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On Algebraically Maximal Valued Fields
and Defectless Extensions

Anuj Bishnoi and Sudesh K. Khanduja

Abstract. Let v be a Henselian Krull valuation of a field K. In this paper, the authors give some nec-

essary and sufficient conditions for a finite simple extension of (K, v) to be defectless. Various charac-

terizations of algebraically maximal valued fields are also given which lead to a new proof of a result

proved by Yu. L. Ershov.

1 Introduction

Throughout this paper, by a valuation v of a field K we mean a Krull valuation, i.e., v

is a mapping from K onto G ∪ {∞}, where G is a totally ordered additively written

abelian group such that for all x, y in K the following properties are satisfied:

(i) v(x) = ∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x + y) > min{v(x), v(y)}.

The pair (K, v) is called a valued field and G the value group of v. The subring

Ov = {x ∈ K | v(x) > 0} of K with unique maximal ideal Mv = {x ∈ K | v(x) > 0}
is called the valuation ring of v and Ov/Mv its residue field. A valuation v ′ is said

to be an extension or prolongation of v to an overfield K ′ of K if v ′ coincides with

v on K, in which case (K ′, v ′) is said to be an extension of (K, v). For a valued field

extension (K ′, v ′)/(K, v), if G ⊆ G ′ and Ov/Mv ⊆ Ov ′/Mv ′ denote respectively the

value groups and the residue fields of v, v ′, then the index [G ′ :G] and the degree

of the field extension Ov ′/Mv ′ over Ov/Mv are called respectively the index of ram-

ification and the residual degree of v ′/v. An extension (K ′, v ′) of (K, v) is said to

be immediate if the value groups and the residue fields of v ′ and v coincide, i.e., the

index of ramification and the residual degree of v ′/v are both one. A valued field

(K, v) is said to be Henselian if v has a unique prolongation to the algebraic clo-

sure of K. Henselian valued fields form an important class of valued fields and have

several equivalent characterizations [3, 7] and [4, Theorem 4.1.3]. In this paper, we

characterize some special types of Henselian valued fields.

In what follows, v is a Henselian valuation of a field K and ṽ is the unique prolon-

gation of v to the algebraic closure K̃ of K. In this paper, we prove that a valued field

(K, v) is algebraically maximal, i.e., it has no proper immediate algebraic extension

if and only if the set {ṽ(θ − a) | a ∈ K} has a maximum element for every θ in
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K̃ \ K. It is shown that the above characterization quickly yields a result proved by

Yu. L. Ershov which states that (K, v) is algebraically maximal if and only if the set

{v( f (a)) | a ∈ K} has a maximum element for every polynomial f (x) belonging

to K[x] [5, Proposition 1.5.4, p. 54, p. 259]. Furthermore, it is also shown that for

any fixed θ in K̃ which is algebraic over K of degree n > 1, each of the sets M j(θ),

1 6 j 6 n − 1, defined by

(1.1) M j(θ) = {ṽ(θ − β) | β ∈ K̃, [K(β) : K] 6 j}

has a maximum if and only if K(θ) is a defectless extension of (K, v). Recall that a

finite extension (K ′, v ′) of a Henselian valued field (K, v) (or briefly K ′/K) is said to

be defectless if [K ′ :K] = e f where e, f are the index of ramification and the residual

degree of v ′/v.

Theorem 1.1 Let v be a Henselian valuation of a field K and ṽ be the unique prolon-

gation of v to the algebraic closure K̃ of K. The following statements are equivalent.

(i) (K, v) is algebraically maximal.

(ii) For every θ in K̃ \ K, the set {ṽ(θ − a) | a ∈ K} has a maximum.

(iii) For each monic irreducible polynomial f (x) ∈ K[x], there exists an element a f

belonging to K such that v( f (a f )) ≥ v( f (a)) for every a in K.

(iv) For each polynomial f (x) belonging to K[x], there exists a f belonging to K such

that v( f (a f )) ≥ v( f (a)) for every a in K.

The equivalence of (i) and (ii) above will be deduced from a slightly more general

result to be proved as Theorem 1.2.

Theorem 1.2 Let (K, v), (K̃, ṽ) be as in the above theorem and let θ be an element of

K̃ \ K. Then the set {ṽ(θ − a) | a ∈ K} has no maximum if and only if there exists

γ belonging to K̃ \ K with [K(γ) :K] 6 [K(θ) :K] such that K(γ)/K is an immediate

extension and ṽ(γ − a) = ṽ(θ − a) for every a in K.

As regards defectless extensions, we prove the following.

Theorem 1.3 Let (K, v), (K̃, ṽ) be as in Theorem 1.1 and let θ be an element of K̃ \K

with the minimal polynomial g(x) over K of degree n. The following statements are

equivalent.

(i) K(θ)/K is a defectless extension.

(ii) The set M j(θ) = {ṽ(θ − β) | β ∈ K̃, [K(β) :K] ≤ j} has a maximum element

for each number j not exceeding n − 1.

(iii) For 1 ≤ j ≤ n − 1, the set N j(g) = {ṽ(g(β)) | β ∈ K̃, [K(β) :K] ≤ j} has a

maximum element.

Our proof in fact specifies the elements β j with [K(β j) : K] 6 j such that

max N j(g) = ṽ(g(β j)), 1 6 j 6 n − 1 (see Remark 3.6).

It may be pointed out that some other characterizations of finite separable defect-

less extensions are given in [2, 8].
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2 Proof of Theorem 1.1 and Theorem 1.2

In what follows, (K, v) and (K̃, ṽ) are as in Theorem 1.1. By the degree of an element

α in K̃, we shall mean the degree of the extension K(α)/K and shall denote it by

degα. For an element ξ in the valuation ring of ṽ, ξ̄ will stand for its ṽ-residue, i.e.,

the image of ξ under the canonical homomorphism from the valuation ring of ṽ onto

its residue field. When there is no chance of confusion, we shall write ṽ(α) as v(α)

for α belonging to K̃.

Proposition 2.1 Suppose that the set M1 = {ṽ(α − a) | a ∈ K} does not have a

maximum element for some α belonging to K̃ \ K. Then either K(α) is an immediate

extension of (K, v) or there exists β belonging to K̃ \ K with degβ < degα such that

ṽ(α− a) = ṽ(β − a) for each a in K.

Proof Let M denote the set {ṽ(α − β) | β ∈ K̃, degβ < degα} containing M1 and

sup M its supremum. The proof is split into two cases.

Case 1: sup M1 < sup M. Then there exists β belonging to K̃ with degβ < degα
such that ṽ(α−β) ≥ sup M1. Since M1 does not have a maximum element, the above

inequality shows that ṽ(α− β) > ṽ(α− a) for every a in K. Therefore by the strong

triangle law, for any element a of K, we have

ṽ(β − a) = min{ṽ(β − α), ṽ(α− a)} = ṽ(α− a).

Case 2: sup M1 = sup M. Then M1 is a cofinal subset of M. In this case we show

that K(α)/K is an immediate extension. For this it is enough to prove that for any

polynomial h(x) belonging to K[x] with deg h(x) < degα, there exists c ∈ K such

that

(2.1) ṽ
( h(α)

h(c)
− 1

)
> 0.

Write h(x) = a
∏t

j=1(x − γ j). Since deg γ j 6 deg h(x) < deg α and ṽ(α− γ j) ∈ M,

there exists an element ṽ(α−as) of M1 such that ṽ(α−γ j) < ṽ(α−as) for 1 ≤ j ≤ t ;

consequently by the strong triangle law, we have

ṽ(as − γ j) = min{ṽ(as − α), ṽ(α− γ j)} = ṽ(α− γ j) < ṽ(α− as).

On writing h(α)
h(as)

=

∏t
j=1

( α−γ j

as−γ j

)
as

∏t
j=1

(
1 + α−as

as−γ j

)
and using the above inequality,

we see that ṽ
(

h(α)
h(as)

− 1
)
> 0 which proves (2.1) with c = as.

Proof of Theorem 1.2 Suppose first that {ṽ(θ − a) | a ∈ K} does not have a maxi-

mum element. Then by Proposition 2.1, either K(θ)/K is an immediate extension or

there exists η belonging to K̃ \ K with deg η < deg θ such that v(θ − a) = v(η − a)

for every a in K. If K(θ)/K is an immediate extension, then we take γ = θ, other-

wise, applying Proposition 2.1 to η we see that there exists β belonging to K̃ \K with

degβ < deg η such that either K(β)/K is an immediate extension or v(β − a) =

v(η − a) = v(θ− a) for every a in K. The above process must terminate after a finite
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number of steps, giving us an element γ belonging to K̃ \ K with deg γ 6 deg θ such

that K(γ)/K is an immediate extension and v(γ−a) = v(θ−a) for every a belonging

to K.

Conversely, suppose that there exists γ belonging to K̃ \ K such that K(γ)/K is an

immediate extension and ṽ(γ − a) = ṽ(θ − a) for every a in K. We now show that

the set S = {ṽ(γ − a) | a ∈ K} has no maximum element. Suppose to the contrary

that ṽ(γ − c), c ∈ K is the maximum element of S. Since K(γ)/K is an immediate

extension, there exists b in K such that ṽ(γ − c) = v(b); also we can find d ∈ K such

that the ṽ-residue of γ−c
b

equals the ṽ-residue of d, i.e., ṽ( γ−c
b

−d) > 0, which implies

that ṽ(γ − c − bd) > v(b) = ṽ(γ − c). This contradicts the choice of ṽ(γ − c).

Proof of Theorem 1.1 The equivalence of (i) and (ii) follows immediately from The-

orem 1.2.

(ii) ⇒ (iii). Let f (x) =

∏n
i=1(x − α(i)) be any monic irreducible polynomial

over K having a root α in K̃. There exists c belonging to K such that v(α − c) =

max{v(α− a) | a ∈ K}. Since (K, v) is Henselian for any a in K, we have

v( f (a)) = nv(α− a) ≤ nv(α− c) = v( f (c)).

(iii) ⇒ (iv). Let f (x) be any polynomial belonging to K[x] with the factoriza-

tion b f1(x)m1 f2(x)m2 · · · fr(x)mr into powers of distinct monic irreducible polynomi-

als over K. Let ni denote the degree of fi(x) and θi be a root of fi(x). By (iii), there

exist ci belonging to K for 1 ≤ i ≤ r such that v( fi(ci)) = max{v( fi(a)) | a ∈ K},

i.e., v(θi − ci) = max{v(θi − a) | a ∈ K}. It will be proved that for each d belonging

to K, we have

(2.2) v( f (d)) ≤ max
1≤i≤r

{v( f (ci))}.

Fix any d in K. Choose an index j ≥ 1 such that

(2.3) v(c j − d) = max
1≤i≤r

{v(ci − d)}.

We are going to prove that v( f (d)) 6 v( f (c j)), which is the same as showing

r∑

i=1

miniv(d − θi) 6

r∑

i=1

miniv(c j − θi).

This will follow as soon as it is shown that

(2.4) v(d − θi) 6 v(c j − θi), 1 6 i 6 r.

Note that v(ci − d) > min{v(ci − θi), v(θi − d)} = v(θi − d). In view of (2.3) and

the above inequality, we have

v(c j − d) > v(ci − d) > v(θi − d), 1 6 i 6 r,

https://doi.org/10.4153/CMB-2011-148-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-148-0


On Algebraically Maximal Valued Fields and Defectless Extensions 237

which gives v(c j −θi) > min{v(c j −d), v(d−θi)} = v(d−θi). Thus (2.4) and hence

(2.2) is proved.

(iv) ⇒ (ii). Let θ be an element of K̃ \K and f (x) be its minimal polynomial over

K of degree n. By hypothesis, there exists an element a f belonging to K such that

v( f (a f )) > v( f (a)) for each a in K. Since (K, v) is Henselian, the above inequality is

equivalent to saying that v(θ − a f ) = max{v(θ − a) | a ∈ K}.

3 Proof of Theorem 1.3

We retain the notations introduced in the opening lines of the second section. For a

subfield L of K̃, let vL denote the valuation of L obtained by restricting ṽ. As usual,

def(L/K) will stand for the defect of a finite extension L of (K, v) defined by

def(L/K) = [L :K]/e f ,

where e, f are the index of ramification and the residual degree of vL/v.
As in [6], a pair (θ, α) of elements of K̃ is called a distinguished pair (more pre-

cisely, a (K, v)-distinguished pair) if the following three conditions are satisfied:

• deg θ > degα;
• ṽ(θ − β) 6 ṽ(θ − α) for every β in K̃ with degβ < deg θ;
• whenever γ ∈ K̃ with deg γ < degα, then ṽ(θ − γ) < ṽ(θ − α).

Remark 3.1 If (θ, α) is a distinguished pair and deg θ = n, then the set Mn−1(θ)

defined by (1.1) has a maximum element, viz. ṽ(θ−α). Conversely if α is an element

of smallest degree over K for which ṽ(θ−α) is the maximum of Mn−1(θ), then clearly

(θ, α) is a distinguished pair.

The following already-known result will be used in the sequel; its proof is omitted

[1, §3, p. 223], [2, Theorem 1.1(iii)].

Theorem A Let (θ, α) be a (K, v)-distinguished pair. Then

def(K(θ)/K) = def(K(α)/K).

We now prove the following.

Lemma 3.2 Let (θ, α) be a (K, v)-distinguished pair with degα = n1. Then M j(θ) =

M j(α) for 1 6 j 6 n1 − 1.

Proof Let γ be any element of K̃ with deg γ 6 j 6 n1 − 1. Then by the definition

of a distinguished pair ṽ(θ− γ) < ṽ(θ− α); consequently, by the strong triangle law

ṽ(α− γ) = min{ṽ(α− θ), ṽ(θ − γ)} = ṽ(θ − γ), which proves the lemma.

The result stated below is proved implicitly in [1, §4] and explicitly in [2, Theorem

2.4]. Its proof is omitted.

Lemma 3.3 Suppose that K(θ)/K is a defectless extension of degree n > 1. Then the

set Mn−1(θ) has a maximum element.
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Lemma 3.4 Let (θ, α) be a (K, v)-distinguished pair. Let f (x), g(x) be the minimal

polynomials over K of α, θ respectively of degree n1 and n. Then for any γ belonging to

K̃ with deg γ 6 n1 − 1, one has ṽ(g(γ)) = n
n1

ṽ( f (γ)).

Proof Let h(x) belonging to K[x] be the minimal polynomial of γ of degree m. Write

g(x) =

∏n
j=1(x − θ( j)), h(x) =

∏m
i=1(x − γ(i)). Since g(x), h(x) are irreducible over

the Henselian valued field (K, v), it follows that

(3.1) ṽ(g(γ(i))) = ṽ(g(γ)), ṽ(h(θ( j))) = ṽ(h(θ)), 1 6 i 6 m, 1 6 j 6 n.

Keeping in view (3.1) and the equality
∏m

i=1 g(γ(i)) = ±
∏n

j=1 h(θ( j)), it follows that

mṽ(g(γ)) = nṽ(h(θ)), i.e.,

(3.2) ṽ(g(γ)) =
n

m
ṽ(h(θ)).

Writing f (x) =
∏n1

k=1(x − α(k)) and arguing as above, it can be seen that

(3.3) ṽ( f (γ)) =
n1

m
ṽ(h(α)).

Since deg γ 6 n1 − 1, it follows from the definition of a distinguished pair that

ṽ(θ − γ(i)) < ṽ(θ − α); consequently by the strong triangle law

ṽ(α− γ(i)) = min{ṽ(α− θ), ṽ(θ − γ(i))} = ṽ(θ − γ(i)).

On summing over i, we see that ṽ(h(α)) = ṽ(h(θ)), which combined with (3.2) and

(3.3) proves the lemma.

The following lemma, needed for the proof of Theorem 1.3, is also of independent

interest as pointed out in Remark 3.6.

Lemma 3.5 Let (θ, α) be a (K, v)-distinguished pair and let g(x) be the minimal

polynomial of θ over K of degree n. For any β belonging to K̃ with degβ 6 n − 1, one

has ṽ(g(β)) 6 ṽ(g(α)).

Proof Let β be as above. Since ṽ(g(β)) = ṽ(g(β ′)) for every K-conjugate β ′ of β, it

may be assumed without loss of generality that

(3.4) ṽ(θ − β) = max{ṽ(θ − β ′) | β ′ runs over all K-conjugates of β}.

Write g(x) =
∏n

i=1(x − θ(i)). It will be shown that for 1 6 i 6 n,

(3.5) ṽ(β − θ(i)) 6 ṽ(α− θ(i)).

Since (θ, α) is a distinguished pair and degβ 6 n − 1, we have

(3.6) ṽ(α− β) > min{ṽ(α− θ), ṽ(θ − β)} = ṽ(θ − β).
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Fix any i, 1 6 i 6 n. Since (K, v) is Henselian, ṽ(θ(i) − β) = ṽ(θ − β ′) for some

K-conjugate β ′ of β. Therefore, using (3.6) and (3.4), we obtain

(3.7) ṽ(α− β) > ṽ(θ − β) > ṽ(θ − β ′) = ṽ(θ(i) − β).

It follows from (3.7) and the triangle law that

ṽ(α− θ(i)) > min{ṽ(α− β), ṽ(β − θ(i))} = ṽ(β − θ(i)),

which proves (3.5) and hence the lemma.

Proof of Theorem 1.3 We prove the equivalence of (i) and (ii) and then of (ii) and

(iii) by induction on n.

(i) ⇒ (ii). If K(θ)/K is a defectless extension of degree 2, then the set M1(θ) =

{v(θ − a) | a ∈ K} has a maximum element in view of Proposition 2.1. Assume

that the result holds for all elements of degree not exceeding n − 1 and that K(θ)/K

is a defectless extension of degree n > 3. Now by Lemma 3.3 and Remark 3.1, there

exists an element θ1 belonging to K̃ such that (θ, θ1) is a distinguished pair. Let n1

denote the degree of θ1. Applying Theorem A, we see that K(θ1)/K is a defectless

extension. By Lemma 3.2, M j(θ) = M j(θ1) for 1 6 j 6 n1 − 1. Therefore by

induction hypothesis, M j(θ1) and hence M j(θ) has a maximum element for 1 6 j 6

n1 − 1. Also it is clear from the definition of a distinguished pair that v(θ− θ1) is the

maximum element of M j(θ) when n1 6 j 6 n − 1, which completes the proof that

(i) implies (ii).

(ii) ⇒ (i). When n = 2, then using the hypothesis that the set {v(θ − a) | a ∈ K}
has a maximum element and arguing as in the last lines of the proof of Theorem 1.2,

we conclude that K(θ)/K is not an immediate extension and hence it is a defectless

extension of degree 2. Suppose that θ has degree n and the result is true for all el-

ements of degree 6 n − 1. Since Mn−1(θ) has a maximum element, there exists an

element θ1 of degree n1 (say) such that (θ, θ1) is a distinguished pair. By Lemma 3.2,

M j(θ) = M j(θ1) for 1 6 j 6 n1 − 1 and hence M j(θ1) has a maximum element.

Therefore by induction hypothesis, K(θ1)/K is a defectless extension, and hence so is

K(θ)/K, in view of Theorem A.

(ii) ⇒ (iii). Let c be an element of K such that v(θ− c) = max{v(θ− a) | a ∈ K}.

Then in the case n = 2, the set N1(g) = {v(g(a)) | a ∈ K} has 2v(θ−c) as maximum.

Suppose that θ has degree n and the result is true for all elements of smaller degree.

In view of the hypothesis, there exists an element θ1 belonging to K̃ such that (θ, θ1)

is a distinguished pair with deg θ1 = n1 (say). Then by Lemma 3.2, M j(θ1) = M j(θ)

for 1 6 j 6 n1 − 1. Therefore, by induction hypothesis, if f (x) is the minimal

polynomial of θ1 over K, then the set N j( f ) = {v( f (β)) | β ∈ K̃, degβ 6 j} will

have a maximum element for 1 6 j 6 n1 −1. Recall that by virtue of Lemma 3.4, for

β belonging to K̃ with degβ 6 n1 − 1, v(g(β)) =
n
n1

v( f (β)). So it follows that the

sets N j(g) will also have a maximum element for 1 6 j 6 n1 − 1. Furthermore, by

Lemma 3.5, v(g(θ1)) is the maximum of Nn−1(g), and hence it is also the maximum

of N j(g) when n1 6 j 6 n − 1, which completes the proof of the desired assertion.

(iii) ⇒ (ii). For n = 2, the set N1(g) = {2v(θ − a) | a ∈ K} has a maximum

by (iii), and hence M1(θ) has a maximum element. Suppose that deg θ = n and
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the result holds for elements of lower degree. Let α be an element of degree not

exceeding n − 1 such that v(g(α)) is the maximum of the set Nn−1(g). Replacing α
by its K-conjugate, we can assume that

(3.8) v(θ − α) = max{v(θ − α ′) | α ′ runs over all K-conjugates of α}.

We claim that Mn−1(θ) has v(θ − α) as maximum element. Suppose to the contrary

that there exists an element γ belonging to K̃ of degree 6 n − 1 such that

(3.9) v(θ − α) < v(θ − γ).

We shall obtain the desired contradiction by showing that

(3.10) v(g(γ)) > v(g(α)).

To verify (3.10), note that in view of (3.9) and the strong triangle law, we have

(3.11) v(γ − α) = min{v(γ − θ), v(θ − α)} = v(θ − α).

Let θ(i) be any K-conjugate of θ. Keeping in mind (3.11), (3.8), and the fact that

v(α− θ(i)) = v(α ′ − θ) 6 v(α− θ), we have

v(γ − θ(i)) > min{v(γ − α), v(α− θ(i))} = v(α− θ(i)).

Summing over all K-conjugates θ(i) of θ and using (3.9), we obtain (3.10). Hence the

claim is proved.

So there exists θ1 in K̃ such that (θ, θ1) is a distinguished pair. Let f (x) be the

minimal polynomial of θ1 over K of degree n1. Then by virtue of Lemma 3.4, for any

β belonging to K̃ with degβ 6 n1 − 1, we have

(3.12) v(g(β)) =
n

n1

v( f (β)).

By hypothesis, the sets N j(g) have a maximum element for 1 6 j 6 n − 1. It now

follows from (3.12) that N j( f ) = {v( f (β)) | β ∈ K̃, degβ 6 j} has a maximum

element for 1 6 j 6 n1 − 1. Therefore by induction hypothesis, M j(θ1) and hence

M j(θ) will have a maximum element for 1 6 j 6 n1−1. As v(θ−θ1) is the maximum

element of M j(θ) for n1 6 j 6 n − 1, we see that (iii) ⇒ (ii).

Remark 3.6 Suppose that K(θ)/K is a defectless extension. In view of Lemma 3.3,

there exists θ1 such that (θ, θ1) is a distinguished pair. By successive applications of

Lemma 3.2, there exist distinguished pairs (θ, θ1), (θ1, θ2), . . . , (θr−1, θr) with θr in K

and deg θi = ni (say). Using induction on n0 = deg θ and applying Lemmas 3.5 and

3.4, it can be quickly shown (as in the proof of (ii) ⇒ (iii) above) that max N j(g) =

v(g(θi)) when ni 6 j 6 ni−1 − 1, 1 6 i 6 r.
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