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Helices, Hasimoto Surfaces and Bäcklund
Transformations
Thomas A. Ivey

Abstract. Travelling wave solutions to the vortex filament flow generated by elastica produce surfaces in R3

that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classified in the
special cases where the helices are all congruent or are all generated by a single screw motion. The first case
yields a new characterization for the Bäcklund transformation for constant torsion curves in R3, previously
derived from the well-known transformation for pseudospherical surfaces. A similar investigation for surfaces
in H3 or S3 leads to a new transformation for constant torsion curves in those spaces that is also derived from
pseudospherical surfaces.

1 Introduction and Results for R3

A Hasimoto surface is the surface traced out by a curve γ in R3 as it evolves over time
according to this evolution equation:

∂γ

∂t
=
∂γ

∂s
×
∂2γ

∂s2
.(1)

Known as the vortex filament flow or Localized Induction Equation (LIE), this flow was for-
mulated by L. Da Rios in 1906 as a model for how a one-dimensional “filament” of vortices
moves in an incompressible fluid. It was studied in the 1970s by Hasimoto [7], who dis-
covered that it is essentially equivalent to a well-known completely integrable PDE, the
focussing cubic nonlinear Schrödinger equation. (See [10] for a detailed history of LIE,
with copious references.)

We will be mainly interested in the geometrical properties of solutions to (1), focussing
on the properties that Hasimoto surfaces exhibit when the filament evolves so as to retain
its shape. Because of the semigroup property of the evolution equation, this means that the
curve moves by a one-parameter subgroup of the group of rigid motions of R3. The planar
curves that so evolve under (1) include circles (which sweep out right circular cylinders)
and the figure-eight elastic curve, which rotates about its self-intersection (see Figure 1).
Non-planar examples include helices, which sweep out cylinders, and non-planar elastica,
which move by a combination of rotation and translation known as a screw motion (see
Figure 1). In fact, it is known that the filaments that move by rigid motions under LIE are
precisely the elastica, i.e., the set of curves which are critical for some functional of the form

λ1

∫
γ

ds + λ2

∫
γ

κ2 ds.
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428 Thomas A. Ivey

(This connection was also first explored by Hasimoto [6].) More generally, elastic rod
centerlines, which are critical for functionals that also involve the integral of torsion, move
under LIE by a combination of rigid motion and sliding along the filament [9].

This paper deals with the answer to the following question, posed by Joel Langer.
Hasimoto surfaces that are generated by elastica have two interesting geometrical prop-

erties: first, they are foliated in the time direction by helices, each traced out by a point on
the filament as the filament evolves. Next, because (1) can also be written as

∂γ

∂t
= κB,

the tangent plane of the surface is spanned by the unit tangent T and binormal B of the
filament, and the filament is a geodesic in the surface. So, these Hasimoto surfaces possess
two orthogonal foliations, by geodesics and by helices. How particular is this structure to
elastica and the LIE? That is, if a surface carries foliations of this sort, must the geodesics be
copies of some member of the finite-dimensional family of elastica, evolving under LIE? It
turns out that the answer to this question is no: such surfaces form an infinite-dimensional
family.

Because of the different extra assumptions one can make about the helices on the sur-
face, there are two theorems one can state. (See Section 4 for what happens when the extra
assumptions are weakened.)

Theorem 1 Let S be a smooth surface in R3 foliated orthogonally by geodesics and helices.
Assume in addition that all the helices are congruent. Then either

1. the helices degenerate to parallel lines, and the geodesics are copies of a single arbitrary
planar curve;

2. S is a right circular cylinder, and the geodesics are helices; or
3. the helices degenerate to circles, and the geodesics are all Bäcklund transformations of a

single arbitrary curve of nonzero constant torsion.

In either case, the generating curve depends on one arbitrary function of one variable.

The Bäcklund transformation for curves of constant torsion, defined and studied in [3],
is this: given a unit speed curve γ(s) in R3, with curvature κ and nonzero constant torsion
τ , obtain a solution β of the differential equation

dβ/ds = λ sinβ − κ.(2)

Using Frenet frame vectors T and N along γ, define

γ̄ = γ +
2λ

λ2 + τ 2
(T cosβ + N sin β).(3)

Then γ̄(s) is a new unit speed curve of constant torsion τ .
This transformation is obtained by restricting the classical Bäcklund transformation for

pseudospherical surfaces to the asymptotic lines of those surfaces, which have constant
torsion. (Discussions of Bäcklund’s transformation appear in many of the old treatises on
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Figure 1: Hasimoto surfaces generated by planar and non-planar elastica.
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differential geometry, for example in [5]; a more recent account appears in the introduction
to [4].) The form of the new curve depends in general on two parameters, λ and the initial
condition for the ODE (2). Note that as the latter is varied, γ̄(s) swings around γ(s) along
the arc of a circle in the osculating plane of γ. It follows from the properties of the surface
Bäcklund transformation that the the binormals of the old and new curves make a constant
angle, which is equal to 2 arctan(λ/τ ), and the vector from γ(s) to γ̄(s) is perpendicular to
both binormals. In particular, when λ = ±τ , the binormal of γ̄ points along the circles just
mentioned, and thus the various curves γ̄ sweep out a surface in which they are geodesics.
Since the radius of the circles is maximized for this choice of λ, we will refer to this as a
maximal Bäcklund transformation; of course, it is only this kind that appears in Theorem 1.

Figure 2 shows a helix and the “surface of circles” swept out by its Bäcklund transforma-
tions for λ = τ .

We will pursue the ramifications of Theorem 1 later on. For now, we’ll just note that the
extra assumption on the helices was far too restrictive, causing them to degenerate. Instead,
we will let the helices vary in radius but fix their axis and translational period.

Theorem 2 Let S by a smooth surface in R3 foliated orthogonally by geodesics and helices.
Assume in addition that the helices are generated by a common screw motion. Then the
geodesics of S are all congruent under the screw motion, and depend on one arbitrary func-
tion of one variable.

This theorem says that this class of surfaces is quite general. To construct one of them,
suppose the screw motion moves j units along the z-direction for every counterclockwise
rotation of 2π. (The torsion of the helices has the same sign as j.) If N and B are the
normal and binormal of the helix at a point on the surface, let α be the angle such that
N cosα + B sinα is the tangent to the geodesic. Then α can be arbitrarily specified as a
function of arclength s along the geodesic, and the cylindrical coordinates of the geodesic
satisfy

dr/ds = − cosα
dz/ds = r sinα/

√
j2 + r2

dθ/ds = −( j/r2)dz/ds


 .(4)

An example where the function α is chosen so that the geodesics are closed are shown in
Figure 3.

The proofs of these theorems, which involve the use of moving frames and exterior
differential systems, will be relegated to another section.

2 Results in Other Space Forms

The PDE underlying pseudospherical surfaces, the sine-Gordon equation, is connected to
the hierarchy of flows built on the LIE (see [8] for how this connection works on the level of
vector fields). Nevertheless, the appearance in Theorem 1 of the Bäcklund transformation
for constant torsion curves in the answer to a seemingly unrelated question is still surpris-
ing. Constant torsion again appears in the generalization of Theorem 1 to surfaces in a
three-dimensional space form (i.e., either S3 or H3).

https://doi.org/10.4153/CMB-2000-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-051-9


Helices and Hasimoto Surfaces 431

-1 -0.5 0 0.5 1 -0.5

0
0.5
1
1.5

-1

0

1

-1 -0.5 0 0 5
-1

0
1

-1

0

1-4

-2

0

-1
0

1

Figure 2: A helix and its surface of circles. In the left-hand picture, the helix is shown, thickened into
a vertical strip, along with a small portion of its surface of circles. (The curves running up the surface
represent individual Bäcklund transformations of the helix. Perpendicular to these are arcs of circles,
which correspond to varying the initial angle for ODE (2).) This surface is extended in the right-hand
picture.
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Figure 3: A “fake” Hasimoto surface of the type described in Theorem 2.
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Theorem 3 Let M3(K) be the simply-connected space of constant sectional curvature K �= 0,
and suppose S is a surface in M carrying orthogonal foliations by helices and by geodesics.
Assume that all the helices in S are congruent. Then either

1. K > 0 and the helices are great circles in S3, part of a fixed Hopf fibration, and the geodesics
have constant torsion τ = ±

√
K;

2. the geodesics are also helices, and S is a flat cylinder in M3; or
3. the helices degenerate to circles, the geodesics have constant torsion satisfying τ 2 > K, and

are Bäcklund transformations of a single constant torsion curve in M.

In fact, the proof of this theorem leads one to define a Bäcklund transformation for
curves of constant torsion in M, albeit with the radii of the circles determined in terms
of the torsion, as they are for maximal Bäcklund transformations in R3. However, it is
easy to generalize this to a two-parameter family of Bäcklund transformations, defined as
follows. Regard M as the hypersurface of points x satisfying 〈x, x〉 = 1/K in R4, using the
appropriate signature for the inner product. Let γ be a curve in M of constant torsion τ ,
parametrized by arclength. Obtain a solution of dβ/ds = λ sinβ − k and let

γ̄(s) = γ(s) cos ρ +
sin ρ
√

K
(T cosβ + N sin β),(5)

where ρ is real when K > 0 and pure imaginary when K < 0, and is related to λ by

tan ρ
√

K
=

2λ

λ2 + τ 2 − K
.

Then γ̄ is another curve of constant torsion τ , along which s is still an arclength coordinate.
This gives the transformations of Theorem 3 if and only if λ2 + K = τ 2. We will discuss (5)
further in Section 5.

3 Proof of Theorems 1 and 3

As before, let M3 be the simply-connected space form of constant curvature K, and let F

be the bundle of oriented orthonormal frames (e1, e2, e3) with basepoint e0 on M. F is
equipped with differential one-forms ωi , ωi

j , defined by

de0 = eiω
i

dei = e jω
j
i − Ke0ω

i.

Here, indices run from 1 to 3, we sum on repeated indices, and e0 and ei are vectors in R3

(or R4 when K �= 0). These forms on F satisfy

dωi = −ωi
j ∧ ω

j , dωi
j = −ω

i
k ∧ ω

k
j .

Suppose we have a surface S in M foliated orthogonally by helices and by geodesics.
Along the surface we can get a framing with e1 tangent to the helices and e2 tangent to the
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geodesics. This gives a lift of S into F, to which ω3 restricts to be zero, and ω1 and ω2

are linearly independent one-forms at each point. If N = e2 cos θ + e3 sin θ is the Frenet
normal to the helix, then the Frenet equations imply that, along the lift, ω2

1 ≡ a cos θω1

and ω3
1 ≡ a sin θω1 modulo ω2, where a is the curvature of the helices. On the other hand,

the geodesic condition is that ω2
1 ≡ 0 modulo ω1. These considerations lead us to define

the following exterior differential system on F × S1:

I =




ω3, ω2
1 − a cos θω1

(ω3
1 − a sin θω1) ∧ ω2

(dθ + ω3
2 − bω1) ∧ ω2

ω3
1 ∧ ω

1 + ω3
2 ∧ ω

2

ω3
2 ∧ ω

3
1 − Kω1 ∧ ω2 + a sin θdθ ∧ ω1 − a2 cos2 θω1 ∧ ω2.

Here, a and b are constants giving the curvature and torsion of the helices. The last pair of
two-forms are the exterior derivatives of the one-forms of I modulo the preceding forms.

If all the helices on S are congruent, then the aforementioned framing, together with the
function θ, will give a lift into F×S1 along which the forms of I restrict to be zero for some
choice of a and b. This is known as an integral surface of I; the fact that vectors e1 and e2

span the tangent space of S implies that ω1∧ω2 restricts to be nonzero at every point of the
integral surface.

An application of Cartan’s Test [2] shows that system I is not involutive, so we must
prolong. We adjoin new variables k, t , which will represent the curvature and torsion of
the geodesics, we pull I up to F× S1×R2, and adjoin new one-forms. The prolongation is
generated by the following 1-forms (along with their exterior derivatives):

Î =



ω3, ω2

1 − a cos θω1,

ω3
2 + tω1 − kω2, ω3

1 + tω2 − a sin θω1,

dθ + ω3
2 − bω1 − (c + a sin θ)ω2

(6)

where c must satisfy

K + a2 + ac sin θ = t2.(7)

The exterior derivatives of forms in the last two rows of (6) give three new two-forms:




dt ∧ ω1 − dk ∧ ω2 + 2at cos θω1 ∧ ω2

dt ∧ ω2 + ac cos θω1 ∧ ω2

dc ∧ ω2 + 2ab cos θω1 ∧ ω2.

(8)

Using the derivative of (7) modulo Î to relate dt and dc, we obtain the following linear
combination of the last pair of two-forms:

a cos θ
(
c(b + 3t)− 2ab sin θ

)
ω1 ∧ ω2.
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Since ω1 ∧ ω2 �= 0 at each point of the surface, the coefficient here must vanish at each
point.

If a vanishes identically, then the helices must be geodesics of M with t2 = K. It is known
that each such curve of constant torsion in S3 is tangent to a contact structure whose planes
are orthogonal to the leaves of a Hopf fibration. (Each of these fibrations is congruent to
the standard one by the action of U (2).) Furthermore, the curve osculates to the contact
planes. This implies, in our case, that the helices are in fact the great circles of the Hopf
fibration. In R3, the helices are parallel lines (since de1 = 0) and the geodesics are copies of
a single planar curve.

If cos θ vanishes identically, then θ is constant, t = −b is constant, k = c + a sin θ is
constant, and the surface has Gauss curvature zero. In fact, this surface is a right circu-
lar cylinder, generated by parallel geodesics of M perpendicular to congruent circles. (Of
course, this will give a flat torus in S3.)

Suppose then that a cos θ �= 0 and

c(b + 3t)− 2ab sin θ = 0(9)

identically. Differentiating this and using the derivative of (7) to eliminate dc gives
(
2t(b + 3t) + 3ac sin θ

)
dt − a cos θ

(
2ab sin θ + c(b + 3t)

)
dθ = 0.

Wedging with ω2 gives

0 ≡
(
2t(b + 3t) + 3ac sin θ

)
(ac cos θ)ω1 ∧ ω2 + a cos θ

(
2ab sin θ + c(b + 3t)

)
(b + t)ω1 ∧ ω2

modulo Î. Dividing out by a cos θ and using the identities (7) and (9) gives

0 = c
(
3(t2 − K − a2) + 2(b + t)(b + 3t)

)
.

Then either c = 0 or t is constant on integral surfaces. Since the latter would imply—from
(8)—that ac cos θ = 0 anyway, we conclude that c = 0 and b = 0 (from (9)) identically.
The geodesic foliation on the surface consists of curves of constant torsion t satisfying t2 =
K + a2, from (7).

Since b = 0, the helices degenerate to circles in M ⊂ R4, and the centers of these circles
can be normalized to give a curve in M:

ξ =
a

t
e0 +

1

t
(e2 cos θ + e3 sin θ).

Now, by a calculation we will omit, one can show that ξ has constant torsion t , and that
each constant torsion curve on S is a Bäcklund transformation of ξ, as defined in (5), when
τ = t , λ = a and tan ρ =

√
K/a.

4 Proof of Theorem 2

If S satisfies the hypotheses of Theorem 2, there is a framing (e1, e2, e3) which is the Frenet
frame for the helix at each point of S, and an angle θ such that

V = e2 cos θ + e3 sin θ
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is tangent to the geodesic foliation. Adjoining θ, the curvature a and the torsion b of the
helices as auxiliary variables, we see that such a framing gives an integral surface of the
following differential forms on F × S1 × R2:



ω3 cos θ − ω2 sin θ,

ω3
1 ∧ η, (ω

2
1 − aω1) ∧ η, (ω3

2 − bω2) ∧ η, da ∧ η, db ∧ η,

(ω1
2 cos θ + ω1

3 sin θ) ∧ ω1.

The first line says that e1 and V are tangent to S, the second line encodes the Frenet equa-
tions for the helices, and says that a and b are constant along each helix, and the third line
is the geodesic condition; for convenience, we have defined the one-form

η = ω2 cos θ + ω3 sin θ,

which is dual to V on the surface.
The point e0 + a/(a2 + b2)e2 will lie on the axis of the helix. The condition that the axes

of the helices be fixed amounts to requiring that the derivative of this point be parallel to
be1 + ae3, and this in turn means that the two one-forms

ω2 + d
(
a/(a2 + b2)

)
, aω1 − bω3 −

a

a2 + b2
(aω2

1 + bω3
2)(10)

vanish on the integral surface. Furthermore, the translational period of a helix is given by
2πb/(a2 +b2). If the helices are generated by a common screw motion, this will be constant,
and we can set

a = C sin 2φ, b = 2C cos2 φ(11)

for some constant C , assumed nonzero, and some function φ on the surface.
Thus, if a surface S satisfies the hypotheses of Theorem 2, the specified framing, along

with functions φ and θ, will give an integral surface of the following exterior differential
system on F × S1 × S1:




ω3 cos θ − ω2 sin θ, ω2 + 1
2C sec2 φdφ,

bω3 +
a

a2 + b2

(
a(ω2

1 − aω1) + b(ω3
2 − bω1)

)
,

(ω1
2 cos θ + ω1

3 sin θ) ∧ ω1, ω3
1 ∧ η,

(ω2
1 − aω1) ∧ η, (ω3

2 − bω2) ∧ η,

(ω2
1 sin θ − ω3

1 cos θ) ∧ ω1 − (ω3
2 + dθ) ∧ η, (ω2

1 + bω3) ∧ ω1.

(12)

Here, the second and third one-forms come from (10) with (11) taken into account; the
last pair of two-forms are the exterior derivatives of the first pair of one-forms, modulo the
preceding forms.

Of course, it is necessary to adjoin the derivative of the third one-form in (12), but first
we will derive some geometric consequences of the system as it stands. Let

π1 = ω
2
1 − aω1 + bω3;
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then two of the two-forms of the system are π1∧ω1 and π1∧η. Since the one-formsω1 and
η must be linearly independent on any integral surface that comes from a surface in R3, we
see that the form π1 must vanish on any such integral surface. (Requiring that ω1 ∧ η �= 0
at each point of the integral surface is called an independence condition.) Modulo π1, the
first pair of two-forms in (12) are congruent to

(ω1
3 sin θ + bω3 cos θ) ∧ ω1, ω1

3 ∧ η

so it follows that
π2 = ω

1
3 + bω2

must be zero at every point of an integral surface satisfying the independence condition
and sin θ �= 0. (If sin θ vanishes everywhere, then V = ±e2, the normal to the helices,
and ω1

2 and ω3
2 are congruent to zero modulo ω1. Thus, V is constant along the geodesics,

the geodesics are straight lines through the axis of the screw motion, and the surface is a
helicoid.) Finally, the third one-form in (12) can be expressed as

π1 sin2 φ + π3 sinφ cosφ

where
π3 = ω

3
2 − bω1 + b2/aω3.

So, π3 must vanish on surfaces that carry nondegenerate helices.
A geometric interpretation of the vanishing of π1 and π2 is this: the unit vector e1 cosφ+

e3 sinφ is parallel to the axis of the helices. Modulo the forms in (12), the derivative of this
vector is

(e1 sinφ− e3 cosφ)π2 + e2(π1 cosφ− π3 sinφ).

So, it is not surprising that π1, π2, π3 must vanish.
Notice that all of the two-forms in (12) are exterior multiples of the new one-forms π1,

π2, π3, except for the second to last two-form, which is congruent to −dθ ∧ η modulo the
π’s. With the new one-forms adjoined, the system is now generated by



ω3 cos θ − ω2 sin θ, ω2 + 1

2C sec2 φdφ,

π1, π2, π3

dθ ∧ η.

(13)

It is easily checked that this system is differentially closed and involutive, with Cartan char-
acter s1 = 1, s2 = 0. Thus, local solutions depend on one arbitrary function of one variable.
To see, in a less abstract way, how one arbitrary function comes in to the picture, notice
that the one-forms of (13) imply an ordinary differential equation for φ as a function of
arclength s along the geodesics,

dφ/ds = −2C cos θ cos2 φ,

but there is no corresponding ODE for θ. In fact, θ can be arbitrarily specified as a function
of s along one geodesic. Since the curvature and torsion of that geodesic satisfy

κ =
dθ

ds
−

b2

a
sin θ, τ = −b,
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this roughly corresponds to specifying one of κ or τ . While it is difficult, in general, to ex-
plicitly solve the Frenet equations (obtaining a curve with a given κ and τ ), in this instance
we can solve simple ODEs for the curve in cylindrical coordinates. These are given in (4),
where our function θ is re-labeled as α.

The involutivity of (13) implies that the space of “fake” Hasimoto surfaces is quite large,
even with the extra assumptions made in Theorem 2. If one relaxes these assumptions, the
space of solutions becomes larger. If the helices have a common translational period but are
only required to have parallel axes, the surfaces depend on two functions of one variable.
If only a common translational period is required, the surfaces depend on five functions of
one variable.

5 Bäcklund Transformations for Surfaces in S3 or H3

The existence of a family of Bäcklund transformations is a hallmark of complete integrabil-
ity. In fact, for AKNS systems (NLS, sine-Gordon, mKdV) the Bäcklund transformation is
intimately related to the Lax pair [11]. Thus, our family (5) of transformations for constant
torsion curves in M = H3 or S3 ought to be related to a completely integrable PDE.1 It turns
out that it is connected to the sine-Gordon equation in a way similar to our transformation
(3) for curves in R3.

The generalization of Bäcklund’s transformation to surfaces in S3 and H3 was discov-
ered by Bianchi [1]. (Generalizations to higher dimensions were obtained by Tenenblat
and Terng [12], [13].) To explain the connection with (5), we will briefly recapitulate this
generalization.

Let M3 be as before. A linear Weingarten surface in M is one whose Gauss curvature G
and mean curvature H satisfy an equation of the form

A(G− K) + BH + C = 0,(14)

where A, B, C are constants. The surface is hyperbolic if B2−4AC < 0. In this case, one can
show that every surface satisfying (14) gives rise to a solution of the sine-Gordon equation,
in the form

θxt = c1 sin θ + c2 cos θ,

where x and t are arclength coordinates along the asymptotic directions, θ is the angle
between, and c1, c2 are constants depending on A, B, C , K.

We will call a hyperbolic linear Weingarten equation pseudospherical if B = 0; this
just means that G − K is a negative constant. The asymptotic lines on a pseudospheri-
cal surface have constant torsion τ satisfying τ 2 = K − G. Moreover, such surfaces have a
Bäcklund transformation that can be expressed geometrically using geodesic congruences
in M3—i.e., two-parameter families of geodesics of M3. By imitating [4], we can derive the
Bäcklund transformation from geodesic congruences, as follows:

Suppose two surfaces S, S̄ in M are related by a line congruence

x̄ = x cosφ +
sinφ
√

K
V(15)

1If one is unable to guess the PDE, it is still possible to recover it from the Bäcklund transformation. For
example, one can expand (5) as a Laurent series in λ, yielding a hierarchy of commuting flows that preserve
constant torsion. This technique will be discussed in a future paper.
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such that φ is constant, V is a unit vector in TxS, and the surface normals differ by a constant
angle ψ. (The line from x to x̄ is also assumed to be tangent to S̄.) Then S and S̄ have
constant Gauss curvature K(1 − sin2 ψ/ sin2 φ), less than K. (Again, φ is pure imaginary
when K < 0.) The line congruence gives a Bäcklund transformation for such surfaces, and
this transformation takes asymptotic lines to asymptotic lines. When restricted to a single
asymptotic line, with constant torsion τ and Frenet frame T, N , B, this transformation
takes the form (15) with V = T cosβ + N sin β, where β satisfies dβ/ds = λ sinβ − κ
along the curve, and

tanφ
√

K
=

2λ

λ2 + τ 2 − K
.

Thus we see that (5) is the restriction of the surface Bäcklund transformation to asymptotic
lines.
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