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Abstract

For a module M over an Artin algebra R, we discuss the question of whether the Yoneda extension
algebra Ext*R(M, M) is finitely generated as an algebra. We give an answer for bounded modules M.
(These are modules whose syzygies have direct summands of bounded lengths.)

1991 Mathematics subject classification (Amer. Math. Soc): 16E40, 16P10, 18G15.

1. Introduction

Let R be an algebra over a commutative ring K, and let M be a finitely generated
/^-module. The group Ext* (M, M) = 0 ~ o Ext'fi(M, M), together with the multi-
plication induced by the Yoneda product, is a graded K-algebra called the extension
algebra of M. It has been asked in various contexts whether this algebra is finitely
generated.

An affirmative answer has been given by Evens [2] for modules over a group
algebra KG of a finite group over a field K. For a local commutative noetherian
ring R with residue field k, it has been conjectured that Ext*R(k, k) would always
be a finitely generated /?-algebra; see Gulliksen and Levin [4, p.l 15], and Levin [5,
Conjecture II]. A counterexample to this conjecture has been given by Roos [6, p.315].
For a QF (= self-injective, artinian) algebra R, finiteness conditions on Ext*j(M, M)
have been studied by the author [8]. Here, we will continue these studies and extend
some of the results to arbitrary algebras R.

In Section 2, we will look at the extension algebra Ext*j(M, M) for a bounded
module over an Artin algebra R over K. (M is called bounded if there is a number b
with the following property: If
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d2 dx d0
•P2 * />, - Po - M - 0

is a minimal projective resolution of M, then all the indecomposable direct summands
of all syzygies Kerrf, have lengths bounded by b.) We consider two special cases of
bounded modules, namely the non-repetitive ones (no indecomposable direct sum-
mand of M or of any Kerd, is isomorphic to an indecomposable direct summand of
Ker dj with j ^ i) and the ultimately closed ones (there is some i with Ker dt = © At,
and every Ak is isomorphic to a direct summand of some syzygy with index less than
i). For a bounded, non-repetitive module M, we will show that its extension algebra
is semi-primary, and we will describe its Jacobson radical, and we will show that the
extension algebra is a finitely generated A"-algebra if and only if it is an Artin algebra
over K (Theorem 2). For an ultimately closed module M, we can only give a weak
result on finite generation of its extension algebra (Theorem 3).

In Section 3, we concentrate on QF algebras R. In this case, all syzygies Kerd,
are indecomposable whenever M is. Thus the properties of being non-repetitive and
ultimately closed are complementary, and ultimately closed means periodic (that is,
A", = M, for some i). We will show that for periodic M the extension algebra is,
roughly speaking, a factor algebra of a skew polynomial algebra E[X; a] with an
Artin algebra E over K. As for M non-periodic, we will give two examples which
show that the extension algebra of M may or may not be finitely generated, being an
Artin algebra in the first case and semiprimary, non-artinian in the latter case. The
example to the latter case will also be used to show that rationality of the Poincare
series does not imply finite generation of the extension algebra, for modules over QF
algebras.

2. Bounded modules

In all what follows, let R be an Artin algebra over a commutative artinian ring K,
and let M be a finitely generated right R -module. Let a minimal projective resolution

d2 di d0

•P2 • A • Po M . 0

of M be given, and let A", = Kercf, for i > 0, and let A"_, = M.

DEFINITION 1.(1) M is called bounded if there exists b e N such that every
indecomposable direct summand of © ^ _ , Kt has length not greater than b.

(2) M is called non-repetitive if the indecomposable direct summands of Kt and
Kj are pairwise non-isomorphic, whenever i ^ j .

(3) M is called ultimately closed (at index /i > 1) if" every indecomposable direct
summand of A"n_i is isomorphic to an indecomposable direct summand of some A",
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with / < n — 1, where n is smallest possible.

[3]

Examples of ultimately closed modules are modules over radical square zero al-
gebras, modules over algebras of finite representation type, and periodic modules.
Examples of bounded, non-repetitive modules are harder to come by. Non-periodic
modules over QF algebras have been constructed in [8] and by Gasharov and Peeva
[3].

THEOREM 2. Let M be a bounded, non-repetitive R-module. Then
(1) The Jacobson radical ofExt*R(M, M) is

J = Rad(End(MR)) 0 0Ext'R(M, M).
i=i

J is nilpotent with index < m2b, where m is the length of M and b is a bound in the
sense of Definition 1(1). Also, ExtR(M, M) is a semiprimary ring.

(2) The following are equivalent:

(i) ExtR(M, M) is a finitely generated K-algebra.
(ii) There is n e N with Ext'R(M, M) = Ofor all i > n.

Ext*R(M, M) is an Artin algebra over K.
ExtR(M, M) is a noetherian ring.

(iii)
(iv)

PROOF. (1) Recall that Ext'R(M, M) equals YbomK(Ki-\, M) modulo the subgroup
of maps which can be factorized over the inclusion X",_! c Pi-\. Let / 6 Ext'R(M, M)
and g e ExtR(M, M) be given. Then the Yoneda product gf can be obtained from
the diagram

•+j

Pj

f

- Pi-l

f

M

M

where / ' is a lift of / along the projective resolutions. Then the composite map
gf represents the extension gf e Ext'R

+i(M, M). Let now k = m2b (homogeneous)
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elements in / be given. Their product is a map
Kj0 — > Kjt — > • • • — > Kit.

Writing every Kt as an indecomposable direct sum, it follows that the product map
is a sum of chains /*• • • /2/1, with each ft starting and ending at an indecomposable
module. If this chain contains m ft 's of degree 0 in sequence, then the product is zero
since Rad(End(AfR)) has nilpotency index < m. Otherwise, the chain can be written as
a product of at least 2b non-isomorphisms between indecomposable modules of lengths
bounded by b. Their product is 0 by the Lemma of Harada and Sai. It follows that
Jk = 0. The factor ring Ext*R(M, M)/J is isomorphic to End(MR)/Rad(End(MR))
which is semi-simple artinian. This shows that / is the radical of ExtJj(M, M), and
the extension algebra has been shown to be semiprimary.

(2) We begin with (i) implies (ii). Let Ext^(M, M), as a ^f-algebra, be generated by
(homogeneous) elements git... , gs. Let c be the maximum of their degrees. Every
element in ®°̂ c2<. Ext'R(M, M) is then a sum of products of the g, 's having at least
2b factors with positive degree. Again, by the Lemma of Harada and Sai, every such
product is 0.

Now we show (ii) implies (iii). Ext^(M, M) = 0"ro' Ext'R(M, M) is obviously an
Artin algebra over K.

That (iii) implies (iv) is trivial.
We prove that (iv) implies (ii). Since the ring is noetherian and semiprimary, it is

artinian, and the descending chain of ideals
00 00

0Ext'R(M, M) D 0Ext'R(M, M) D - - -
/=o 1=1

must terminate.
Finally, (ii) implies (i) is trivial.

We now turn to ultimately closed modules. It has been shown by Wilson [9] that
an ultimately closed module has a rational Poincare series

M, M))T.
i=0

(Here, K is a field.) The problem of when an arbitrary module M has a rational
Poincare" series is unsolved. The origin of this problem is a conjecture of Serre and
Kaplansky suggesting that this would be true in case M = k, where k is the residue
field of a local commutative noetherian ring R. A counterexample to this conjecture
was given by Anick [1]. It was shown by Levin [5] that, in several special cases,
rationality of the Poincar6 series of k implies finite generation of the extension algebra
Ext^(M, M), We will show in Section 3 that this implication does not hold for
bounded modules, in general. As for finite generation of the extension algebra, we
get the following result for ultimately closed modules.
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THEOREM 3. Let the R-module M be ultimately closed, at index n. Then the
extension algebra ExfJj(M', M'), with M' = M ® Ko @ • • • (B Kn-2, is a finitely
generated K-algebra.

PROOF. Let K'o be the kernel of a minimal projective cover of M'. Since M is
ultimately closed at index n, K'o embeds in M'm, for some m. The result then follows
from Lemma 4. With view to another application of Lemma 4 in Section 3, we are
formulating it slightly more generally, and we are using the symbol M, instead of M'.
Lemma 4 has already been proved in [8, Lemma 2.1(1)]. We include a proof here, for
the convenience of the reader.

LEMMA 4. Assume there exists a splitting monomorphism x : K,-i —> Mm,
for some t > 1 and m e N. Then every element in Ext*R(M, M) is a sum of
elements of the form gh (Yoneda product), where g e ©Jl iExt ' s (M, M), and where
h = (/>,-, jr)(p,-2x) • • • (Ptrx) (Yoneda product), for some r e N and some // between 1
and m, /?, denoting the canonical projection from Mm onto the ith summand M. In
particular, Ext^(M, M) is a finitely generated K-algebra.

PROOF. Let / e Ex^R(M, M) be given. Let y be a left inverse of x, and let
qx,... ,qm denote the canonical injections from M into Mm, with V q^Pj equal to
the identity map of Mm. In the following diagram, let all the liftings of x, y, pj,
qj from the right to the left along the projective resolutions be denoted by the same
symbols, respectively.

Pk P, P,-x

Kt.

M"

M
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From the diagram it follows that / = fyx = / > ( £ , <7,/?,)x = Hj(fy<ljKPjX) e

J2j Ext^~'(M, M){pjx). By induction over k we see that / has the form as stated.
The algebra Ext*R(M, M) is then generated by the elements pix,... , pmx together
with a finite set of elements which generate ®Jl^ Ext'R(M, M) as a A-module.

3. Bounded modules over QF algebras

In this section, let R be a QF algebra over K. It is well-known that if M is
indecomposable, then all syzygies are indecomposable. An ultimately closed module
M is then periodic. The smallest number t with M = K,^ is called the period of
M. Also, M is non-repetitive if and only if M and its syzygies are pairwise non-
isomorphic. Hence, for indecomposable modules over a QF algebra, the properties of
being ultimately closed and non-repetitive are complementary.

THEOREM 5. Let R be a QF Artin algebra over K, and let M be periodic with
period t. Then the extension algebra Ext^(M, M) is a finitely generated K-algebra
and a noetherian ring.

PROOF. Let £ be the #-algebra generated by 0-=iExr"fi(M, M). E carries the
grading induced from the extension algebra E\t*R(M, M). Since M has period t, the
modules M,... , K,_2 are pairwise non-isomorphic. Elements in E of high degree
are produced by long Yoneda products of elements in 0j~[ Ext'R(M, M). Following
the arguments given in the proof of Theorem 2(1), such products are 0, by the Lemma
of Harada and Sai. This means that E is already contained in 0"=oExt'R(Af, M),
for some n. Consequently, £ is an Artin algebra over K, in particular it is a finitely
generated A"-algebra. Let now x : Kt_x —• M be an isomorphism. Then Lemma 4
(with m — 1) shows that the extension algebra of M equals ^ ~ 0 Ex'. This algebra
is generated by E and x; hence it is a finitely generated K-algebra, as well. We
will show that Ex = xE. This will imply that Ext*R(M, M) is noetherian, by [8,
Proposition 3.5.2]. It is clear from Lemma 4 that xE C Ex. To show the other
inclusion, let f = ex e Ex be given. Without loss of generality, we may assume
that / is homogeneous and t < deg / < 2t — 1. In the following diagram, the rows
are minimal projective resolutions, and, when being read from the left to the right,
minimal injective resolutions, since R is QF. Hence, the map x~l f can be lifted, from
the left to the right, to a map g e E. Then / is equal to the Yoneda product xg, what
was to be shown.
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k+t

Kk+t-l

Pk+t-\

f

M

M

REMARK 6. Let us denote by End(M«) the endomorphism ring of M modulo the
ideal of maps which factorize over a projective module. Let the extension algeb-
ras derived from Ext^(M, M) and E, after replacing Ext^(M, M) = End(Ms) by
End(Af;?), be denoted by Ext^(M, M) and _£, respectively.

It is well-known that the map which assigns ex to xg, in the proof of Theorem 5,
induces a ring isomorphism o : _£ —>• E_, by taking a(e) = g. Then Theorem 5
amounts to saying that Ext^(M, M) is a homomorphic image of the skew polynomial
ring ELY; CT].

We now turn to non-periodic modules M over a QF algebra R. By Section 2,
the extension algebra is either aitinian (and hence a finitely generated A'-algebra) or
semiprimary and non-noetherian (and then not a finitely generated A"-algebra). We
will give two examples of modules over the same QF algebra R which show that both
cases do occur.

In what follows, let K be any field, and let 0 ^ p e K, p not a root of 1. Let
R = K[X, Y]/(X2, Y2), with the multiplication YX = pXY. Then R is a local
Frobenius algebra with basis 1, x, y, xy over K (x, y denoting the residue classes of
X, Y), and with Rad R = xR + yR, Rad2 R = Soc R = xyR and Rad3 R = 0.

EXAMPLE 7. Let M = (x + y)R. Then M is an indecomposable R-module of
length 2. The map R —> M, r h-> (x + y)r, is a projective cover of M, whose
kernel is the right annihilator of x + y in R which is equal to (x + (—p)y)R. Hence,
Ko = (x + (—p)y)R. By induction over /, it follows that the syzygies of M are the
modules A",_! = (x + (—p)'y)R (i > 1) which are again indecomposable of length 2.
M and its syzygies are pairwise non-isomorphic, since they have different annihilators
in ^?. The group Ext'R(M, M) equals HomK(AT,_i, M) modulo the subgroup of maps
which can be lifted over the inclusion Â ,_i c R. Every / € HomR(A',_1, M)
maps the top of AT,_! to the socle of M which means f(x + (—p)'y) = xys, for
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some s e K. Then / can be lifted to / ' over the inclusion Af,_! c M if and
only if there is t 6 K with / ' ( I ) = (x + y)t and (x + y)t(x + (-p)'y) = xys,
or t(p + (—p)') — s. For i > 2, the factor (p + (—p)') is non-zero due to the
choice of p; hence this equation can be resolved by t for any s. This implies
Ext'R(M, M) = 0 for all i > 2. For i = 1, this equation cannot be satisfied for any
non-zero s, and one obtains Extl

R(M, M) = K. For the extension algebra, this means
Ext^(M, M) = End(Mft) 0 Ext^M, M) = K[T]/T2 © K.

EXAMPLE 8. Let the module M be given as the image of left multiplication by the

matrix I I, on R2. Then M is an indecomposable right R-module of length 4

with Ml Rad M and Rad M = Soc M both of length 2. We claim that the extension
algebra of M is not finitely generated. To prove this, we consider the minimal
projective resolution

/ x (-p)'y \
\ 0 x )

.p.

of M, where Pt — Pi-\ = R2 for i > 1. The kernels are pairwise non-isomorphic
since they have different annihilators in R. From the diagram

(-PY y \
)

= R2

x

0 x
P., = R2

M

it follows that Ext'R(M, M) is ^T-isomorphic to the space of matrices

A direct computation shows that the K -dimensions of these spaces are 4, for every
i > 1. Then Ext^(M, M) cannot be finitely generated, by Theorem 2(2).
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REMARK 9. In Example 8, the dimensions of all Ext'R(M, M) {i > 1) are 4. Then
the Poincar6 series of the extension algebra is rational. Hence, M is an example of a
bounded module over a QF algebra whose extension algebra is not finitely generated
but has a rational Poincare series. Gasharov and Peeva [3, Example 3.2] have given a
beautiful example of a non-periodic bounded module over a commutative QF algebra.
This module can also be shown to have a non-finitely generated extension algebra
with rational Poincare series.
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