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Abstract Given two intersecting domains, we investigate the boundary behaviour of the quotient of
Martin kernels of each domain. To this end, we give a characterization of minimal thinness for a difference
of two subdomains in terms of Martin kernels of each domain. As a consequence of our main theorem,
we obtain the boundary growth of the Martin kernel of a Lipschitz domain, which corresponds to earlier
results for the boundary decay of the Green function for a Lipschitz domain investigated by Burdzy,
Carroll and Gardiner.
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1. Introduction

One of the aims of this paper is to examine the boundary growth of the Martin kernel
of a Lipschitz domain. This is motivated by earlier work due to Burdzy, Carroll and
Gardiner. We write 0 for the origin of R

n, n � 2, to distinguish this from 0 ∈ R,
and write x = (x′, xn) ∈ R

n−1 × R and e = (0′, 1). Suppose that φ : R
n−1 → R satisfies

φ(0′) = 0 and the Lipschitz property: there is a positive constant L such that

|φ(x′) − φ(y′)| � L|x′ − y′| for x′, y′ ∈ R
n−1.

We put Ωφ = {(x′, xn) : xn > φ(x′)} and set

I+ =
∫

{|x′|<1}

max{φ(x′), 0}
|x′|n dx′, (1.1)

I− =
∫

{|x′|<1}

max{−φ(x′), 0}
|x′|n dx′. (1.2)

In [2,3], Burdzy obtained a result on the angular derivative problem for analytic functions
in a Lipschitz domain. The key step was to establish a relationship between the conver-
gence of the above integrals and the boundary behaviour of the Green function GΩφ
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for Ωφ. Burdzy’s approach was based on probabilistic methods and the minimal fine
topology. Analytic proofs were given by Carroll [4,5] and Gardiner [7]. A proof based on
the extremal length may be found in Sastry [13].

Theorem 1.1. Suppose that I+ and I− are as in (1.1) and (1.2). The following
statements hold.

(i) If I+ < ∞ and I− = ∞, then

lim
t→0+

GΩφ
(te, e)
t

= ∞.

(ii) If I+ = ∞ and I− < ∞, then

lim
t→0+

GΩφ
(te, e)
t

= 0.

(iii) If I+ < ∞ and I− < ∞, then the limit of GΩφ
(te, e)/t, as t → 0+, exists and

0 < lim
t→0+

GΩφ
(te, e)
t

< ∞.

In view of the boundary Harnack principle, Theorem 1.1 shows the rate of boundary
decay of positive harmonic functions on Ωφ vanishing continuously on a part of the
boundary of Ωφ near the origin. We are now interested in a relationship between the
convergence of the integrals I+, I− and the rate of boundary growth of positive harmonic
functions on Ωφ with singularity at the origin. In view of the Fatou–Näım–Doob theorem
(see [1, Theorem 9.4.6]), it is sufficient to investigate it for the Martin kernel of Ωφ with
pole at the origin. (See the first paragraph of § 2 for the definition of the Martin kernel.)

Theorem 1.2. Suppose that I+ and I− are as in (1.1) and (1.2). The following
statements hold.

(i) If I+ < ∞ and I− = ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If I+ = ∞ and I− < ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

(iii) If I+ < ∞ and I− < ∞, then the limit of tn−1KΩφ
(te,0), as t → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.

When I+ = ∞ and I− = ∞, the limit of tn−1KΩφ
(te,0) may take the following values:

0, any positive and finite value, or ∞.
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Example 1.3. To simplify the notation, we write R
n−1
1+ = {x′ ∈ R

n−1 : x1 � 0} and
R

n−1
1− = {x′ ∈ R

n−1 : x1 � 0} in this example.

(i) If φ(x′) is equal to 1
2x1 on R

n−1
1+ and x1 on R

n−1
1− , then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If φ(x′) is equal to x1 on R
n−1
1+ and x1 on R

n−1
1− , then the limit of tn−1KΩφ

(te,0),
as t → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.

(iii) If φ(x′) is equal to x1 on R
n−1
1+ and 1

2x1 on R
n−1
1− , then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

It is easy to check that I+ = ∞ and I− = ∞. The value of the limit in each case follows
from [10, Theorems 1 and 2].

Let R
n
+ = {(x′, xn) : xn > 0}. As will be explained in § 5, the convergence of the inte-

grals I+ and I− is connected with minimal thinness of the sets R
n
+ \ Ωφ and Ωφ \ R

n
+

(see § 2 for the definition of minimal thinness). Since KR
n
+
(te,0) = t1−n, Theorem 1.2

may be interpreted as the relationship between minimal thinness of the sets R
n
+ \ Ωφ,

Ωφ \ R
n
+ and the boundary behaviour of the quotient of Martin kernels of Ωφ and R

n
+. So,

given two intersecting domains Φ and Ψ , it is valuable for us to investigate a relationship
between minimal thinness of the differences Φ \ Ψ , Ψ \ Φ and the boundary behaviour of
the quotient of Martin kernels of Φ and Ψ (Theorem 2.1).

2. Statement for general domains

Let Ω be a Greenian domain in R
n with n � 2. Here a Greenian domain means a domain

possessing the Green function GΩ for the Laplace operator. Let x0 be a reference point
in Ω. The Martin kernel of Ω is defined for (x, y) ∈ (Ω × Ω) \ {(x0, x0)} by

KΩ(x, y) =
GΩ(x, y)
GΩ(x0, y)

.

Now, let {yj} be a sequence in Ω with no limit point in Ω. We observe by the Harnack
inequality that if j0 is sufficiently large, then {KΩ(· , yj)}j�j0 is a uniformly bounded
sequence of positive harmonic functions on a given relatively compact open subset of Ω.
Therefore, the Harnack principle shows that there exists a subsequence {KΩ(· , yjk

)}
converging to a positive harmonic function on Ω. The Martin boundary ∆(Ω) of Ω is
defined as an ideal boundary consisting of all positive harmonic functions on Ω that
can be obtained as the limit of {KΩ(· , yj)} for some sequence {yj} in Ω with no limit
point in Ω. The set Ω ∪ ∆(Ω) (equipped with a suitable metric) is called a Martin
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compactification of Ω (see [1, § 8.1] for details). Henceforth, we write KΩ(· , ξ) for the
positive harmonic function on Ω corresponding to ξ ∈ ∆(Ω). We say that ξ ∈ ∆(Ω) is
minimal if every positive harmonic function on Ω less than or equal to the corresponding
Martin kernel KΩ(· , ξ) coincides with a constant multiple of KΩ(· , ξ). We denote the
collection of all minimal Martin boundary points in ∆(Ω) by ∆1(Ω).

The notion of minimal thinness was introduced by Näım [12], using a regularized
reduced function. Let u be a positive superharmonic function on Ω and let E be a subset
of Ω. A reduced function of u relative to E on Ω is defined by

ΩRE
u (x) = inf{v(x)},

where the infimum is taken over all positive superharmonic functions v on Ω such that
v � u on E. We denote the lower semicontinuous regularization of ΩRE

u by ΩR̂E
u . Observe

that ΩR̂E
u is non-negative superharmonic on Ω and that ΩR̂E

u � u. Let ξ ∈ ∆1(∆). A set
E is said to be minimally thin at ξ with respect to Ω if

ΩR̂E
KΩ(· ,ξ)(z) < KΩ(z, ξ) for some z ∈ Ω.

Minimal thinness enables us to equip the Martin compactification of Ω with the minimal
fine topology. This is the collection of subsets W of the Martin compactification of Ω

satisfying the following conditions:

(i) Ω \ W is (ordinary) thin at every point of W ∩ Ω;

(ii) Ω \ W is minimally thin at every point of W ∩ ∆1(Ω).

See [1, Chapter 7] for details on ordinary thinness. Let U be a minimal fine neighbourhood
of ξ ∈ ∆1(Ω). We say that a function f on U has minimal fine limit l at ξ with respect
to Ω if there is a subset E of Ω, minimally thin at ξ with respect to Ω, such that f(x) → l

as x → ξ along U \ E, and then we write

mf
Ω

-lim
x→ξ

f(x) = l.

We note from the definition that a function is not necessarily defined on the whole of a
domain when we consider the minimal fine limit.

Theorem 2.1 (main result). Let Φ and Ψ be Greenian domains in R
n such that

Φ ∩ Ψ is a non-empty domain. Suppose that ξ ∈ ∆1(Φ) is in the closure of Φ ∩ Ψ in
the Martin compactification of Φ, and that ζ ∈ ∆1(Ψ) is in the closure of Φ ∩ Ψ in the
Martin compactification of Ψ . If Φ \ Ψ is minimally thin at ξ with respect to Φ, then
KΨ (· , ζ)/KΦ(· , ξ) has a finite minimal fine limit at ξ with respect to Φ. Furthermore, the
following statements hold.

(i) If Ψ \ Φ is not minimally thin at ζ with respect to Ψ , then

mf
Φ

-lim
x→ξ

KΨ (x, ζ)
KΦ(x, ξ)

= 0.
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(0, 2)

(0, 0)

Figure 1. Condition (2.1).

(ii) If Ψ \ Φ is minimally thin at ζ with respect to Ψ , where ζ is the point such that

KΨ (· , ζ) − ΨR
Ψ\Φ
KΨ (· ,ζ) = α

(
KΦ(· , ξ) − ΦR

Φ\Ψ
KΦ(· ,ξ)

)
on Φ ∩ Ψ (2.1)

for some positive constant α, then

0 < mf
Φ

-lim
x→ξ

KΨ (x, ζ)
KΦ(x, ξ)

< ∞.

(iii) If Ψ \ Φ is minimally thin at ζ with respect to Ψ , where ζ is a point such that
(2.1) is not satisfied, then

mf
Φ

-lim
x→ξ

KΨ (x, ζ)
KΦ(x, ξ)

= 0.

We explain condition (2.1) using the following example.

Example 2.2. Let

Φ = {(x1, x2) ∈ R
2 : −2 < x1 < 1, 0 < x2 < 2},

Ψ = {(x1, x2) ∈ R
2 : −1 < x1 < 2, 0 < x2 < 2} \ E,

where
E = {(x1, x2) ∈ R

2 : |x1|2 + |x2 − 1
2 |2 = 1

4 , x1 > 0}.

See Figure 1. Observe that the Martin boundary of Φ is homeomorphic to its Euclidean
boundary and all points are minimal, and that there are two minimal Martin boundary
points, say ζ1, ζ2, over (0, 0) with respect to Ψ . Suppose that KΨ (· , ζ1) is the limit of
KΨ (· , y) as y → (0, 0) along {(0, x2) : 0 < x2 < 1}, and that KΨ (· , ζ2) is the limit of
KΨ (· , y) as y → (0, 0) along {(x1, x2) : |x1|2+ |x2−1|2 = 1, x1 > 0}. Also, let ζ3 = (0, 2).
Then Φ \ Ψ is minimally thin at (0, 0) with respect to Φ, and Ψ \ Φ is minimally thin at
ζj , j = 1, 2, 3, with respect to Ψ . It is not difficult to see that ζ1 satisfies condition (2.1),
but ζ2 and ζ3 do not.
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For Lipschitz domains Φ and Ψ , Theorem 2.1 can be restated as the corollary below.
We note from [9] that each Euclidean boundary point of a Lipschitz domain corresponds
in a natural way to a unique Martin boundary point and it is minimal. So, Martin
boundary points and Euclidean boundary points may be identified in this setting. Let Ω

be a Lipschitz domain in R
n and let c > 1. We define a non-tangential region at y ∈ ∂Ω

(the Euclidean boundary of Ω) by

Γc(y) = {x ∈ Ω : |x − y| < cdist(x, ∂Ω)}.

Note that this region is non-empty once c is sufficiently large. We say that a function f

on Ω has non-tangential limit l at y if, for each c sufficiently large, f(x) has limit l as
x → y along Γc(y). Then we write

nt
Ω

-lim
x→y

f(x) = l.

Corollary 2.3. Suppose that Φ and Ψ are Lipschitz domains in R
n such that Φ ∩ Ψ

is also a Lipschitz domain. Let y ∈ ∂Φ ∩ ∂Ψ , and suppose that Φ \ Ψ is minimally thin
at y with respect to Φ. The following statements hold.

(i) If Ψ \ Φ is not minimally thin at y with respect to Ψ , then

nt
Φ∩Ψ

-lim
x→y

KΨ (x, y)
KΦ(x, y)

= 0.

(ii) If Ψ \ Φ is minimally thin at y with respect to Ψ , then the non-tangential limit of
KΨ (· , y)/KΦ(· , y) at y with respect to Φ ∩ Ψ exists and

0 < nt
Φ∩Ψ

-lim
x→y

KΨ (x, y)
KΦ(x, y)

< ∞.

Remark 2.4. If Φ \ Ψ is not minimally thin at y with respect to Φ and Ψ \ Φ is not
minimally thin at y with respect to Ψ , then the non-tangential limit of KΨ (· , y)/KΦ(· , y)
may take the following values: 0, any positive and finite value, or ∞ (see Example 1.3).

3. Characterization of minimal thinness for a difference of two subdomains

Näım [12, Théorème 11] gave a characterization of minimal thinness for a difference of
two subdomains in terms of Green functions for each domain, which played an impor-
tant role in the proof of Theorem 1.1. In order to prove Theorem 2.1, we need a new
characterization of minimal thinness for a difference.

Lemma 3.1. Let Ω be a Greenian domain in R
n and let D be a subdomain of Ω.

Suppose that ξ ∈ ∆1(Ω) is in the closure of D in the Martin compactification of Ω. The
following statements are equivalent:

(i) Ω \ D is minimally thin at ξ with respect to Ω;

(ii) there exists η ∈ ∆1(D) such that

mf
D

-lim
x→η

KΩ(x, ξ)
KD(x, η)

> 0. (3.1)
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Furthermore, the point η ∈ ∆1(D) in (ii) is uniquely determined and the corresponding
Martin kernel is represented as

KD(· , η) = α
(
KΩ(· , ξ) − ΩR

Ω\D
KΩ(· ,ξ)

)
on D

for some positive constant α.

Remark 3.2. We note that the minimal fine limit in (3.1) always exists and that it
satisfies

mf
D

-lim
x→η

KΩ(x, ξ)
KD(x, η)

= µD
KΩ(· ,ξ)({η}) = inf

x∈D

KΩ(x, ξ)
KD(x, η)

= lim inf
x→η

KΩ(x, ξ)
KD(x, η)

< ∞, (3.2)

where µD
KΩ(· ,ξ) is the measure on ∆(D) associated with KΩ(· , ξ) in the Martin represen-

tation (see [1, Theorems 9.2.6 and 9.3.3]. Thus, minimal thinness of Ω \ D can also be
characterized in terms of any of the quantities in (3.2) instead of the minimal fine limit.

For the proof of Lemma 3.1, we need the following lemmas. Lemma 3.3 can be deduced
from [1, Theorems 9.2.6 and 9.3.3]. Lemma 3.4 is due to Näım [12, Théorème 15] (cf. [1,
Theorem 9.5.5]).

Lemma 3.3. Let E be a subset of a Greenian domain Ω in R
n and let ξ ∈ ∆1(Ω).

The following statements are equivalent:

(i) E is minimally thin at ξ with respect to Ω;

(ii) there exists a positive superharmonic function u on Ω such that

inf
x∈Ω

u(x)
KΩ(x, ξ)

< inf
x∈E

u(x)
KΩ(x, ξ)

.

Lemma 3.4. Let Ω be a Greenian domain in R
n and let D be a subdomain of Ω.

Suppose that ξ ∈ ∆1(Ω) is in the closure of D in the Martin compactification of Ω.
Assume that Ω \ D is minimally thin at ξ with respect to Ω, and let η ∈ ∆1(D) be the
point such that

KD(· , η) = α
(
KΩ(· , ξ) − ΩR

Ω\D
KΩ(· ,ξ)

)
on D

for some positive constant α. The following statements for a subset E of D are equivalent:

(i) E is minimally thin at η with respect to D;

(ii) E is minimally thin at ξ with respect to Ω.

We say that a property holds quasi-everywhere if it holds apart from a polar set. The
following lemma is elementary. For the convenience of the reader, we give a proof.

Lemma 3.5. Let D be a Greenian domain in R
n and let ζ ∈ ∆1(D). Then KD(· , ζ)

vanishes quasi-everywhere on ∂D.
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Proof. Let V be a Martin topology (closed) neighbourhood of ζ with respect to D.
Then V ∩ D is not minimally thin at ζ with respect to D. Therefore, from [1, Theorem
6.9.1], we have

KD(x, ζ) = DRV ∩D
KD(· ,ζ)(x) = H

D\V
KD(· ,ζ)X∂V ∩D

(x) for x ∈ D \ V,

where H
D\V
KD(· ,ζ)X∂V ∩D

denotes the Perron–Wiener–Brelot solution of the Dirichlet prob-
lem in D \ V with the boundary function KD(· , ζ) on ∂(V ∩ D) ∩ D and 0 on ∂D. Since
V is arbitrary, we obtain the lemma. �

Let Ω be a domain in R
n and let D be a subdomain of Ω. If h is a positive harmonic

function on D that vanishes quasi-everywhere on ∂D∩Ω and is bounded near each point
of ∂D ∩ Ω, then we see from [1, Theorem 5.2.1] that h has a subharmonic extension h∗

to Ω that is valued 0 quasi-everywhere on ∂D ∩ Ω and everywhere on Ω \ D̄. In what
follows, we use an asterisk, as in h∗, to denote such a subharmonic extension.

Let us prove Lemma 3.1.

Proof of Lemma 3.1. By [12, Théorème 12] (cf. [1, Theorem 9.5.5]), we can easily
show that (i) implies (ii). In fact,

f := KΩ(· , ξ) − ΩR
Ω\D
KΩ(· ,ξ)

is a minimal harmonic function on D, and so there exists η ∈ ∆1(D) such that KD(· , η) =
f/f(x0) on D. Hence, we obtain

inf
x∈D

KΩ(x, ξ)
KD(x, η)

� f(x0) > 0,

and thus (3.1) follows from (3.2).
We next show that (ii) implies (i). We may assume that Ω \ D is non-polar. Let

η ∈ ∆1(D) be a point such that

α := mf
D

-lim
x→η

KΩ(x, ξ)
KD(x, η)

> 0.

By (3.2), we have KD(· , η) � α−1KΩ(· , ξ) on D. This shows that KD(· , η) is bounded
near each point of ∂D ∩ Ω. Also, KD(· , η) vanishes quasi-everywhere on ∂D ∩ Ω by
Lemma 3.5. Thus, K∗

D(· , η) is well defined as a subharmonic function on Ω and is domi-
nated by α−1KΩ(· , ξ) on Ω. Let u = α−1KΩ(· , ξ) − K∗

D(· , η). Then u is superharmonic
on Ω. Since Ω \D is non-polar, there is a point in Ω \D at which u is positive. Therefore,
the minimum principle yields that u is positive on Ω. Also, we find that

inf
x∈Ω

u(x)
KΩ(x, ξ)

= α−1 − sup
x∈D

KD(x, η)
KΩ(x, ξ)

< α−1,

inf
x∈Ω\(D∪F )

u(x)
KΩ(x, ξ)

= α−1 − sup
x∈Ω\(D∪F )

K∗
D(x, η)

KΩ(x, ξ)
= α−1,
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where F is a polar set in ∂D ∩ Ω such that K∗
D(· , η) > 0 on F . Hence, it follows from

Lemma 3.3 that Ω \ (D ∪ F ) is minimally thin at ξ with respect to Ω, and so is Ω \ D.
We finally show the uniqueness of η ∈ ∆1(D). We suppose to the contrary that there

exists ζ ∈ ∆1(D) such that KD(· , ζ) � βKΩ(· , ξ) on D and KD(· , ζ) is different from

KD(· , η) := γ
(
KΩ(· , ξ) − ΩR

Ω\D
KΩ(· ,ξ)

)
,

where β and γ are some positive constants. We may assume that β is the smallest number
satisfying KD(· , ζ) � βKΩ(· , ξ) on D. Since ξ ∈ ∆1(Ω), it follows that βKΩ(· , ξ) is the
least harmonic majorant of K∗

D(· , ζ) on Ω. Let W be a Martin topology neighbourhood
of ζ with respect to D such that η is apart from W . Then W ∩ D is minimally thin at
η with respect to D. Thus, minimal thinness of Ω \ D at ξ with respect to Ω, together
with Lemma 3.4, yields that W ∩ D is minimally thin at ξ with respect to Ω.

On the other hand, since W ∩D is not minimally thin at ζ with respect to D, we have

KD(· , ζ) = DR̂W∩D
KD(· ,ζ) � β DR̂W∩D

KΩ(· ,ξ) � β ΩR̂W∩D
KΩ(· ,ξ) on D.

Since βKΩ(· , ξ) is the least one among superharmonic functions u on Ω satisfying
K∗

D(· , ζ) � u on Ω, we have ΩR̂W∩D
KΩ(· ,ξ) = KΩ(· , ξ) on Ω, so that W ∩D is not minimally

thin at ξ with respect to Ω. Thus, we obtain a contradiction, and hence the uniqueness
of η ∈ ∆1(D) is established. The proof of Lemma 3.1 is complete. �

4. Proofs of Theorem 2.1 and Corollary 2.3

We give proofs of Theorem 2.1 and Corollary 2.3.

Proof of Theorem 2.1. In order to prove the first assertion, we assume that Φ\(Φ∩Ψ)
is minimally thin at ξ with respect to Φ. Let η ∈ ∆1(Φ ∩ Ψ) be the point such that

KΦ∩Ψ (· , η) = α
(
KΦ(· , ξ) − ΦR

Φ\Ψ
KΦ(· ,ξ)

)

on Φ∩Ψ for some positive constant α. Then, by Lemma 3.1 with D := Φ∩Ψ and Ω := Φ

and Remark 3.2, we find that the minimal fine limit of KΦ(· , ξ)/KΦ∩Ψ (· , η) at η with
respect to Φ ∩ Ψ exists and

0 < mf
Φ∩Ψ

-lim
x→η

KΦ(x, ξ)
KΦ∩Ψ (x, η)

< ∞. (4.1)

It also follows from [1, Theorem 9.3.3] that KΨ (· , ζ)/KΦ∩Ψ (· , η) has a finite minimal fine
limit at η with respect to Φ ∩ Ψ . The minimal thinness of Φ \ (Φ ∩ Ψ) at ξ with respect
to Φ, together with Lemma 3.4 with D := Φ ∩ Ψ and Ω := Φ, allows us to conclude that
KΨ (· , ζ)/KΦ(· , ξ) has a finite minimal fine limit at ξ with respect to Φ.
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To prove (i), we assume in addition that Ψ \ (Φ ∩ Ψ) is not minimally thin at ζ with
respect to Ψ . Then Lemma 3.1 with D := Φ ∩ Ψ and Ω := Ψ shows that, for any
η ∈ ∆1(Φ ∩ Ψ), the minimal fine limit in (3.1) is zero. Therefore, we have that

mf
Φ∩Ψ

-lim
x→η

KΨ (x, ζ)
KΦ∩Ψ (x, η)

= 0.

Hence, (i) follows from (4.1) and Lemma 3.4 with D := Φ ∩ Ψ and Ω := Φ.
To prove (ii), we assume in addition that Ψ \ (Φ ∩ Ψ) is minimally thin at ζ with

respect to Ψ , where ζ is the point in ∆1(Ψ) such that (2.1) is satisfied. We note from
(2.1) that KΦ∩Ψ (· , η) is also written as β(KΨ (· , ζ) − ΨR

Ψ\Φ
KΨ (· ,ζ)) on Φ∩Ψ for some positive

constant β. Then, by Lemma 3.1 with D := Φ ∩ Ψ and Ω := Ψ and Remark 3.2, we find
that the minimal fine limit of KΨ (· , ζ)/KΦ∩Ψ (· , η) at η with respect to Φ ∩ Ψ exists and

0 < mf
Φ∩Ψ

-lim
x→η

KΨ (x, ζ)
KΦ∩Ψ (x, η)

< ∞.

Therefore, (ii) follows from (4.1) and Lemma 3.4 with D := Φ ∩ Ψ and Ω := Φ.
To prove (iii), we assume in addition that Ψ \(Φ∩Ψ) is minimally thin at ζ with respect

to Ψ , where ζ is a point in ∆1(Ψ) such that (2.1) is not satisfied. Then the normalization
KΦ∩Ψ (· , ω) of KΨ (· , ζ) − ΨR

Ψ\Φ
KΨ (· ,ζ) at a reference point is a minimal Martin kernel of

Φ ∩ Ψ , but is different from KΦ∩Ψ (· , η). We note from the uniqueness in Lemma 3.1 that
for only ω ∈ ∆1(Φ ∩ Ψ), KΨ (· , ζ)/KΦ∩Ψ (· , ω) has a positive minimal fine limit at ω with
respect to Φ ∩ Ψ . Therefore, we have

mf
Φ∩Ψ

-lim
x→η

KΨ (x, ζ)
KΦ∩Ψ (x, η)

= 0.

Hence, (iii) follows from (4.1) and Lemma 3.4 with D := Φ ∩ Ψ and Ω := Φ. Thus,
Theorem 2.1 is established. �

Proof of Corollary 2.3. Let y ∈ ∂Φ∩ ∂Ψ . We first show (i). By Theorem 2.1 (i) and
Lemma 3.4, we find that KΨ (· , y)/KΦ(· , y) has minimal fine limit 0 at y with respect
to Φ ∩ Ψ . Since the non-tangential region Γc(y) is not minimally thin at y with respect
to Φ ∩ Ψ (see [9, § 5]), the existence of the minimal fine limit of KΨ (· , y)/KΦ(· , y) with
respect to Φ ∩ Ψ implies the existence of the non-tangential limit with respect to Φ ∩ Ψ ,
and the both values coincide. Hence, (i) follows.

We next show (ii). We observe that KΦ(· , y) and KΨ (· , y) satisfy (2.1) on Φ ∩ Ψ , since

KΦ(· , y) − ΦR
Φ\Ψ
KΦ(· ,y) and KΨ (· , y) − ΨR

Ψ\Φ
KΨ (· ,y)

are minimal harmonic functions on Φ ∩ Ψ with a pole at y. Therefore, (ii) follows from
Theorem 2.1 (ii). �
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5. Proof of Theorem 1.2

In order to prove Theorem 1.2, we collect lemmas on relationships between the con-
vergence of the integrals I+, I− in (1.1), (1.2) and minimal thinness of the differences
Ωφ \R

n
+, R

n
+ \Ωφ. (See [7, Lemma 1 and proof of Theorem 1] for Lemma 5.1 and [6, The-

orem 4.2] for Lemma 5.2.)

Lemma 5.1. The following statements hold.

(i) I+ < ∞ if and only if R
n
+ \ Ωφ is minimally thin at 0 with respect to R

n
+.

(ii) If I+ < ∞ and I− = ∞, then Ωφ \ R
n
+ is not minimally thin at 0 with respect

to Ωφ.

Lemma 5.2. Let Ω be a Greenian domain in R
n containing R

n
+. Suppose that Ω has

a unique Martin boundary point at infinity and it is minimal. If Ω \ R̄
n
+ is minimally

thin at ∞ with respect to R
n
− := {(x′, xn) : xn < 0}, then Ω \ R

n
+ is minimally thin at ∞

with respect to Ω.

Lemma 5.3. If I− < ∞, then Ωφ \ R
n
+ is minimally thin at 0 with respect to Ωφ∪R

n
+.

Proof. By Lemma 5.1, we see that Ωφ \ R̄
n
+ is minimally thin at 0 with respect to R

n
−.

Since minimal thinness is invariant under the inversion with respect to the unit sphere, it
follows from Lemma 5.2 that Ωφ \ R

n
+ is minimally thin at 0 with respect to Ωφ ∪ R

n
+. �

Lemma 5.4. If I+ < ∞ and I− < ∞, then Ωφ \ R
n
+ is minimally thin at 0 with

respect to Ωφ.

Proof. We note from Lemma 5.3 that (Ωφ ∪ R
n
+) \ R

n
+ is minimally thin at 0 with

respect to Ωφ ∪ R
n
+. Therefore, we see from Lemmas 3.4 and 5.1 that (Ωφ ∪ R

n
+) \ Ωφ

is minimally thin at 0 with respect to Ωφ ∪ R
n
+. Applying Lemma 3.4 again, we obtain

Lemma 5.4. �

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. We can easily obtain (i) and (ii) from Corollary 2.3 with
Φ := R

n
+ and Ψ := Ωφ and Lemmas 5.1 and 5.4. We show (2). Since (Ωφ ∪ R

n
+) \ R

n
+ is

minimally thin at 0 with respect to Ωφ ∪ R
n
+ by Lemma 5.3, it follows, by Lemma 3.1

with D := R
n
+ and Ω := Ωφ ∪ R

n
+, that KΩφ∪R

n
+
(· ,0)/KR

n
+
(· ,0) has a positive min-

imal fine limit at 0 with respect to R
n
+. Therefore, tn−1KΩφ∪R

n
+
(te,0) has a positive

limit as t → 0+. Also, it follows from Lemmas 3.4 and 5.1 that (Ωφ ∪ R
n
+) \ Ωφ is not

minimally thin at 0 with respect to Ωφ ∪ R
n
+. Therefore, by Lemma 3.1 with D := Ωφ

and Ω := Ωφ ∪ R
n
+, we see that KΩφ∪R

n
+
(· ,0)/KΩφ

(· ,0) has minimal fine limit 0 at 0
with respect to Ωφ, and so KΩφ

(te,0)/KΩφ∪R
n
+
(te,0) has limit ∞ as t → 0+. Thus, we

conclude that tn−1KΩφ
(te,0) has limit ∞ as t → 0+. �

Remark 5.5. For a non-Lipschitz function φ, a relationship between the convergence
of the integral I+ and minimal thinness of the difference Ωφ \ R̄

n
+ was recently studied

in [11].
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Note added in proof.

Recently, we have obtained a relationship between the boundary decay rate of the Green
function and the growth rate of the Martin kernel (see [8]).
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