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1. If/ is a real function, periodic with period 1, we define

+1-^ (neN). (1)

In the whole paper we write J for JJ, mE for the Lebesgue measure of E n [0,1], where
E <=. U is any measurable set of period 1, and we also use %E for the characteristic function
of the set E. Consistent with this, the meaning of Xp is £Sp[0,1]. For all real x we have

lim(Mnf)(x)=\f, (2)

if/is Riemann-integrable on [0,1]. However, J/exists for al l / e i?1 and one would wish
to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for
/ e Xp in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for
the characteristic function of an open set, and so, to get a reasonable extension, it is
natural to weaken (2) to

lim (Mnf)(x) = f/ fora.a.*, (3)
neS

where 5 c N is some "good" increasing subsequence of N. Naturally, for different
function classes ^ c i f 1 we get different meanings of being good. That is, we introduce
the class of ^-good sequences as

= {S c N: (3) holds for all / e &}. (4)

In 1934 Jessen [1], [2] proved that if S has the arithmetic property

nk \nk+i for keN, where 5 = {nun2,. . .} , (5)

then 5 is if'-good, i.e. 5 e ^(i?1). In 1948 Salem [5] proved (3) under certain assumptions
on the integral modulus of continuity of / and the lacunarity of the sequences S.

On the other hand Rudin [4] introduced the arithmetic condition

3SNcS, SN={au...,aN} (\SN\ = N),

aj\[au. . . ,a,_,,a,+1,. . . ,aN] (j = 1,. . . , N), (6)

where [. , . ] denotes the least common multiple. With this concept Rudin's result runs as
follows.

S i «(.£") if 5 satisfies (6) for every NeN. (7)
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Rudin emphasises that Jessen's results and his imply the importance of the arithmetic
properties of 5; an immediate corollary is that there exists S c N such that 5 e ^(SE1) and
S + l = {n + 1: n e S} $ ̂ ST); cf. [4, Remark A].

(Mn(Mmf))(x) = — 2 2 f(* + L + - ) = (MKn. m ,=i j-i \ n ml

2. Clearly if S' cS and S e ^ ) then 5' e *§(&), and the inclusion or omission of
finitely many elements can not affect the property 5 e ^ ( f ) ; that is, it is an asymptotic
property of 5. We are going to construct good sequences in a less trivial manner below.
To this end we introduce the least common multiple of two sequences 5 and T as a new
sequence U defined by

U = [S, T] = {[s,t]:seS,teT}. (8)

Observe that for sequences built up from two disjoint sets of primes we get the usual
multiplication of subsets of N. The reason for considering (8) is that for any / and
n . m e N w e have the relation

1 n m i : : \

(*)• (9)

THEOREM 1. IfS,Te %SET) then U = [S,T]is also in <§{<T).

Proof. Let fe£T, S = (sk) and T = (tj) be sequences in %3T) and denote
/ = / / , 2 = ||/||oo. Using Egorov's theorem, for any fixed £ > 0 we can find a set C,
periodic mod 1 and having measure mC > 1 - e such that for any x eC

\MJ(x)-I\<e (k>K) (10)
and

\M,.f(x)-I\<£ (j>J) (11)

hold with appropriately chosen K and / depending only on e,f and C. Consider the
following finite subset of if":

Since S,T e CS[XX), there exists a set B with mB = 0 such that if g e % and x $ B then

as *-*°°> Mtig(x)^jg as y^oo.

Hence, for g e % and x $ B there exist K{x) 3= K and J(x)^J such that

<e (k>K(x)), (13)

M,ig(x)-j <e (/>/(*)),

where of course everything depends on e. Taking (9) into account, for the remainder we
can write

Rn(x) = |M[Jt,,.|/(x) - / | = \MSk{M,f){x) -1\, (14)

where n = [sk, tj]. From (12)—(14) we get

Rn(x) < e if; =£/ and A: > K(x) or k =s K and j>J(x). (15)
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Clearly, when we form U = [S, T] = («„), there exists an index L(x) with the property
that if un = [sk, tj] for some n > L(x) then either k > K(x) or; >J(x). Hence, for n > L(x)
we have either the condition of (15) or / >J and k > K simultaneously. Now for n > L(x)
and j>J(x), k > K we write

l)£, (x$B), (16)

since #R\Ce %, x $ B and, for x + (i/tj) e C, (10) applies. Similarly, for k > K(x) and j >J
we obtain

Rn(x)<(2Q + l)e (x*B). (17)

Now (15), (16) and (17) prove

Rn(x)<(2Q + l)e (x<tB,n>L(x)),

and consequently

lim sup Rn(x) =£ (2Q + l)e (x i B). (18)
rt—•»

Take e = l/N and denote the resulting set B by BN. For x $ U BN = B*, (18) holds for
/v=i

every e; that is, /?„(*)—»(). As mB* = 0, the theorem is proved.
COROLLARY 1. If there are only finitely many primes that divide the members of the

sequence S, then S e <3(£T).

Proof. Let the set of primes dividing elements of S be {pu. . . ,pd}. Then
Sj = {pf:ke N} (j = 1,. . . , d) are d sequences in <S(^X>) according to Jessen's Theorem
[5]. By Theorem 1, 50= {p^'p^ • . . pk

d
d:ku. . . , kd e M} € «(iT); since S c5() , this proves

the corollary.

3. We say that a sequence 5 has finite Rudin dimension d if (6) is valid for N =s d
but not for N>d. If 5 does not have a finite dimension, then it has dimension °°. The
smallest possible Rudin dimension, 1, occurs for the sequences of Jessen in (5) which are
if'-good sequences. The other extremity is dimension oo; occurring for the sequences of
Rudin used in (7). According to this theorem of Rudin any (S(^a>) sequence must have a
finite Rudin dimension, and the least common multiple of two (S(^£°°) sequences cannot
be of dimension °o in view of Theorem 1. This also follows from the following.

PROPOSITION 1. If A and B are sequences having Rudin dimension a and /3
respectively then C = [A, B] has dimension y =£ a + /3.

Proof. If Cj = [Oj, bj] for j = 1,..., a + B + 1 are a + /3 + 1 elements of C, then we
have at least /3 + 1 indices j\,...,jp+i such that the corresponding ajm divides the least
common multiple of the other a + B a;'s for each m = 1,. . . , B + 1. Among the
corresponding bjx,. . . , bj t we again find at least one bk with the property that the least
common multiple of the other B bJm's is a multiple of bk. Now consider ck = [ak, bk\ As
both ak and bk divide the least common multiples of the other ay and bj respectively, we
obtain ck \ [c,,. . . , ck_t, ck+u . . . , ca+p+l]. This completes the proof.
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Easy examples show that equality can occur in this proposition, but y can also be any
number not exceeding a + /}. As a particular example, the sequence of all integers built
up from a given d-element set of primes has Rudin dimension d. This example is similar
to Corollary 1 and suggests that all sequences of larger dimension can be built up from
sequences of smaller dimension. However, this is not the case.

THEOREM 2. There exists a sequence S of dimension 3 which is not a subsequence of
the least common multiple of a finite number of sequences of dimension 1.

Proof. We say that a set A has the property Z, if from any / + 1 of its elements one
can select three, say a, b, c, such that a \ [b, c].

First we show that if A is contained in the least common multiple of the sets
Bu. . . ,Bk of dimension 1, then A has property Z, for some l = l(k). Indeed, take /
elements au. . . , at of A. Each a, has a representation in the form

Consider the complete graph on the vertices ax,. . . , a,. Take an edge (a,-, ar), i<i'.
For certain values of t = 1,. . . , k the divisibility b\f) \ b*p holds and for other values it
may not hold (but then the reverse b\') | b\() must hold); there are altogether 2*
possibilities. We color the graph with 2k colors accordingly. We recall Ramsey's theorem:
for every pair of integers u, v there is a number R(u, v) such that for every coloring of
any graph of more than R(u,v) points with u colors there must be a complete
monochromatic subgraph of v points. In particular, for a suitable / = l(k) there must be a
monochromatic triangle in our graph, say with vertices a,, a,-, ar,i<i' <i". For every t
either b^ \bf)\ b<p or bf \bf\ b(p must hold. In either case we conclude that

which yields a,-1 [a,, a,»] as wanted.
Next, for a fixed /, we find a set At of / + 1 elements that has dimension 3 but does

not have property Z,.
Let pij, i¥=j, 1 ^ i, j =s / + 1 be a collection of primes such that /?,y = py, but the ptj are

otherwise all distinct. Define

m> = r iPy. «. = n/mt.
•J

For different subscripts i,j, k we clearly have

Pi)

consequently the set At = {nx,... , n,+i} does not have the Z, property. We show that its
dimension is at most 3. Take three elements nhnj,nk. Since a prime pm is missing only
from two of the numbers n,, namely from nu and nv, we have puv \ [n,, nh nk];
consequently \ni,nj,nk\ = n is divisible by any fourth number nz, a property actually
somewhat stronger than necessary.

Finally, we combine these sets into one by putting A = (J q/A,, where the integers qt

are taken so that qt is a multiple of all the numbers in q±Ax U . . . U ^/_Jy4/_1. This union
clearly will not have property Z, for any /. We must show that it still has dimension 3.
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Take any four elements of A. If they are from the same qtAh then any one divides the
least common multiple of the other three by the corresponding property of Aj. If they
come from different sets, then the one which comes from qjAj with the smallest / divides
the least common multiple of the others (in fact it divides any of the others) by the choice
of the numbers qt.

4. Our results do not determine whether it is possible to characterize ^(iT0) in
terms of the Rudin dimension. For a concrete sequence it may be quite difficult to decide
whether it belongs to cS(Jt°) or to determine its Rudin dimension. The following result
asserts that any sequence having sufficiently many elements has an infinite Rudin
dimension, and hence is not in

THEOREM 3. Every sequence S of Rudin dimension d satisfies

S(x)<cd(logx)d,

where cd is a constant depending on d and S(x) denotes the number of elements of S in the
interval [l,x].

Proof. Let fd(n) denote the maximal number of sets that can be selected from the
subsets of a set of cardinality n with the property that if Xu . . . , Xd+X are selected then
we always have

Xi^UXj (19)

for some i. We have/d(n) =£ Cdn
d; see [6].

For an integer TV, let Fd(N) be the maximal number of integers that can be selected
from the divisors of TV with the property that from any d + 1 selected numbers some one
divides the least common multiple of the rest (Rudin dimension =sd). We claim

FAN) «£(fi(AQ) ^ Cd(Q(N))d, (20)

where £2(N) denotes the number of prime divisors of N, counted with multiplicity.
Indeed, to every M \ TV let us assign the set of prime-powers that divide M. This maps the
divisors of TV onto the subsets of a set of cardinality Q(/V) and the divisor property
corresponds to condition (19). Substituting the estimate Q(TV) =£ (log iV)/(log 2) into (20)
we obtain

Fd(N)^Cd(\ogN)d, Cd = {\og2)-dCd.

Now consider our set 5 of Rudin dimension d. Fix x, and let N denote the least
common multiple of all the numbers s eS , s=sAf. We have obviously S(x)^Fd(N); we
have to estimate N.

N was defined as the least common multiple of some elements of 5. Observe that not
all elements are necessary to form this least common multiple; among any d + 1 elements
there is one that divides the least common multiple of the rest, and can hence be omitted.
Repeating this argument, we find that TV is the least common multiple of a collection of at
most d elements of S; thus N^xd. Substituting this estimate into our previous equations
we find

S(x)^cd(\ogx)d, cd = d"Cd.
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