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1. Introduction. J. Berman [2] initiated the study of a variety % of bounded
distributive lattices endowed with a dual homomorphic operation paying particular
attention to certain subvarieties JCm,n. Subsequently, A. Urquhart [8] named the algebras
in 3C distributive Ockham algebras, and developed a duality theory, based on H. A.
Priestley's order-topological duality for bounded distributive lattices [6], [7]. Amongst
other things, Urquhart described the ordered spaces dual to the subdirectly irreducible
algebras in Sif. This work was developed further still by M. S. Goldberg in his thesis and
the paper [5]. Recently, T. S. Blyth and J. C. Varlet [3], in abstracting de Morgan and
Stone algebras, studied a subvariety MS of the variety 3Sfltl. The main result in [3] is that
there are, up to isomorphism, nine subdirectly irreducible algebras in MS and their Hasse
diagrams are exhibited. The methods employed in [3] are purely algebraic and can be
generalized to show that, up to isomorphism, there are twenty subdirectly irreducible
algebras in 3ST1>:1. In section 3 of this paper, we take a short cut to this result by utilizing the
results of Urquhart and Goldberg. Our basic method is simple: the results of Goldberg [5]
are applied to 3iflfl to produce a certain eight-element algebra Bx in 9ifiFi, whose lattice
reduct is Boolean and whose subalgebras are, up to isomorphism, precisely the subdirectly
irreducibles in 3K11. We then pick out of the list of twenty such algebras those belonging
to the variety MS. In section 4, we sketch a purely algebraic proof along the lines followed
by Blyth and Varlet in [3].

2. Preliminaries. A distributive Ockham algebra is an algebra (L, v, A, °, 0,1) of
type (2, 2,1,0, 0) such that (L, v, A, 0,1) is a bounded distributive lattice and ° is a unary
operation denned on L such that, for all x, y e L,

= x°vy0, (xvy)° = x°Ay°, 0° = l, l° = 0.

The class of all distributive Ockham algebras is a variety, henceforth denoted by 0, and
the subvariety of 0 denned by the identity x° = x000 is the aforementioned variety JC^.

An MS algebra is an algebra <L, v, A, °, 0,1) of type <2, 2,1, 0,0) such that, for all
x, y e L,

XAX°° = X, (xAy)0 = x°vy°, l° = 0.

The variety MS of MS algebras is shown in [3] to be a proper subvariety of %xA.
For all unexplained lattice theoretic and universal algebraic terminology and notation

we refer the reader to [1]. Throughout, we assume familiarity with H. A. Priestley's'
duality for bounded distributive lattices, at least in the finite case, and outline just enough
of the duality for the class of finite Ockham algebras, to achieve our aims. For the general
duality theory of distributive Ockham algebras we refer the reader to [5] and [8].
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If g is an order reversing map from a finite poset X into itself then the pair (X; g),
sometimes compressed to X, is called an Ockham space. Any finite Ockham space (X; g)
gives rise to a finite distributive Ockham algebra, called the dual algebra of X and
denoted 0(X). Indeed, a dual endomorphism ° can be defined on the distributive lattice of
order ideals of X by I° = X\g~1(I), for each order ideal / of X. Moreover, given any
finite AeO, the pair (P(A); g), where P(A) is the poset of prime ideals of A and
g:P(A)^>P(A) is defined by g(P) = {ae A; a°<£P} is a finite Ockham space, called the
dual space of A and denoted by if {A), and A is isomorphic to its second dual.

3. Subdirectly irreducibles in XU1 and MS. For integers m, n satisfying m > n > 0 ,
Pm „ will denote the subclass of 0 consisting of those algebras A satisfying the identity
xm = x", where elements am e A are defined by

a° = a, ak+1 = (ak)° whenever fc&O.

The classes Pm „ are shown in [5] and [8] to play a fundamental role and the aforemen-
tioned subvarieties 3£m.n of 0 studied by J. Herman [2] correspond to the classes P2m+re,n.
Of particular relevance here: 3Clwl = P3,i- The Ockham spaces (X; g) which are dual spaces
of algebras in Pm-n are precisely those with gm = gn and it is straightforward to show that
an Ockham space (X; g) is the dual space of an MS-algebra if and only if g2(x) ̂  x, for all
xeX.

For integers m,n satisfying m > n > 0 , let mn denote the pair (m,-/„), where m =
{ 0 , 1 , . . . , m -1} is endowed with the discrete order and 7n :m—»m is defined by

yn(k) = k + l, whenever 0*£fc<m-l,
and

yn(m-l) = n.
Observe that, since the order on mn is discrete, Lmn = 0(mn) has a Boolean lattice reduct
and so, according to [5], the subdirectly irreducible algebras in Pm „ are precisely the
subalgebras of Lm>n. It is a simple matter to see that L3?1 is the power set lattice of the set
{0,1, 2} endowed with the unary operation ° given by

*° = {0}° = {0,l,2},

{0,1,2}° = {1,2}° = *,

{O,1}° = {1}° = {1},

{2}° = {0,2}° = {0,2}.

The Hasse diagram of L31 is subsequently labelled Bj. If H is the Hasse diagram of
an algebra in 0 then by the dual of H we will mean the diagram H obtained by inverting
H. In this terminology we have the following result.

THEOREM 1. The variety 3fCul has, up to isomorphism, twenty subdirectly irreducible
algebras and they are described by the Hasse diagrams in Figure 1 together with their duals.

Eliminating, by inspection, those of the twenty algebras having an element x such
that x^x0 0, we have the following result.
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COROLLARY 2. ([3]) The variety MS has, up to isomorphism, nine subdirectly irreducible
algebras; namely

4. An algebraic approach. Of course, the proof of Theorem 1 presupposes some
knowledge of order-topological duality theory. In this section, we sketch an alternative,
purely algebraic, proof by generalizing the ideas and methods employed by T. S. Blyth
and J. C. Varlet in [3]. We do this not just for comparative purposes but because other
factors arise during the discussion which, besides shedding more light on the structure of
the subdirectly irreducibles in 3C^, are of independent interest and useful in other
directions.

We begin with a result which generalizes from MS to 0 a theorem in [3]. The proof is
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substantially different from the corresponding one in [3] for MS in that it does not require
the description of principal congruences in 0 due to J. Berman [2].

Let I be an ideal of LeO. For each integer m<ta, define

72m = {x e L; x =£ i2m, for some i e /}

and

I2m+1 = {x E L; x s i2m+1, for some i e /} .

Observe that 72m is an ideal and 72m+1 is a filter of L. Now, let

Joo= V J2m and I°= V / 2 m + \

where the first join is taken in the ideal lattice of L and the second is taken in the filter
lattice of L.

THEOREM 3. If I is an ideal of LeO and 0(7) is the smallest congruence of L
collapsing I, then

for some i e Ioo and some j e 7°.

Proof. Let 0, denote the relation defined on L by the condition above. By the
distributivity of L, 8j is a lattice congruence. Moreover, if (XVI)AJ = (y VI')A/, for some
j € 700 and ;' 61°, then, operating on both sides by ° and using distributivity, we have

We claim that /° e Joo and i° s 7°. Indeed, since / e 1°, there are positive integers mk and
elements afceJ2mk+1, l«fcs=r, such that / = a1A...Aar. However, ak^ilmk+i, for some
ikel, so that al^ilim"+1) and therefore aleI2(mk+i). Thus, j° = a°v.. .va°e / 0 0 . Simi-
larly, i°e J° and so i°v/°e 7°, since 7° is a filter of L. It follows, now, that x° = y°(0,). We
conclude that 0f preserves the operation ° and so is a congruence of L. Obviously,
7c[O]0j, so that 6t collapses 7, and it remains only to show that it is the smallest such
congruence of L. Let 6 be any congruence of L collapsing 7. We claim that 6 also
collapses 700 and 7°. Indeed, if x e 700 then there are positive integers mk and elements
bk s72mt, l « fc«s , such that x = bx v . . . vb s . However, bk s= i£m" for some ik eI, so that
x«i2 m>v. . .vi2m- = O(0), since 6 collapses 7. Therefore, x = Q(6) and we conclude that
Joo£[O]0- Similarly, 7°c[l]0 and so 6 collapses 7°. Finally, observe that if x = y(0,), so
that there is an ie700 and ye7° such that (xvi)A/ = (yVI")AJ, then X = (XVJ)A/(0) =
(y vi)AJ = y(6), since 6 collapses 700 and 7°. Thus, 0,^0.

COROLLARY 4. If I is an ideal of L e 3fC1 a then

x s y (0(7)) O (x v i) A j = (y v i) A j ,

for some ie7v72 and some jel1.
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The following lemma generalizes to I u results of T. S. Blyth and J. C. Varlet for
MS: its proof requires Corollary 4 and is along the lines of their proof of the correspond-
ing result for MS.

LEMMA 5. Let L be a subdirectly irreducible algebra in 3£lA. Then, for all aeL,
(i) a0 and a00 are comparable,
(ii) a0o>a°=>ao = 0.

Proof, (i) Let aeL and let 6a = 0,a,(a
00, l)A0lat(O, a0), where 0lat(x, y) denotes the

principal lattice congruence of L collapsing the pair x, y in L, so that 6a = 6iBt(a° A a00, a0).
Then, using the distributivity of L, the well known description of principal lattice
congruences of distributive lattices and the fact that a0 = a000, it is easy to show that 8a is
a congruence of L and 0a A 0ao = co. It follows that either 0a = co, in which case a°^a00, or
6a« = co, in which case a00 =£ a000 = a0, since L is subdirectly irreducible.

(ii) If a o o >a°>0then 0(0, a0) f co and 0ao = 0lat(aooAaooo,aoo) = 6lat(a
00 A a0, a00) =

0,at(a°, a00) so that 0a° ^ co. However, 8a»A 0(0, a0) = co. Indeed, if x = y(0a»A 0(0, a0)) then
XAo° = yAo°, xva o o = yva0 0 and, on taking / = (a°] in Corollary 4,

(xvJ)Aj = (y VI')A/, for some ie(a°]v(a°]2, je(a°f.

But (a°]2 = (a0], since a0 = a000, so that i *£ a0 and, therefore, x A i = y A i. Also, (a0]1 =
[a00) so that /3=a00 and therefore xv/ = yvj which, in conjunction with the equation
(xvi)Aj' = (y VI')AJ and the distributivity of L, yields xv i = yvi. Thus, again by dis-
tributivity, we have x = y, contrary to the subdirect irreducibility of L.

Blyth and Varlet observed in [3] that, for any LeMS, L 0 0 = { X E L ; X = X00} is a de
Morgan subalgebra of L, that the relation <t> denned L by x = y(<I>)Ox00 = y00 is a
congruence of L and that L00 = L/<I>. The same is obviously true for any Le3Cltl.
Moreover, it is known (see [1], for example) that a de Morgan algebra L is simple if
a = a0, whenever a eL\{0,1}. An easy consequence of this and lemma 5 is the following
extension of a key theorem in [3].

THEOREM 6. If Le 9ifXil and L is subdirectly irreducible, then L°° is a simple de Morgan
algebra.

Again, the following is the counterpart of a result proved in [3] for MS.

COROLLARY 7. Let Le3f(1 _t be non-trivial. Then L is subdirectly irreducible if and only

Proof. The interval [<&, t] in Con(L), the congruence lattice of L, is isomorphic to
Con(L/<I>)sCon(L00)s2, since L00 is simple and non-trivial. Therefore, 4>< i. Moreover,
if (t> £ co then the interval [co, <t>] in Con(L) is Boolean, since it coincides with the
corresponding interval in the lattice of lattice congruences of L, which is Boolean by
virtue of the fact that L is finite (see [2]).

The next corollary reduces the amount of tedious, case-by-case examination neces-
sary for the determination of the subdirectly irreducible algebras in JKIA via this approach.
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COROLLARY 8. Let L be a subdirectly irreducible algebra in 3ifltl. Then

(i) |[a]<£|=£2, for all aeL.
(ii) |L|=£8 and \L\±1.

Proof. Suppose that $ ^ <o. If L has a <&-class having more than two elements than
this class contains a three element chain x < y < z, say. Clearly, o>< 0lal(x, y) = 6(x, y)̂ <I>
so that 0iat(x, y) = O= 0!at(y, z), since co<4>, and therefore <J>= 0lat(x, y)A0,at(y, z) = <n.
Thus, (i) holds. For (ii), first observe that Le3fClA implies [a]3> = [aoo]<i>, for any aeL.
Hence, L/4> = {[x]4>; xeL00} is a disjoint covering of L by sets each having cardinality at
most two. Therefore, |L|^2|L00|. Now, the simple de Morgan algebras are precisely the
algebras T, B, S and M depicted in §3. Consequently, |L0 0 |^4 and so |L|=s8. Also, if
|L| = 7 then |L00| = 4, so that L00 = M and L contains a complementary pair a, b<£{0,1}.
Thus, as a lattice, L has the non-trivial direct decomposition L = (a]x(b] which is absurd
because 7 is prime.

We now have enough information at hand to produce systematically the subdirectly
irreducibles L in Xltl. The idea is to consider each of the possibilities for L°° in turn and
apply corollaries 7 and 8 to test for subdirect irreducibility. In summary, we have:

Case (i): L00 is trivial. This produces only the trivial algebra T.
Case (ii): Loo = {0,1}. This produces T, B, S, S and Sx.
Case (iii): L00 = {0, a, 1}, with a = a0. First, note that a subdirectly irreducible algebra

L in this category has 3=s|L|=s6. We deal with the possible chain algebras first. Those
having at most four elements are precisely K, Ku K2, Klt K2 and none has either 5 or 6
elements, because at least two of the three <I>-classes of such an algebra must contain
exactly 2 elements but then it is easily seen that w^ 3>. Next, we deal with the subdirectly
irreducible algebras in this category that are not chains. It is a simple, but tedious, exercise
to show that there are no such algebras having four elements. The only five element
algebras that can be produced are K3, K3, L and L while the six element ones are
precisely N and N.

Case (iv): L00 = {0, a, b, 1}, with a = a°, b = b°. Any subdirectly irreducible algebra L
in this category contains a complementary pair a, b£{0,1} and so, as a lattice, has a
non-trivial direct decomposition. Thus, the lattice reduct of L is either 2x2, 3x2, 4x2
(where 2, 3 and 4 denote the 2, 3 and 4 element chains) or 23. The first event yields only
M, the second yields Mx and Mu the third produces none and the fourth yields only Bx.
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