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Summary

Maximum likelihood methods for the mapping of quantitative trait loci (QTL) have been
investigated in an F, population using simulated data. The use of adjacent (flanking) marker pairs
gave improved power for the detection of QTL over the use of single markers when markers were
widely spaced and the QTL effect large. The use of flanking marker loci also always gave more
accurate and less biassed estimates for the effect and position of the QTL and made the method
less sensitive to violations of assumptions, for example non-normality of the distribution. Testing
the hypothesis of a linked QTL against that of no QTL is not biassed by the presence of unlinked
QTL. This test is more robust and easier to obtain than the comparison of a linked with an
unlinked QTL. Fixing the recombination fraction between the markers at an incorrect value in the
analyses with flanking markers does not generally bias the test for QTL or estimates of their effect.
The presence of multiple linked QTL bias both tests and estimates of effect with interval mapping,
leading to inflated values when QTL are in association in the lines crossed and deflated values

when they are in dispersion.

1. Introduction

The identification and mapping of loci having an
effect on a quantitative trait of interest (quantitative
trait loci or QTL) is valuable for several reasons.
Firstly, it provides fundamental knowledge of in-
dividual gene actions and interactions, allowing the
building of more realistic models of phenotypic
variation, responses to selection and evolutionary
processes. This should allow more effective methods
to be developed for predicting breeding values and
implementing selection. Secondly, marker information
can be used directly to improve breeding value
estimation and marker assisted selection may be an
effective means of introgressing a few genes of value
from one breed or line to another or of improving
selection responses within a breed. Thirdly, the
mapping of a QTL provides a route for the eventual
cloning of the locus.

Until recently it has been impossible to identify the
majority of QTL. Using only phenotypic data it is
possible to identify genes of large effect on quantitative
traits with various techniques (for a review see Hiil &
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Knott, 1990), but even the best of these techniques,
segregation analysis, is relatively lacking in power and
also sensitive to failure of normality assumptions in
the data (Knott, Haley & Thompson, 1992). The
detection of linkage between a QTL and a genetic
marker provides a more powerful method of identi-
fying QTL. It has become apparent in recent years
that there is an abundance of polymorphism at the
DNA level which can be harnessed to produce genetic
markers and genetic maps based on such markers
have been developed or are under development for
major plant and animal species.

The purpose of this paper is to look at maximum
likelihood (ML) methods for the detection of QTL
and the estimation of their effect under different
situations, with the application of the techniques to
crop plant and animal species in mind. For this
purpose an F, population derived from a cross between
two inbred lines will be used. Crosses between
genetically divergent inbred lines provide the most
powerful means for detecting QTL by linkage. QTL
and markers for which the F, are segregating must
have been fixed for differeni alleles in the parental
lines and hence the F, individuals are completely
heterozygous for these loci. In addition, all parents
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are genetically identical and hence there is no between-
family variance to be included in the model and family
structure can be ignored. Linkage phase between the
QTL and markers is the same in all the founder
individuals and need not be inferred. Inbred line
crosses provide a benchmark for the assessment of the
methods, for example, considering the power to detect
QTL and accuracy of estimates, and against which
other population structures can be assessed. In this
paper we examine alternative test statistics and their
distributions under the null hypothesis, investigate
how robust the methods are to the estimate for
recombination fraction between markers, look at
violations of assumptions about the distribution of
the residual component and the effects of having
multiple QTL segregating in the population.

2. Methods

Several methods have been suggested for the detection
of QTL using a population derived from a cross.
Some of these have been based on least squares
methods (for example, Soller, Brody & Genizi, 1976)
and others have used ML (for example Knapp,
Bridges & Birkes (1990), Knapp (1991) and Lander &
Botstein (1989)). In both cases the possibility of using
markers which flank the postulated QTL has been
discussed. Lander & Botstein (1989) suggest that, for
the single marker analyses they consider, there is little
difference in power between the least squares method
and the ML method. Haley & Knott (1992) give a
least squares method using flanking markers that
gives virtually equivalent results to a ML interval
mapping method. Lander & Botstein (1989) compare
the use of flanking and single markers using expected
LOD (log,, of the likelihood ratio) scores but do not
present a comprehensive study.

ML methods can be computationally demanding,
but have several advantages as they enable both
hypothesis testing and parameter estimation sim-
ultaneously and allow a model to be fitted which takes
into account and estimates the recombination fraction.
They also provide greater versatility allowing, for
example, different residual variances to be fitted for
the different QTL genotypes. Two ML methods will
be considered in this paper. One uses information
from a single marker at a time and investigates linkage
between the postulated QTL and the marker. The
other considers markers flanking the postulated QTL.

(1) Flanking marker likelihood

The likelihood for a population of F, individuals
assuming linkage of a QTL to two flanking markers is
derived by Paterson et al. (1991) as an extension of the
work by Lander & Botstein (1989). It can be written
as follows:
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Where: N, is the number of F, individuals; y,, is the
phenotypic score for individual i; u, is the mid-
homozygote value (i.e. the mean of the two homo-
zygotes); G, is the number of QTL genotypes (i.e.
g=1,2,3); a, is the additive deviation from ux for
QTL genotype g (i.e. half the difference between
homozygotes); d,, is the dominance deviation from
for QTL genotype g; o2, is the residual variance (i.e.
that not due to the QTL); trans(g|A,, B, is the
transmission probability of offspring i being genotype
g given that the flanking marker genotypes are A4, and
B,.
The use of inbred lines means that the F, parents
are identical and trans(g|A,, B,) is the same for all
offspring with the same marker genotype. This
probability can be obtained from the recombination
fractions between the QTL and markers 4 and B
(r, and r, respectively) with an assumption about
interference between recombination events. When
offspring are heterozygous at both markers, the phase
of linkage between the two loci is not known and two
alternatives have to be considered (i.e. either with no
recombination events, or with a recombination event
in each parent) weighted according to their expected
frequency of occurrence. Lander & Botstein (1989)
assume that the recombination fraction (r) between A
and B is known without error, in which case, with an
assumption about interference, the transmission
probabilities can be written in terms of r and a single
unknown parameter, either r, or r, (with r, and
rg <r). In the model described above (and all sub-
sequent models), we have assumed that the variance
within a QTL genotype is the same across all
genotypes, but this assumption could be relaxed and a
variance for each genotype estimated.

(ii) Single marker likelihood

The likelihood involving a single marker has been
given by Weller (1986) and can be obtained by simple
alteration of the flanking marker likelihood given
above. The probability of being a particular QTL
genotype given the marker genotype now depends on
the recombination fraction between the marker and
the postulated QTL, and can take any value between
0 and 0-5. The likelihood can be written as follows:
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where: trans (g| 4,) is the transmission probability of
offspring i being genotype g given that it has marker
genotype A, at the marker being considered.

(iii) Unlinked QTL

One test for the presence of a linked QTL is to
compare the likelihood of the data under the
assumption of linkage between the marker(s) and a
postulated QTL with the likelihood for a QTL not
linked to the marker(s). This unlinked QTL likelihood
accounts for non-normality of the distribution of
phenotypes as might be expected in the presence of a
QTL. The likelihood for an unlinked QTL can be
written as follows:

L= ﬂ ! ,EG] trans(g)exp[

=1 (2o 2)2 ey
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where: trans (g) is the transmission probability of the
offspring being genotype g.

As stated before, the F, parents are all assumed to
be heterozygous at the QTL, hence the probability of
the F, offspring being either of the homozygous
genotypes is 0-25 and of the heterozygous genotype
0-5. This likelihood is independent of the postulated
position of the QTL on the chromosome.

(iv) No segregating QTL

An alternative hypothesis is one assuming either no
genetic component or a genetic component due to
many independent genes of small effect. In this case
the single random effect is assumed to be normally
distributed. The likelihood can be written as follows:

I ﬁ 1 exp[—(yi—#)z]’

=1 (2ma2): 205,

where: x4 is now the population mean.

(v) Testing for a QTL

To test for a linked QTL using flanking markers
Lander & Botstein (1989) suggest moving the position
of the putative QTL along the chromosome. For a
given relationship between distance and recombi-
nation fraction the position can be converted into a
recombination fraction with one marker (e.g. r,).
Given this, the likelihood can be maximized with
respect to the remaining parameters (u, a, d, %) at
each position. This likelihood is compared with the
likelihood maximized assuming that a QTL is not
segregating, the logarithm to base ten of the ratio of
these likelihoods being plotted against the position to
give the characteristic likelihood curve. Lander &
Botstein (1989) suggest that the alternative hypothesis
ought to be one of an unlinked QTL rather than no
QTL, to take account of non-normality caused by
unlinked QTL. However, they suggest that the QTL

11
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found in practice would not contribute greatly to any
non-normality in the distribution of phenotypes and,
hence, use a ‘no QTL’ model for their null hypothesis.
From the use of regression models with flanking
markers we (Haley & Knott, 1992) suggest that the
evidence for a QTL is primarily obtained from
differences in the mean effects of different marker
genotypes, differences which will only be observed for
QTL linked to markers being considered. This suggests
that the use of ‘no QTL’ as the null hypothesis will
not bias the results when an unlinked QTL is present.

We use twice the natural logarithm of the likelihood
ratio (rather than the logarithm to base ten of the
likelihood ratio) to indicate the presence of a QTL.
With data under the null hypothesis this test statistic
is expected to be asymptotically distributed as y® with
degrees of freedom equal to the number of parameters
estimated in the full model and fixed in the reduced
model (Wilks, 1938). For the test of linkage (linked
QTL versus unlinked QTL) this would be 1D.F.
because the recombination fraction is estimated in the
alternative model (linked QTL) and effectively fixed at
0-5 in the null hypothesis model (unlinked QTL). We
have also looked at the test of a linked QTL versus no
QTL. In this case, twice the natural logarithm of the
likelihood ratio is expected to be distributed as y*®
(3 D.F.) under the nuil hypothesis, as three parameters
(a, d, r,) are estimated in the full model (linked QTL)
but not in the reduced model (no QTL).

The use of the null hypothesis of no QTL, compared
with using an unlinked QTL, increases the test statistic
by a constant along the chromosome, this constant
being equal to the test statistic obtained from the
comparison of a segregating QTL versus no QTL.
With flanking markers the test of a linked versus an
unlinked QTL provides a statistic that may not be
expected to be distributed as y* under the null
hypothesis. For the linked hypothesis the recom-
bination fraction between the marker and QTL is
constrained to be less than or equal to the re-
combination fraction between the two flanking
markers; hence the flanking marker likelihood cannot
collapse to the unlinked QTL likelihood unless the
QTL effect is zero in both models. This results in the
situation where the likelihood given close linkage
might be less than that given no linkage and hence the
test statistic can be negative despite the estimation of
one more parameter. That is, the two hypotheses are
not nested unless areas outwith the interval are
considered. A comparison of linked QTL versus no
QTL does not have this problem.

Examples of log likelihood curves obtained as
suggested by Lander & Botstein (1989) are given later.
However, for most of this work we have maximized
the likelihood for each interval in turn, estimating the
recombination fraction between the postulated QTL
and one of the markers (e.g. r,) and constraining it to
be iess than the recombination fraction between the
two markers (7).

GRH 60
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(vi) Estimation of the recombination fraction between
markers

In most analyses presented in the literature it has been
assumed that r (the recombination fraction between
the markers) is known without error. For analyses
including a single marker, the uncertainty of the
position of the marker will not affect the detection of
the QTL or estimates of its effect as in this situation
the QTL is being located relative to the position of the
marker. The analyses using flanking markers, how-
ever, take account of the distance between the markers.
There are several possibilities for the best way to
proceed. If an estimate of r is known from previous
analysis with additional data this value could be used
in the QTL detection analyses or r could be estimated
from the data being used for QTL detection. If the
same data are being used, both to estimate » and the
QTL parameters, then this could be achieved either in
a two step procedure, where r is estimated using only
the marker information on the F, individuals and then
this value used in the QTL analysis, or a one-step
procedure, where all the parameters are estimated
simultaneously.

Estimating r prior to the analysis for QTL detection
is relatively fast and simple, requiring only the marker
genotypes of the F, individuals. The likelihood is the
product of the probability of the marker genotype for
each individual which has only one unknown par-
ameter, r. Estimating r at the same time as the QTL
parameters, however, makes use of all the information
available. The likelihood is similar to that for flanking
markers when r is known (equation 1) but with trans
(g] A;, B) redefined to include the probability of the
observed marker class (i.e. the probability of g, 4,, B)).
To compare this likelihood with alternative models it
has to be adjusted by dividing by the likelihood of the
observed marker genotypes calculated at the ML
estimate of » from the full model. Estimating all the
parameters in one analysis, therefore, requires more
computations, including the optimisation of a likeli-
hood with an additional, unknown parameter.

3. Simulations and analyses

To investigate the properties of the analytical methods
simulated data were used. Offspring were generated
from completely heterozygous parents assuming no
interference (i.e. that the presence of a recombination
event between two loci has no effect on the probability
of recombination between the next loci). Hence, r =
r,+ry—2r,ry and map distances in Morgans are
additive. Haldane (1919) has written a mapping
function under this assumption relating map distance
(x in Morgans) to recombination frequency (r):

https://doi.org/10.1017/50016672300030822 Published online by Cambridge University Press

142

Each data set contained 1000 F, individuals. The
genotype of each individual was composed of a pair of
‘chromosomes’ 100 cM in length. Eleven marker loci
were simulated at 10 cM intervals and a variety of
different models for the QTL were employed (see
below).

Analyses either included all eleven markers, or
omitted alternate markers leaving six markers at
20 cM intervals or omitted all but three (one at either
end of the chromosome and one in the middle) leaving
markers 50 cM apart. Data were analysed by ML
methods, either interval mapping taking each interval
in turn or only using a single marker at a time. In all
cases the recombination fraction between the postu-
lated QTL and one marker (r,) was estimated together
with the additive effect (@) and the dominance
deviation (d) of the QTL, the mid-homozygote value
(x) and residual variance (¢2). Unless stated otherwise,
the recombination fraction between markers (r) was
assumed to be known prior to the QTL analysis and
fixed at the value used to simulate the data.

All analyses were performed using software written
in FORTRAN 77 with maximisation performed using
the quasi-Newton routine E04JBF from the NAG
library (Numerical Algorithms Group, 1990).

(i) No linked QTL

No QTL. To investigate the behaviour of the test
statistics, one thousand replicates of data were
simulated with a normally distributed residual com-
ponent only (i.e. without any QTL). These data were
analysed under the three hypotheses described pre-
viously—no QTL, an unlinked QTL and a QTL
linked to the marker(s) being considered. Analyses
were repeated using different starting values to
maximize the chance of obtaining a global maximum.
The three possible test statistics were calculated —
linked versus no QTL (#s1), linked versus unlinked
QTL (zs2) and unlinked versus no QTL (£s3), which
is the test made in segregation analysis (note that,
ts2+1s3 = ts1). Under the null hypothesis the dis-
tribution of zs7, 152 and of ts3 over repeated simulation
and analyses is expected to be ¥* (3, 1 and 2D.F.
respectively).

Unlinked QTL. Data sets were simulated with an
unlinked QTL of additive effect (a) equal to 0-25 or 20
residual standard deviations (i.e. a = 0-250, or a =
2-:0g,). Such QTL would explain 3-0% and 67 % of
the variance in the F, population, respectively. Data
obtained from 100 replicate simulations were analysed
and the three test statistics compared with the
appropriate y* distribution.

(ii) Single linked QTL

A single QTL, 25 cM from one end of the chromosome
was simulated. The following additive effects (a) for
the difference between the alleles in residual standard
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deviations were considered : 0-025, 0-05, 0-125, 0-25 of
0-5. These represent half the difference in effect between
the homozygous genotypes. QTL of these magnitudes
explain approximately 0-03 %, 0-12%, 0-78 %, 3-0%
and 11-1 % of the total phenotypic variance in the F,,
respectively. Fifty replicates of each QTL effect were
analysed.

Recombination fraction. Analyses of the 50 replicates
of data simulated with a QTL with additive effect (a)
of 0-25 were repeated with the recombination fraction
between the markers fixed at an incorrect value. The
simulated recombination fraction (r) was 0-1648
(corresponding to a distance of 20 cM) and the data
were analysed assuming this value or 0-0906 (cor-
responding to a distance of 10cM) or 02256
(corresponding to distance of 30 cM).

The same data were reanalysed, estimating the
recombination fraction between the markers (r) from
the 1000 F, individuals. Two approaches were used,
either estimating r using the marker genotypes and
fixing it at this estimate in the subsequent QTL
analysis, or estimating r at the same time as the QTL
parameters (a, d, u, o).

Residual component. Data were also simulated with
the residual term being distributed as a y* (4 D.F.).
This distribution has an expected coefficient of
skewness of 1-4. The distribution was scaled to have
the same mean and variance as the normal distribution
used previously. Two situations were simulated with
50 replicates each, the first with no QTL, the second
with a linked QTL of effect 0-25 residual standard
deviations (explaining 3:0% of the F, variance).
Analyses were carried out assuming that the residual
component was from a normal distribution.

(iit) More than one linked QTL

The same marked chromosome as described above
was used and QTL in association (i.e. all alleles of
increasing effect are fixed in the same parental line)
were simulated. Two QTL, each of effect (a) of 0-125,
were simulated to be 25 cM and 75 ¢cM, or 25 ¢cM and
55 ¢cM, from one end of the chromosome. Ten QTL,
each with effect (a) of 0-025, with one in the centre of
each interval were simulated. All genes were additive
in effect. In each case the mean difference between the
inbred lines caused by this chromosome would be one
half a residual standard deviation (the same as
explained by a single locus with additive effect (a) of
0-25).

Models with two and ten QTL in dispersion (i.e. an
inbred line is fixed both for alleles which have an
increasing effect and alleles which have a decreasing
effect on the trait of interest) were also considered. In
both cases the two parental inbred lines would have
the same expected effect from this chromosome. In the
two-QTL model each locus had an effect (a) equal to
0-125 residual standard deviations. One QTL was
simulated to be 25 cM from the end of the chromosome
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and the other at 75 cM. The ten QTL were distributed
for increasing and decreasing effect in the parental
lines in alternate positions, and each had an effect (a)
of 0-025 residual standard deviations. In all cases fifty
replicates were analysed.

4. Results and discussion
(i) No linked QTL

No QTL. The mean test statistic for each test over the
thousand replicate simulations is given in table 1 for
one 20 cM interval and for one marker. Also given is
the variance of this statistic over replicates and the
percentage significant when compared with the rel-
evant y* distribution. For a »* distribution the mean
is expected to be equal to degrees of freedom and the
variance equal to two times the degrees of freedom.
The numbers of test statistics falling into ten equal
regions of the expected y? distribution were compared
with the expected number (i.e. 100) using a y* test
(9 0.F.). The results are also given in table 1.

The test statistics obtained from the test of a linked
QTL using flanking markers versus no QTL (¢s7)
approximately followed the expected distribution.
The mean and variance of the test statistics are slightly
lower than expected for a y* (3 p.F.) which might be a
result of restricting the search area to within the pair
of markers.

For the test of a linked versus an unlinked QTL
(ts2) the mean is higher than expected for a y*
distribution with one degree of freedom and the
variance much higher when using flanking markers.
As expected, some of the test statistics were negative
because of the restricted search area, and the
proportion of these was high (nearly 30%). In over
14% of the data sets evidence for a linked QTL was
found at the 5% significance level, and the top 5% of
test statistics were greater than or equal to 639
whereas the y* distribution has a 5% quantile of 3-84.
Obviously the y? distribution is not the correct one
and to ensure that spurious QTL were not detected
too frequently a higher value would have to be used to
indicate analyses that gave evidence for a QTL.

The test statistics from the comparison of the
hypotheses of an unlinked QTL and no QTL (zs3) did
not follow a y? distribution, with too many test
statistics being close to zero. The lack of agreement in
this situation is supported by work carried out on
mixture distributions which suggests that this sampling
distribution for the test statistic is inappropriate (for
example, McLachlan & Basford, 1987; Titterington,
Smith & Makov, 1985). Local maxima were frequently
encountered when maximizing the unlinked QTL
likelihood, and although there has been an attempt to
prevent this, the results used may not all represent the
global maximum. Obtaining local maxima for this
hypothesis would also affect the test of linked (with
flanking markers) versus uniinked QTL (is2) and
would inflate the mean and variance of this statistic.
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Table 1. Mean and variance of the test statistics obtained from analysis of 1000 replicate simulations without a
QTL and two sets of 100 replicate simulations with a QTL unlinked to any markers explaining either 3% or
67 % of the F, variance. The results are based on a single 20 cM interval or one marker. The percentage
significant at the 5% and 1% levels of the relevant y’ distribution and the x* value (9 D.F.) obtained comparing
the observed with the expected distribution of test statistics are also given

Simulation Method Testt Mean Variance 5% 1% x® valuef
No QTL Flanking markers tsl 2-901 5374 47 0-8 18-68*
ts2 1-279 8857 14-7 43 —
ts3 1-621 3657 41 12 158:36%**
Single marker ts1 3-283 6719 62 1-5 21-16*
ts2 1-661 3-868 12-8 29 260-86***
Unlinked QTL (3% of  Flanking markers ts1 2:784 5:383 3 1 9-80
F, variance) ts2 1-138 8195 11 4 —
ts3 1-646 2:658 2 0 30-60***
Single markers tsl 3-169 5265 3 0 15-20
152 1-524 3557 8 2 24-00**
Unlinked QTL (67 % of Flanking markers ts1 2:875 4661 4 0 74
F, variance) 152 ~15-35 6815 0 0 —
153 1823 62:07 99 93 900-00***
Single marker ts1 1943 6398 98 87 900-00***
ts2 1-202 3-849 1 2 153-8%**

T ts1 Linked QTL versus no QTL (3 D.F.)., ts2 Linked QTL versus Unlinked QTL (1 p.F.). ts3 Unlinked QTL versus no QTL

(2 D.F.).

1 — value cannot be calculated because of negative test statistics.

* indicates significance at 5%, ** at 1% and *** at 0-1 %.

Local maxima are a minor problem with the linked
QTL hypothesis and not a problem for the no-QTL
hypothesis. The test of a linked versus unlinked QTL
should be applied with caution when using flanking
markers because of these problems.

With a single marker, comparing linked versus no
QTL (¢s1) the mean and variance of the statistics are
higher than expected and likewise the number sig-
nificant, but nonetheless the test statistic distribution
is very similar to a ¥ (3 D.F.). Considering the test of
a linked versus unlinked QTL (zs2) there is no problem
with negative test statistics as the complete space is
searched ; however, too many data sets gave significant
evidence for a QTL when compared with a y?
distribution.

We have limited the above results and discussion to
a random, single interval for flanking markers and
would suggest that, in this situation, the test statistic
obtained from the comparison of a model with a
linked QTL with no QTL (zs7) follows a ¥2 distribution
with the expected degrees of freedom sufficiently
closely for all practical purposes. Deviations from this
distribution are due to the restricted search area.
However, in practice, a series of such tests will be
made, one for each interval along the chromosome
(five in this case). If the interval giving the highest
statistic was chosen for each data set the mean test
statistic over the thousand replicates was 4-827 and
the variance 6989, with 13:5% significant at the 5%
level of a y® distribution (3 D.F.) and 24 % significant
at the 1% level. These are higher than expected for a
single test, but not as high as expected if five
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independent tests had been carried out for each
replicate.

Unlinked QTL. Table 1 also contains the results
from the analyses of data containing an unlinked
QTL. With flanking markers the test of a linked
versus no QTL (zs1) is not affected by the presence of
an unlinked QTL and the distribution of test statistics
is not significantly different from a y* (3 D.F.) even
when the QTL is responsible for 67% of the F,
variance. However, the other two statistics (zs2 and
ts3) are affected by an unlinked QTL. For the test of
an unlinked QTL versus no QTL (£s3) this is expected,
as the data has been simulated under the alternative
hypothesis of an unlinked QTL and, hence, a non-
central ¥* distribution of test statistics is expected. We
can see that this test is not very powerful for the QTL
of small effect (i.e. 3% of F, variance), with very few
analyses giving significant evidence of a QTL and a
test statistic distribution looking similar to that
expected under the null hypothesis. However, when
the effect of the segregating gene was large (i.e. 67%
of F, variance) a QTL was detected in virtually all the
replicate data sets with ts3. The test of a linked QTL
versus an unlinked QTL (z5s2) is not affected by the
gene of small effect; however, when the gene has a
large effect there are many negative test statistics when
using flanking markers because an unlinked QTL can
explain the data better than one between the markers.
Searching outside the interval would increase the
mean of the test statistics.

From now on we will report results based on the
test of a QTL between the markers being considered
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versus no QTL (#s7). In contrast to 752, tsl is not
significantly prone to problems associated with local
maxima and the use of y* values provides a suitable
criterion against which to test this statistic.

(ii) Single linked QTL

Figure 1 gives an example of the characteristic
likelihood curves obtained from interval mapping.
The values plotted represent twice the difference
between the natural logarithm of the maximum
flanking marker likelihood assuming a QTL in the
given position and the natural logarithm of the
likelihood of a single normal distribution (no QTL).
The data were generated with a single QTL with
additive effect (a) of 0-5 as described above. The
surfaces for the three different interval sizes (i.e. with
eleven, six or three markers) for the same set of data
are given. The surface can be seen to drop at the
position of markers: this is because at this point there
can be no recombination between the marker and the
QTL so that a given marker genotype must be
associated with the same QTL genotype across all
individuals and phenotypic values should be inde-
pendent of the other marker. However, the data
provides evidence that recombination has occurred
and so the location of the QTL at or near the marker
becomes less likely than a location further away. All
three curves coincide at common markers. For this
simulation the effect of the gene is relatively large and
the gene is accurately located by the peak in the test
statistic surface. Note that the test statistic is greater
than its expected value of three, when no QTL is
segregating, along the length of the chromosome, but
to a greater extent in the relevant interval. The curve
produced from the 50 cM map has a much lower and
less obvious peak. The rate at which the test statistic
falls as the QTL is moved away from the maximum is
a measure of the accuracy with which the QTL is
located. Human geneticists often consider a ‘1 LOD
support interval’, which is the interval around the
peak, bounded by positions where the likelihood has
decreased ten-fold from the maximum value. This is
used analogously to a confidence interval.

Figure 2 gives the mean test statistic over the 50
replicate analyses for each interval (interval mapping)
and for each marker (single marker mapping), where
11 markers were analysed, for the test of a linked QTL
versus no QTL. For interval mapping the means have
been plotted in the centre of each interval although
the estimates for the position of the QTL would vary
across the replicates. The lines joining the points are
only shown to clarify the trends. On average, the QTL
is located in the correct interval and the closest single
markers gave the highest test statistic. The results
using single markers give lower mean test statistics.

For each data set the interval and the single marker
providing the highest test statistic over the whole
chromosome was found. The mean and standard
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Figure 1. The likelihood curve produced by the analyses
of a single set of data. The data were generated with a
single QTL of additive effect of one residual standard
deviation between homozygotes (2 = 0-5) 25 cM along the
chromosome. This QTL explains approximately 11 % of
the phenotypic variance in the F,. Eleven markers on a
100 ¢cM chromosome were simulated and in the analyses
either all 11 markers (at 10 cM intervals) (shown by a
solid line), or six markers (at 20 cM intervals) (dashed
line) or three markers (at 50 cM intervals) (dotted line)
were used. The putative QTL is moved along the
chromosome between each pair of markers and in each
position the height of the curve represents twice the
natural logarithm of the ratio of likelihoods (QTL in that
position/no QTL).

Simulated position of QTL

Mean test statistic

Marker

Figure 2. The mean test statistic over fifty replicates for
each interval and for each single marker for the analyses
where there was a single QTL 25 cM along the
chromosome and where all eleven markers were included.
The solid line connects results obtained with interval
mapping and the dotted line for the same data sets with
single marker mapping. The five sizes of gene are
indicated as follows: a=05—;a=025—*;a=
0125—A; a=005-Q; a=0025~—x.

deviation of these test statistics over the S0 replicates
for each of the five sizes of effect for the QTL and ihe
three interval sizes considered is given in table 2. Table

GRH 60
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Table 2. Mean test statistics (with empirical standard deviation) for the test of a linked QTL versus no QTL
(1s1) for the interval or marker that gave the highest test statistic over the 50 replicate simulations

Interval mapping:

Single marker mapping:

Simulated distance between markers distance between markers Unlinked
QTL versus
effect (a) 10cM  20cM 50 cM 10cM  20cM S0cM no QTL
0-025 494 429 3-51 518 4-61 377 1-55
(213) (220 (2-20) (2-56) (262) (220 (1-63)
0-05 642 5-88 4-40 7-08 657 4-89 1:26
(3-46) (3:51) (305) (3:59) (3-35)  (306) (1-30)
0125 1121 10-24 7-73 12-00 10-60 7-60 1-76
(4-69) 426) (453) (504 (430) (429 (199
025 33-65 30-77 20-69 3363 30-42 18-44 1-78
(11-:97) (1193)  (8:60) (11-56) (11-50) (799) (1:79)
05 110-01  103-66 64-76 104-72  100-09 50-73 1-39
(19:59) (19:90) (15-28) (1692) (19-12) (12-12) (1-89)

Table 3. The percentage of times that the maximum test statistic was located in the correct interval or linked to

the closest marker(s)

Interval mapping:

Single marker mapping:

Simulated distance between markers distance between markers

QTL

effect (a) 10 cM 20 cM 50 cM 10 cM 20 cM 50 cM
0-025 12 16 44 24 26 72
005 20 24 76 28 26 86
0125 44 46 32 58 66 88
0-25 72 62 94 86 86 98
05 98 92 100 100 98 100

3 indicates the percentage of times this maximum was
in the interval simulated to contain the QTL or
associated with the marker (or markers) simulated to
be adjacent to the QTL.

The mean test statistic is approximately linearly
related to the ratio of the variance due to the QTL and
the residual variance. The approximation suggested
by Lander & Botstein (1989) can be applied for the
prediction of the test statistic. This approximation is
equivalent to [(1—26)/(1—0)] Nlog,[1/1—p] for a
population of size N with a QTL explaining a
proportion, p, of the total variance, located centrally
between two markers which are a recombination
fraction of 8 apart, or (1 —26)*Nlog,[1/1—p] for the
same QTL at a recombination fraction 6 from a single
marker. These formulae predict test statistics of 106:19
and 96-68 for flanking and single markers respectively
for the gene explaining 11% of the variance in a
10 ¢cM map, 63-36 and 43-34 for these two tests in a
50cM map and 2776, 2526, 1655, and 11-32
respectively for the same four tests for a QTL
responsible for 3% of the variance. The predicted
values are the non-central portion of the test statistic
to which must be added the degrees of freedom (i.e.
three) to compare with the values from the simulations
shown in table 2. The expected test statistics are very
close to the observed, with the tendency of the
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observed single marker test statistic to be higher than
the predicted due to our selection of the highest test
statistic over all markers in calculations of the means.

When the QTL have a small effect single marker
mapping gives higher mean test statistics than interval
mapping. This could reflect the fact that the QTL is
only being located (detected) infrequently and in some
of the simulations restricting the QTL to be within a
giveninterval (with a restricted value for the maximum
recombination fraction from the markers) is less likely
than the larger recombination fraction possible with
single markers.

For the QTL of larger effect (i.e. a > 0-25) the gain
from interval mapping over single marker mapping is
small when the markers are closely spaced ; however,
when the markers are at 50 cM intervals interval
mapping is an appreciable improvement over single
marker mapping.

Ignoring marker information and using the test of
an unlinked QTL versus no QTL (zs3) provides
virtually no power for the detection of QTL of the size
of effect being considered here. The mean test statistics
are all lower than 2-0, the expected value for data
under the null hypothesis.

The mean estimates for the additive effect and
position of the QTL over the fifty replicate simulations
are presented in table 4. For the single markers the
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Table 4. Mean estimates of the additive effect of the QTL and either its mean distance from the end of the
chromosome (interval mapping) or its mean distance from the marker T (single markers) (with their empirical

standard deviation) over 50 replicate simulations for the interval or marker which gave the maximum test

statistic
Interval mapping: Single marker mapping:
Simulated distance between markers distance between markers
Unlinked additive
Parameter deviation (a) 10cM 20cM  50cM 10cM 20cM  50cM QTL
Additive effect (a) 0025 0026 0025 0026 0-099 0099 0129 0-557
(0-064) (0-064) (0-058) (0-:340) (0:351) (0:369)  (0-257)
Distance (cM) 46-46 501 5707 5974 6395 71-80
(35-18) (3424) (39-58) (43-44) (49-89) (58-44)
Additive effect (@) 0-05 0069 0064 0055 0-311 0305 0271 0-585
(0-062) (0-065) (0-062) (0-:354) (0:353) (0-362) ©272)
Distance (cM) 33-83 3646 33:09 58-81 60-79  67-52
(29-98) (31-12) (32:57) (39-88) (40-04) (53-10)
Additive effect (a) 0-125 0-130 0130 0126 0-375 0-344 0346 0-624
(0-055) (0-054) (0-063) (0-273) (0-281) (0-297)  (0-300)
Distance (cM) 31-94 30-55 3345 4712 45-08 47-66
(1942) (17-78) (24:82) (33-44) (39:32) (34:82)
Additive effect (a) 0-25 0260 0257  0-250 0-533 0-499 0437 0-632
(0-047) (0-050) (0-063) (0-269) (0-270) (0-293) (0-281)
Distance (cM) 2422 2145 2545 32-62 3145 3579
(754) (6749 (14:34) (26:96) (28-:80) (34:26)
Additive effect (@) 05 0500 0498 0497 0624 0622 0601 0-606
(0-:047) (0-050) (0-061) (0-183) (0-186) (0-256) (0-288)

Distance (cM)

Expected distance

2493 2419 2557
(193)  (338) (476)
2500 2500 2500

13-09 1405  26-68
(13-66) (14-19) (21-55)
500 500 2500

T Does not include analyses that resulted in an unlinked gene. For the 50 cM map and the QTL of effect (a) of 0-025, 0-05
and 0-125, three, one and three analyses were omitted, respectively.

position is given as the mean distance from the
marker. For interval mapping the position is given as
the mean distance from one end of the chromosome.
For the large effect genes (i.e. a = 0-25), the results
from interval mapping both correctly position the
QTL and estimate its effect on average. For example
although correctly positioned on average, only thirty-
six out of the fifty analyses place the gene of effect (a)
0-25 in the correct 10 cM interval. As the effect of the
QTL decreases the average position of the gene moves
to around 50 ¢cM which is approximately half way
along the chromosome and the value expected, on
average, if no QTL was detected. The mean estimated
effect of the gene correctly reflects the effect of the
simulated gene for genes of all effect. The estimates
obtained using single markers are not close to the
simulated values, with both the distance from that
nearest marker and the additive effect (a) over-
estimated. It can be seen that, especially for the small
effect QTL, this distance from the nearest marker is
large — much larger than the maximum possible when
restricting the QTL to be between the markers,
providing support for the explanation for interval
mapping giving a lower test statistic than single
markers for the small effect genes. The empirical
standard deviations of both position and effect
estimates are much smaller with interval mapping
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than with single marker mapping and they decline
with more closely spaced markers and genes of larger
effect. Ignoring marker information and fitting an
unlinked QTL gives, on average, an overestimate for
the additive effect with a large variance in the estimates
over the fifty replicates.

Recombination fraction. Table 5 gives the results
from interval mapping analysis of data where an
incorrect value for the interval size has been used. In
this case using the incorrect value has little effect on
the estimates and does not affect the test statistic. The
position of the QTL was estimated to be in approxi-
mately the same place relative to the two flanking
markers (i.e. just less than a quarter of the total
distance from the first marker) and the estimate of its
effect was the same. This suggests that the use of an
incorrect value for the recombination fraction between
the markers will not affect the ability to map QTL as
long as the order of markers along the chromosome is
correct.

Estimating the recombination fraction between the
markers (r) using marker information from the
1000 F, individuals gave an accurate estimate of the
simulated recombination fraction between the
markers, and hence the results for the QTL obtained
when using this value (results not shown) did not
differ significantly from the results using the simulated

12-2
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Table 5. Mean test statistic for the test of a linked
QTL versus no QTL (ts1) and mean estimates of the
recombination fraction from one of the markers (r )
and additive effect (a) of the QTL over 50 replicate
simulations. The QTL was simulated with additive
effect (a) 0-25 residual standard deviations, in a

20 ¢M interval (r = 0-165) 5 cM from one of the
markers (r, = 0-047) and analysis was carried out
assuming an incorrect value for the recombination
Sraction between markers. Empirical standard
deviations are given in brackets
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Test statistic

Assumed interval size, r r, a sl
0 T T T T T T T T
0-091 0023 0255  30-15 0 10 20 30 40 50 60 70 80 90 100
(0-018) (0-049) (12:05) Position on chromosome (cM)
0-165 (Simulated value) 0045  0-253 30-16 . o
(0:035) (0:049) (12:05) Figure 3. Four likelihood curves, one produced from the
0226 0066 0256  30-16 analysis of each of four randomly selected replicate data
(0-:050) (0-050) (12:04) sets simulated with two QTL in association using eleven

value for r. Also, when analysing the data estimating
r at the same time as the QTL parameters, the same
estimates were obtained as when estimation of r took
place prior to the QTL analysis. In the example
considered here the QTL has a small effect making
genotyping uncertain. Furthermore, the analyses were
performed assuming the correct mapping function of
no interference. The incorporation of the QTL, which
acts as an internal marker, will suggest the same
recombination fraction as using the flanking markers
alone except for chance deviations from the expected
value, and with 1000 observations this effect will be
small. Differences between the methods might result,
however, if the QTL had a large effect, such that
genotyping at this locus was accurate and if the data
were analysed with an incorrect interference assump-
tion.

Residual component. Table 6 shows the mean test
statistics and mean estimates for the position, additive

markers. Each QTL would explain about 1 % of the
phenotypic variance in the F,. One is simulated to be

25 cM from the end and the other 75 cM. The dashed line
joins the mean test statistics (shown by Q) over 50
replicates of data of this structure from each interval.

effect and residual standard deviation (in units of
simulated residual standard deviation) when the
environmental component was simulated to be skewed
and analysed assuming normality. The results il-
lustrate that interval mapping is not sensitive to the
use of an incorrect model for the residual component,
nor is it sensitive to the distribution of phenotypes.
Using the test of a linked QTL versus no QTL (ss7)
gave little evidence for a QTL when none was
simulated and good evidence when a QTL was
simulated. In both cases the mean test statistic (i.e.
ts1) was similar to that observed for the equivalent
situations with a normally distributed environmental
component. A test of a linked QTL versus an unlinked
QTL (ts2) gave a negative test statistic on average for
flanking markers. The mean parameter estimates

Table 6. Mean test statistics (ts1, ts2 and ts3t) and estimates of the position (cM)}, additive effect (a) and
residual standard deviation (o) for analyses of data simulated either without a QTL or with one QTL with
additive effect 0-25 residual standard deviations and a skewed residual component over 50 replicate simulations.
The mean is over the highest test statistic for each data set using 6 markers. Empirical standard deviations are
given in parentheses. The residual standard deviation was simulated to be 1-0

Position
Simulation Method (cM) a T, tsl ts2 ts3

No QTL Flanking markers 51-52 0-017 0997 441  -12407 128-49
(3413)  (0-062) (0-036) (2:32) (23-98) (24-02)

Single markers 141-30 —0-195 0:667 130:76 227 128-49
(30-51)  (0-953) (0-033)  (23-90) (2:39) (24-02)

Linked QTL Flanking markers 24-95 0-261 0-997 31-34 —87-83 119-17
(a = 0-25) (6:32)  (0-046) (0-035)  (10:59) (23-00) (21:57)
Single markers 90-72 0-988 0-684 130-54 11-37 119-17
(16:21)  (0-058) 0027)  (23-86) (6-96) 21-57)

T ts1 linked QTL versus No QTL; 52 linked QTL versus Unlinked QTL; ¢s3 unlinked QTL versus no QTL.
1 Given as the distance from the end of the chromosome for flanking markers and from the marker for single markers.
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Figure 4. The mean test statistic over fifty replicates for
each interval in the analysis of data with more than one
QTL. The dashed line joins means from analyses of data
with two QTL (each would explain 1% of the F,
variance) and the dotted line for ten QTL (each would
explain 0-03 % of the vanance). In each case the circle
indicates that the loci were in association and the cross
that they were in dispersion. The solid line connects
means from analyses of data containing a single QTL
that explained the same difference between inbred lines as
the QTL in association.

obtained with interval mapping are close to the
expected values. The methods using single markers
and ignoring marker information are sensitive to the
distribution of the residual component. In both cases,
when the null hypothesis is no QTL (¢s1 and ts3),
good evidence for a gene is found even when one is not
present.

These results are supported by the results given
previously for an unlinked QTL which, although it
caused non-normality of the data, was not detected
when looking at the hypothesis of a linked QTL
versus no QTL. Also, results using flanking markers
in a regression analysis (Haley & Knott, 1992) are
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very similar to ML results, yet ignore information on
the distribution of phenotypes. In practice, the data
might be transformed to remove the extremes of non-
normality. Qur results suggest that any residual non-
normality will not greatly bias interval mapping
analyses as it might analyses using only a single
marker.

(i) More than one linked QTL

Figure 3 gives the mean test statistic for each interval
for the analyses of data simulated with two QTL in
association, 50 cM apart and the curves obtained
from four of the replicate data sets all using eleven
markers. Figure 4 gives the mean statistics from
analyses of data containing two or ten segregating
QTL. Also shown on this graph is the curve obtained
from analysis of data where the same difference
between inbred lines (0-5 residual standard deviations)
was caused by a single gene. The presence of QTL in
association inflates the test statistic surface over the
whole chromosome due to positive covariances be-
tween QTL. However, the average curve is flatter than
would be expected if only one locus explained the
difference between the homozygotes. When two QTL
are simulated, on average it is possible to see two
peaks corresponding to the two QTL. When the two
QTL are in dispersion the mean test statistic shows the
same pattern but it is reduced in value because of the
negative covariances between the QTL. If the two
QTL are simulated to be closer together then, even on
average over the fifty replicates, the two distinctive
bumps are no longer visible (data not shown).

Table 7 gives the mean estimates of the additive
effect and recombination fraction for the situations
with two QTL 50 ¢cM apart analysed using flanking
markers. Estimates are given for the two intervals
containing the QTL. The results show that the
estimates of the additive effect of the QTL are slightly

Table 7. Mean estimates of the additive effect (a) of the QTL and its distance from the marker (with their
empirical standard deviation) over 50 replicate simulations for data simulated with two QTL of effect (a) 0-125,
50 cM apart. Results are given for the two intervals containing the QTL both for the 10 cM and 20 cM interval

size
Interval size
10 cM 20 cM
1st 2nd 1st 2nd
Simulation Parameter QTL QTL QTL QTL
In association Additive effect (a) 0179 0175 0186 0182
(0-046) (0-051) (0-048) (0-052)
Recombination fraction (r,) 0-056  0-033 0-083 0-085
(0-033) (0:029) (0-050) (0052)
In dispersion Additive effect (a) 0078 —0-081 0072 —0063
(0-044) (0-042)  (0-043) (0-054)
Recombinaiion fraction {r,) 0-042 0-054 0-039 0-011
(0:041) (0-:038)  (0:060) (0-072)
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overestimated when the genes are in association and  both in the intervals that contain the QTL and in
underestimated when the genes are in dispersion. intervals that do not. Fitting two QTL to the data can
When a 20cM map was used the estimates were successfully separate these loci (see Haley & Knott,
slightly more biassed (and the empirical standard 1992).
deviation increased). The recombination fractions We have, to a large extent ignored the problem of
were overestimated in both situations. determining significance. With multiple, but non-
For models simulated with two QTL estimates are independent, tests being performed the significance
biassed even when we analyse the data assuming a  threshold will have to be set at a more stringent level
QTL in the correct interval. In practice estimates will than 0-05. For » independent tests the significance
be worse because the intervals containing QTL will be level for each test, p, would normally be obtained
unknown and their position will have to be inferred. from 0-05=1—(1—p)" for an overall significance
To detect more than one QTL on a chromosome a level of 5%. The number of tests performed is equal
‘Munro’ doctrine might be adopted which requires a  to the number of intervals but the number of truly
drop from the highest peak to a likelihood trough and independent tests is equal to the number of chromo-
then a minimum increase to a further peak (Munro, somes, thus #» might be set somewhere between these
1981). Even setting this minimum increase to as little two values. The analyses here will often be applied to
as a ten-fold likelihood change (equivalent to a change a cross between lines which differ substantially. If the
in twice the natural logarithm of the likelihood ratio  differences are due to very many genes of small effect
of 4-6) would result in a second QTL being accepted distributed through the genome the average likelihood
in only one of the curves in figure 3. Fitting two QTL will be inflated. With a total difference of 7-5s.p.
simultaneously is a much preferable alternative (Haley between lines due to 150 loci evenly distributed over
& Knott, 1992). fifteen chromosomes, each chromosome would pro-
duce a mean surface like that shown for ten associated
loci in figure 4. This effect should be taken into
account when setting significance levels for the
The use of maximum likelihood methods to map QTL  detection of individual QTL (or clusters of QTL).
using markers has become well established. However, Thus, in crosses between divergent lines one should
a number of questions have arisen and we attempt to either consider setting a high significance threshold or
consider some of them in this paper. be very cautious of likelihood curves which may have
One problem is the choice of test statistic, and in a high maximum value but which are not markedly
particular whether the use of a ‘no QTL’ model as the ~ peaked. Further theoretical work is needed in this
null hypothesis will bias the results. The results here, area, but at present there seems no alternative to the
supported by work using a regression model, indicate use of simulation, taking into account the genetic map
that the test of a linked QTL versus no QTL is of the organism and line genetic difference, for setting
probably both the easiest and most reliable test for a significance thresholds.

linked QTL. F ical purposes twice th tural
inked Q or practical purp ! ¢ natura We acknowledge the support of the Agricultural and Food

lo2ga.rith.m O.f the l'ikelihood ratio for this test follows a Research Council (AFRC) and the Ministry of Agriculture,
x* distribution with degrees of freedom equal to the  Fisheries and Food (MAFF) in the United Kingdom and
number of parameters different between the models by the BRIDGE programme of the Commission of the Euro-

both for single marker and for flanking marker pean Communities.
analyses. Furthermore when flanking markers are
used (but not for single markers) this test is robust to
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