft in the solar wind. ALPS includes the necessary numerical
framework to preprocess and format the spacecraft data so that they can serve as
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f0 tables for direct input (see appendix C). Especially, the upcoming missions Solar
Orbiter and Parker Solar Probe will deliver plasma measurements with unprecedented
energy and time resolution in the solar wind that will serve as the ideal input for
ALPS. The vast majority of previous kinetic studies of waves and instabilities relied
on bi-Maxwellian fits to the observed distribution functions and the use of a standard
bi-Maxwellian code to solve the hot-plasma dispersion relation such as WHAMP,
PLUME or NHDS. Our approach allows us, however, to relax the bi-Maxwellian
assumption and to analyse the plasma behaviour more realistically. A great advantage
of standard bi-Maxwellian solvers is their very high speed when solving the dispersion
relation. The plots of dispersion relations shown in this paper require an ALPS run
time between about one and ten hours on 32 processor cores, while PLUME solves
the same dispersion relation for a bi-Maxwellian plasma within a few seconds.
Therefore, we recommend the use of standard bi-Maxwellian solvers or solvers for
κ-distributed plasmas to determine an adequate initial guess before using ALPS
whenever the f0 table is close to a bi-Maxwellian or κ-distribution, respectively.
Future comparisons of the results from standard codes such as PLUME with the
results from ALPS will help to evaluate the quality of the previous bi-Maxwellian
approaches and to refine our understanding of the role of instabilities in collisionless
plasmas based on the actual distribution functions. For instance, our knowledge
of the realistic value of certain instability thresholds is still very limited. Some
in situ observations of kinetic plasma features in the solar wind lie above the
thresholds of kinetic instabilities when calculated based on bi-Maxwellian background
distributions (see, for example, Isenberg 2012). The general conjecture is, however,
that the plasma is limited by the lowest instability threshold. A more realistic
calculation based on the actual distribution functions may resolve this discrepancy.
This concept applies, for example, to anisotropy-driven instabilities such as the A/IC
instability (Hellinger et al. 2006; Bale et al. 2009; Maruca, Kasper & Gary 2012)
or beam-driven instabilities such as the FM/W instability (Reisenfeld et al. 2001;
Verscharen, Bourouaine & Chandran 2013; Verscharen & Chandran 2013). Also
non-thermal electron configurations, which are known to carry a significant heat flux
into the solar wind, require a non-bi-Maxwellian representation for the determination
of the relevant instabilities that limit their heat flux (Feldman et al. 1975; Pilipp et al.
1987a; Pulupa et al. 2011; Salem et al. 2013). Another field of application of ALPS
is the study of highly non-thermal plasma configurations related to reconnection
events (Phan et al. 2006; Gosling 2007; Gosling et al. 2007; Egedal, Daughton &
Le 2012; Egedal, Le & Daughton 2013). We also emphasise the applicability of
ALPS for the determination of dispersion relations using distributions from numerical
plasma simulations. Particle-in-cell or Eulerian plasma codes generate data directly
suitable as f0 tables for ALPS. Some of these numerical simulations use (realistically
or artificially) relativistic plasma conditions. Therefore, ALPS’s ability to include
relativistic effects will be very useful for the study of the wave properties and the
stability of simulated plasmas.

Our resolution studies in appendix A offer some insight into the necessary
resolution of the f0 tables for a reliable determination of the plasma dispersion
relation. In the shown applications, a minimum resolution of about N⊥ = 40 and
N‖ = 80 has proven to be necessary for a good agreement between ALPS and the
test results for (bi-)Maxwellian distributions. In a future extension of ALPS, we will
include Nyquist’s method to automatically determine the stability of directly observed
distribution functions (Klein et al. 2017, 2018). We also note that, in cases with
k‖ � k⊥ and ωr � Ωp0, the gyrokinetic limit is an appropriate simplification to the
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full hot-plasma dispersion relation (Catto 1978; Howes et al. 2006; Kunz et al. 2015;
Camporeale & Burgess 2017). The gyrokinetic dispersion relation does not require
the sum over all n 6= 0 as in (2.9). Considering these lower numerical demands, it
would be worthwhile to develop a gyrokinetic version of ALPS in the future.
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Appendix A. Resolution studies
In order to understand the required resolution of the f0 tables for calculations

with ALPS, we compare results from PLUME with results from ALPS for the same
plasma parameters using different resolutions in this appendix. For all calculations,
we use β‖p = β‖e = 1, T⊥e/T‖e = 1, Jmax = 10−45, MI = 5, MP = 100 and tlim = 0.01.
A careful re-analysis of the A/IC-wave solutions using variations in MI and MP
over one order of magnitude each (not shown) reveals that the accuracy of the
solutions depends only moderately on the numerical values of these parameters. We
use Pmax,‖p as a free parameter and set N‖ = 2N⊥, Pmax,‖e = Pmax,⊥e = Pmax,‖p

√
me/mp

and Pmax,⊥p = Pmax,‖p
√

T⊥p/T‖p. We apply the same resolutions for the scans in
k-space as those used to derive the corresponding figures in § 4. We define the
resolution in momentum as 1wj≡Pmax,‖j/(N‖mjw‖j) and the accuracy of the solution as
1ωr/ωr ≡ |ωr,ALPS − ωr,PLUME|/ωr,PLUME, where ωr,ALPS is the solution from ALPS and
ωr,PLUME is the solution from PLUME. For κ-distributions, the appropriate resolution
depends on both β‖j and κ . Instead of giving general guidelines for the resolution, we,
therefore, recommend case-by-case convergence studies when calculating dispersion
relations in plasmas with κ-distributions.

A.1. Maxwellian distributions
In figure 6, we show a resolution study for the A/IC wave in quasi-parallel
propagation in an isotropic Maxwellian plasma. This figure complements our solutions
shown in figure 1. The four panels represent different values of Pmax,‖j. In each
panel, the diagram at the top compares the real part of the frequency from five
ALPS calculations with different 1wj to the Maxwellian solutions from PLUME. The
diagram at the bottom compares the ratio between ωr from the five ALPS calculations
and ωr from PLUME. The line associated with a given parameter run ends whenever
ALPS loses the solution as it scans through k‖. For the parameters used in figure 6,
Pmax,‖p= 8mpwp with a resolution finer than 1wj= 0.1 leads to a very good agreement
with the PLUME solutions for ωr. For wavenumbers below 1/dp, a lower value of
Pmax,‖p is sufficient. Figure 7 shows the same as figure 6, but giving the imaginary part
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FIGURE 6. Resolution study for the real part of the frequency for the A/IC-wave solution
in quasi-parallel propagation. We keep k⊥dp = 10−3 constant and scan through k‖.

of the frequency instead of its real part. This figure confirms our finding regarding
the optimal resolution.

Figures 8 and 9 show the same as figures 6 and 7, but for quasi-perpendicular
propagation instead of quasi-parallel propagation. The required resolution is lower
in the quasi-perpendicular case than in the quasi-parallel case. The solutions with
Pmax,‖p = 4mpwp and 1wj 6 0.1 lead to a very good agreement between the PLUME
and ALPS solutions.

A.2. Anisotropic bi-Maxwellian distributions
In addition to our Maxwellian test, we study the dependence of the ALPS solutions
on the resolutions for the bi-Maxwellian case with T⊥p/T‖p = 3 as shown in
figure 3. Figure 10 compares ALPS solutions for the A/IC instability in quasi-parallel
propagation for different values of Pmax,‖p and 1wj with the solutions from PLUME
for the real part of the frequency. Figure 11 compares PLUME and ALPS solutions
for the imaginary part of the frequency. The solutions with Pmax,‖p = 4mpw‖p and
1wj 6 0.05 lead to a good agreement between PLUME and ALPS in both ωr and γ .

In figure 12, we study the dependence of the solutions on the resolution for the
mirror-mode instability with the same parameters as in figure 3. The correct solution
of the mirror-mode instability has ωr = 0; however, the ALPS solutions have finite
values ωr 6= 0. The value of ωr decreases with increasing 1wj. As Southwood &
Kivelson (1993) point out, the mirror-mode instability is strongly influenced by
particles with p‖ ≈ 0. The error in frequency 1ωr is determined by the resolution
of the momentum grid around p‖ = 0, where 1ωr ∼ k‖wj1wj. Figure 13 shows the
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FIGURE 7. Resolution study for the imaginary part of the frequency for the A/IC-wave
solution in quasi-parallel propagation. We keep k⊥dp= 10−3 constant and scan through k‖.

comparison of the imaginary part of the mirror-mode solutions. Like in the case of
the A/IC instability, a resolution with Pmax,‖p = 4mpw‖p and 1wj 6 0.05 leads to a
good agreement between PLUME and ALPS. We note that there is a non-monotonic
behaviour in the accuracy of the solutions in some cases (see, for example, the
solutions for 1wj = 0.2, 1wj = 0.1, and 1wj = 0.05 in figure 13). This illustrates
that an increase in resolution sometimes causes the code to lose a solution that
it successfully finds at lower resolutions. Since this numerical problem eventually
resolves itself after increasing the resolution further, we recommend applying a
higher resolution whenever the code loses a solution.

Appendix B. Levenberg–Marquardt fit
For the hybrid analytic continuation, ALPS fits the f0 table with a combination of

pre-described algebraic expressions as described in § 3.2. We employ a Levenberg–
Marquardt algorithm (Levenberg 1944; Marquardt 1963) to fit the distribution
functions in p‖ with a superposition of an arbitrary number of Maxwellian distributions,
κ-distributions and Jüttner distributions. The user can freely choose the number of
fits and their superposition. We evaluate different fit parameters for each given value
of p⊥. We define the Maxwellian fitting function as

FM(p̂‖)= u1 exp[−yp̂2
⊥
− u2(p̂‖ − u3)

2
], (B 1)

where uk are the fit parameters, y is a constant user-defined parameter and p̂⊥ and p̂‖
are the normalised perpendicular and parallel momenta. The parameter y compensates
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FIGURE 8. Resolution study for the real part of the frequency for the A/IC-wave solution
in quasi-perpendicular propagation. We keep k‖dp = 10−3 constant and scan through k⊥.

the otherwise strong p⊥-dependence of u1, making the fit more reliable. It is constant
for all p⊥. We choose this expression rather than a fit in p⊥ since it provides a greater
flexibility in the p⊥-domain compared to a two-dimensional fit in p⊥ and p‖. The best
choice for y is β⊥jmp/mj. The standard normalisation in ALPS uses p̂⊥= p⊥/mpvA and
p̂‖ = p‖/mpvA. In cases with κ-distributed plasma components, we use

Fκ(p̂‖)= u1[1+ u2(p̂‖ − u3)
2
+ yp̂2

⊥
]

u4 . (B 2)

In cases with Jüttner-distributed plasma components, we use

FJ = u1 exp(−yΓ ). (B 3)

In this case, the best choice for y is 2c2/w2
j . These fitting relations are easily

extendable by the user to cover more general functions as needed.
We denote the discretised f0 table of species j at constant p⊥ as f̂i,j(p̂‖,i), the

discrete steps in p̂‖ as p̂‖,i, the vector of all fit parameters as u and the sum of all
fit functions as F(p̂‖). In the Jüttner-distributed cases, the coordinates are replaced
with Γ and p̄‖ accordingly. We define the residuals as si ≡ f̂i,j − F(p̂‖,i) and define
C≡

∑
i s2

i . We denote the Jacobian of f̂ j with respect to u as J. We use a superposition
of analytical expressions for the Jacobian based on the given form of F(p̂‖). The
Levenberg–Marquardt algorithm uses an iterative step to update u of the form

unew = u+ [JᵀJ + λ diag(JᵀJ)]−1Jᵀs, (B 4)
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FIGURE 9. Resolution study for the imaginary part of the frequency for the A/IC-wave
solution in quasi-perpendicular propagation. We keep k‖dp = 10−3 constant and scan
through k⊥.

where λ is a user-defined scalar. For the matrix inversion in (B 4), we use the
LU-factorisation. Then we calculate the residuals snew based on unew and determine
Cnew = |snew|

2. If Cnew 6 C, we set u to unew, reduce λ by a constant factor λf
(user-defined, standard value is 10) and repeat the procedure. If Cnew >C, we discard
unew, increase λ by the constant factor λf and repeat the procedure. In this way, we
iteratively determine the fit parameters u until the fit converges (i.e. C 6 ε with a
user-defined ε), or until the number of iterations reaches a user-defined maximum
value. ALPS writes the fitted distribution into a separate output file so that a direct
comparison with the original input distribution is possible.

Appendix C. The smoothed thin-plate spline interpolation
Spacecraft or other plasma data are typically not available on a dense Cartesian

grid like the grid required for an f0 table in ALPS. Therefore, our code includes an
interpolation algorithm that fills gaps between data points. ALPS uses the same
interpolation algorithm to create an equidistant grid in (Γ , p̄‖) space after the
coordinate transformation in cases with relativistic poles. We use a polyharmonic-
spline interpolation with the radial basis function of a thin-plate spline with smoothing
(Powell 1994; Donato & Belongie 2002). For each species, we begin with the ‘coarse’
distribution function f̂c,µ which is given by Nc data points (index µ= 1 . . . Nc) with
the associated coarse momentum coordinates p̂⊥c,µ and p̂‖c,µ. The set (f̂c,µ, p̂⊥c,µ, p̂‖c,µ)
forms one data point. The coarse grid is typically not equally distributed in momentum
space.
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FIGURE 10. Resolution study for the real part of the frequency for the A/IC-instability
solution in quasi-parallel propagation. We use a bi-Maxwellian plasma with T⊥p/T‖p = 3.
We keep k⊥dp = 10−3 constant and scan through k‖.

For each species, the ‘fine’ grid of momentum coordinates is given by p̂⊥,i,k and
p̂‖,i,k with i = 1 . . . N⊥ and k = 1 . . . N‖ (and correspondingly in the coordinates Γ
and p̄‖ for cases with relativistic poles). The fine grid corresponds to the actual f0

table to be used as input in ALPS. The goal of our interpolation is to find the value
of the distribution function f̂i,k on all grid points (i, k). We define the vectors w =
(w1, . . . , wNc), c= (c1, c2, c3), f̂ c = (f̂c,1, . . . , f̂c,Nc) and 0= (0, 0, 0). We furthermore
define the matrix

Kµ,ν =

{
r2 log(r) if r > 1
r log(rr) if r< 1,

(C 1)

where r ≡
√
(p̂⊥c,µ − p̂⊥c,ν)2 + (p̂‖c,µ − p̂‖c,ν)2. We also define the (Nc × 3) matrix P.

Its µth row is given by (1, p̂⊥c,µ, p̂‖c,µ). The thin-plate spline interpolation requires us
to solve the non-homogeneous linear system of equations(

K + α1 P
Pᵀ 0

)(
w
c

)
=

(
f̂ c
0

)
(C 2)

for the vectors w and c. α is a user-defined smoothing parameter (α = 0 forces the
fine grid to run through all points of the coarse grid), and 1 is the (Nc × Nc) unit
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FIGURE 11. Resolution study for the imaginary part of the frequency for the
A/IC-instability solution in quasi-parallel propagation. We use a bi-Maxwellian plasma
with T⊥p/T‖p = 3. We keep k⊥dp = 10−3 constant and scan through k‖.

FIGURE 12. Resolution study for the real part of the frequency for the mirror-mode-
instability solution. We use a bi-Maxwellian plasma with T⊥p/T‖p = 3. We keep θ = 75◦
constant and scan through |k|.

matrix. The interpolation is then given by

f̂i,k = c1 + c2p̂⊥,i,k + c3p̂‖,i,k +
Nc∑
µ=1

wµRµi,k, (C 3)
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FIGURE 13. Resolution study for the imaginary part of the frequency for the mirror-mode-
instability solution. We use a bi-Maxwellian plasma with T⊥p/T‖p = 3. We keep θ = 75◦
constant and scan through |k|.

where Rµi,k ≡
√
(p̂⊥,i,k − p̂⊥c,µ)2 + (p̂‖,i,k − p̂‖c,µ)2. The numerically expensive part of

the interpolation is the solution of (C 2). Since K 11 = 0, a direct LU-factorisation is
not possible. Therefore, we apply a LU-factorisation algorithm with partial pivoting
through row permutations until K 11 6= 0.
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