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1. If fis a real function, periodic with period 1, we define

M0 =5 S 1(x+7) (e, 1)

In the whole paper we write | for [§, mE for the Lebesgue measure of E N[0, 1], where
E c R is any measurable set of period 1, and we also use y for the characteristic function
of the set E. Consistent with this, the meaning of 7 is £7[0, 1]. For all real x we have

tim (M, £)(x) = [ £, @)

if f is Riemann-integrable on [0, 1]. However, [ f exists for all f € £ and one would wish
to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for
f € #* in general if p <2. Moreover, Rudin [4] showed that (2) may fail for all x even for
the characteristic function of an open set, and so, to get a reasonable extension, it is
natural to weaken (2) to

’l'l_l}l M, Hx)= ff for a.a. x, (3)

nes

where ScN is some “good” increasing subsequence of N. Naturally, for different

function classes ¥ c #' we get different meanings of being good. That is, we introduce
the class of #-good sequences as

4(%) = {S =N:(3) holds for all f € F)}. (4)
In 1934 Jessen [1], (2] proved that if S has the arithmetic property
ni | nesy for keN, where S={ny, n,...}, 5)

then S is £'-good, i.e. S € 4(£"). In 1948 Salem [5] proved (3) under certain assumptions
on the integral modulus of continuity of f and the lacunarity of the sequences S.
On the other hand Rudin [4] introduced the arithmetic condition

BSNCS, SN={a1,...,aN} (lSN|=N)9
aj+[a|,..-,a}'_‘,.aj+|,...,aN] (j=1,...,N), (6)

where [ ., . ] denotes the least common mulitiple. With this concept Rudin’s result runs as
follows.

S ¢ (&) if S satisfies (6) for every N € N. @)
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Rudin emphasises that Jessen’s results and his imply the importance of the arithmetic
properties of S; an immediate corollary is that there exists § < N such that § € 4(¥') and
S+1={n+1:neS}¢ 4L); cf. [4, Remark A].

2. Clearly if 'S and S € 9(%) then §' € 4(%), and the inclusion or omission of
finitely many elements can not affect the property S € 4(%); that is, it is an asymptotic
property of S. We are going to construct good sequences in a less trivial manner below.
To this end we introduce the least common multiple of two sequences S and T as a new
sequence U defined by

U=[S, T]={[s,t]:seS,teT}. ®

Observe that for sequences built up from two disjoint sets of primes we get the usual
multiplication of subsets of N. The reason for considering (8) is that for any f and
n, m € N we have the relation

MM f D) == 3 3 (342 L) = My @) ©)
. i=1 j=1 m
THeEOREM 1. If S, T € ‘g(ff‘”) then U =[S, T) is also in 4(L~).

Proof. Let fe¥”, S=(s,) and T=(;) be sequences in %(¥~) and denote
I=[f,0=|fll.. Using Egorov’s theorem, for any fixed £¢>0 we can find a set C,
periodic mod 1 and having measure mC > 1 — ¢ such that for any x € C

M. f()-1<e (k>K) (10)
and
M fx)=I1<e (j>7) (11)

hold with appropriately chosen K and J depending only on &,f and C. Consider the
following finite subset of £

€={M,f:k<K}U{M,f:j<J}V {xp\c} (12)
Since S, T € 9(<L™), there exists a set B with mB =0 such that if g € € and x ¢ B then

Mg [g o kow Mg [g as jom

Hence, for g € € and x ¢ B there exist K(x) = K and J(x) = J such that

Mgt~ 8| < (k> Koo, (13)
Mg [g]<e G5,

where of course everything depends on &. Taking (9) into account, for the remainder we

can write
R(x) = Mg, 1f () = I} = M (M, f)(x) - I, (14)
where n = [s, ;]. From (12)-(14) we get
R.(x)<eifj<J and k> K(x) or k<K and j > J(x). (15)
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Clearly, when we form U =[S, T]= (u,), there exists an index L(x) with the property
that if u, = [sy, t;] for some n > L(x) then either k > K(x) or j >J(x). Hence, for n > L(x)
we have either the condition of (15) or j >J and k > K simultaneously. Now for n > L(x)
and j >J(x), k > K we write

Ui

1 . 1 5 . .
R <, 2 [Muf(x+3) 1] <2 3 feelx+7) + 200me(x +1)]
tiici L Liza L Ui
<e+20Q. Mxac(x)<(2Q +1)e, (x¢B), (16)
since xm\c € &, x ¢ B and, for x + (i/t;) € C, (10) applies. Similarly, for k > K(x) and j >J
we obtain '
R, (x)<(2Q+1)e (x¢B). 17

Now (15), (16) and (17) prove
R.(x)<(2Q+1)e (x¢B,n>L(x)),
and consequently

limsup R,(x)<(2Q + 1)¢ (x ¢ B). (18)

Take € =1/N and denote the resulting set B by B. For x ¢ C) By = B*, (18) holds for
N=1

every €; that is, R,(x)—0. As mB* =0, the theorem is proved.

CoroLLARY 1. If there are only finitely many primes that divide the members of the
sequence S, then S € 4.

Proof. Let the set of primes dividing elements of § be {p,,...,p,}. Then
S;={pf:keN} (j=1,...,d) are d sequences in §(£™) according to Jessen’s Theorem
[5]. By Theorem 1, So={pi'p5*... pi':ky,. .., ks €N} € Y£>); since S c S,, this proves

the corollary.

3. We say that a sequence S has finite Rudin dimension d if (6) is valid for N<d
but not for N>d. If S does not have a finité dimension, then it has dimension «. The
smallest possible Rudin dimension, 1, occurs for the sequences of Jessen in (5) which are
&'-good sequences. The other extremity is dimension ®, occurring for the sequences of
Rudin used in (7). According to this theorem of Rudin any %(¥™) sequence must have a
finite Rudin dimension, and the least common multiple of two 9(#™) sequences cannot
be of dimension « in view of Theorem 1. This also follows from the following.

Prorosition 1. If A and B are sequences having Rudin dimension « and f8
respectively then C =[A, B] has dimension y< a + B.

Proof. If ¢;={a;,b;] for j=1,...,a+B+1 are a+ f+1 elements of C, then we
have at least 8 +1 indices j,,...,jg+ such that the corresponding a;, divides the least
common multiple of the other o+ B a’s for each m=1,...,8+1. Among the
corresponding b;,, . . . , b, we again find at least one b, with the property that the least
common multiple of the other 8 b, ’s is a multiple of b,. Now consider ¢, = [a,, b;]. As
both a, and b, divide the least common multiples of the other a; and b; respectively, we

obtain ¢, | [€1y- - s Ckty Chs1s - - - » Carp+1]- This completes the proof.
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Easy examples show that equality can occur in this proposition, but y can also be any
number not exceeding o + . As a particular example, the sequence of all integers built
up from a given d-element set of primes has Rudin dimension 4. This example is similar
to Corollary 1 and suggests that all sequences of larger dimension can be built up from
sequences of smaller dimension. However, this is not the case.

THEOREM 2. There exists a sequence S of dimension 3 which is not a subsequence of
the least common multiple of a finite number of sequences of dimension 1.

Proof. We say that a set A has the property Z, if from any / + 1 of its elements one
can select three, say a, b, c, such that a | [b,c].

First we show that if A is contained in the least common multiple of the sets
B,,..., B, of dimension 1, then A has property Z, for some !/ =1[(k). Indeed, take !/
elements a,, . .., qa, of A. Each g; has a representation in the form

a=[bO,...,b®],  bYeB,

Consider the complete graph on the vertices a,, . . . , a;. Take an edge (a;, a;/), i <i'.
For certain values of t=1,.. .,k the divisibility 5 | 5% holds and for other values it
may not hold (but then the reverse b{|b{ must hold); there are altogether 2*
possibilities. We color the graph with 2* colors accordingly. We recall Ramsey’s theorem:
for every pair of integers u, v there is a number R(u, v) such that for every coloring of
any graph of more than R(u,v) points with u colors there must be a complete
monochromatic subgraph of v points. In particular, for a suitable / = /(k) there must be a
monochromatic triangle in our graph, say with vertices a;, a;:, a», i <i’' <i". For every ¢
either b® [bP| bP or bP |bP| b must hold. In either case we conclude that

bl(") ”:bl(’)’ bf"')]| [ai’ ai"]’

which yields a;- | [a;, a-] as wanted.

Next, for a fixed /, we find a set A, of [ + 1 elements that has dimension 3 but does
not have property Z,.

Let p;, i#], 1<i, j<I+1 be a collection of primes such that p; = p;; but the p; are
otherwise all distinct. Define

"=Hpij, mi=1—.[pij7 n;=n/m;.
i jEi

For different subscripts i, j, kK we clearly have

n; + [ni’ ni] =£ >
Y

consequently the set A, = {n,, ..., n;.;} does not have the Z, property. We show that its
dimension is at most 3. Take three elements n;, n;, n,. Since a prime p,, is missing only
from two of the numbers n,, namely from n, and n,, we have p,, | [ni, nj, ng;
consequently [n;, n;, n,] =n is divisible by any fourth number n,, a property actually
somewhat stronger than necessary.

Finally, we combine these sets into one by putting A =|_J q,4,, where the integers g,
are taken so that g, is a multiple of all the numbers in ¢, 4,U ... Ugq,_;A,_,. This union
clearly will not have property Z, for any . We must show that it still has dimension 3.
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Take any four elements of A. If they are from the same g;A;, then any one divides the
least common multiple of the other three by the corresponding property of A;. If they
come from different sets, then the one which comes from g;A; with the smallest j divides
the least common multiple of the others (in fact it divides any of the others) by the choice
of the numbers g;.

4. Our results do not determine whether it is possible to characterize 4(£~) in
terms of the Rudin dimension. For a concrete sequence it may be quite difficult to decide
whether it belongs to %(<£”) or to determine its Rudin dimension. The following result
asserts that any sequence having sufficiently many elements has an infinite Rudin
dimension, and hence is not in 4(£™).

THEOREM 3. Every sequence S of Rudin dimension d satisfies
S(x) < cq(log x)?,

where ¢4 is a constant depending on d and S(x) denotes the number of elements of S in the
interval [1, x].

Proof. Let f,(n) denote the maximal number of sets that can be selected from the
subsets of a set of cardinality n with the property that if X,,..., X, are selected then
we always have

d+1
X, c U X; 19)
o
for some i. We have f,(n) < C,n?; see [6).

For an integer N, let F,(N) be the maximal number of integers that can be selected
from the divisors of N with the property that from any d + 1 selected numbers some one
divides the least common multiple of the rest (Rudin dimension <d). We claim

EAN) <f/Q(N)) < CQ(N)", (20)
where Q(N) denotes the number of prime divisors of N, counted with multiplicity.
Indeed, to every M | N let us assign the set of prime-powers that divide M. This maps the
divisors of N onto the subsets of a set of cardinality Q(N) and the divisor property

corresponds to condition (19). Substituting the estimate Q(N) < (log N)/(log 2) into (20)
we obtain

F(N)<Ci(logN)¥,  C,=(log2)™?C,.

Now consider our set § of Rudin dimension d. Fix x, and let N denote the least
common multiple of all the numbers s € §, s <N. We have obviously S(x) < F,(N); we
have to estimate N.

N was defined as the least common multiple of some elements of S. Observe that not
all elements are necessary to form this least common multiple; among any d + 1 elements
there is one that divides the least common multiple of the rest, and can hence be omitted.
Repeating this argument, we find that N is the least common multiple of a collection of at
most d elements of S; thus N < x? Substituting this estimate into our previous equations
we find

S(x)<sc4(logx)?, c;=d°C}.
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