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Abstract
Debate on the use of lagged dependent variables has a long history in political science. The latest con-

tribution to this discussion is Wilkins (2018, Political Science Research and Methods, 6, 393–411), which

advocates the use of an ADL(2,1) model when there is serial dependence in the outcome and disturbance.

While this specification does offer some insurance against serially correlated disturbances, this is never

the best (linear unbiased estimator) approach and should not be pursued as a general strategy. First, this

strategy is only appropriate when the data-generating process (DGP) actually implies a more parsimo-

nious model. Second, when this is not the DGP—e.g., lags of the predictors have independent effects—

this strategy mischaracterizes the dynamic process. We clarify this issue and detail a Wald test that can be

used to evaluate the appropriateness of the Wilkins approach. In general, we argue that researchers need

to always: (i) ensure models are dynamically complete and (ii) test whether more restrictive models are

appropriate.

Keywords: time series, specification testing, lagged dependent variables

Whether and when to use lagged dependent variables (LDVs) has been a long-standing question

in political science (Achen 2000; Keele and Kelly 2006). Of particular concern has been the

consequence(s) of including a LDV in amodel in the presence of residual autocorrelation. Because

the LDV has power against error persistence, the coefficient for the LDV will generally be inflated,

and the coefficients for (persistent) predictors will be deflated.

In a recent paper, Wilkins (2018) re-engages this question, suggesting that including an

additional lag of the outcome and predictor—that is, an ADL(2,1) model1 —offers leverage against

such biases and should be preferred as a more general model specification.2 While Wilkins

(2018) correctly notes that a time-lagged error can be re-expressed as a time lag of the outcome

and predictor (see Sargan 1964), we are concerned that other aspects of this discussion invite

confusion.

First, such a model only suffices insofar, as it is dynamically complete. That is, one first needs

to ensure that any model fully characterizes the dependence in the series, imposing only those

restrictions supported by the data (Hendry 1995). Second, even when the ADL(2,1) model is suffi-

cient, the strategy offered by Wilkins (2018) assumes that the underlying data-generating process

(DGP) is a first-order partial adjustment (i.e., PA[1]) process (familiarly known as the LDV model)

with autocorrelation in the residuals. If the DGP is actually a more general ADL(2,1) process—with

meaningful effects of xt−1 and yt−2—Wilkins’s approach mischaracterizes the dynamic process,

inviting incorrect interpretations of the model coefficients and the long-run multiplier (LRM).

1 Here we use standard notation for the autoregressive distributed lag (ADL) model of order p and q, ADL(p,q), where p
indicates lags of y and q lags of x.

2 This paper has already proved influential, as it has been cited more than 80 times to date.
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Rather than proceed by assumption, we argue analysts should test whether these parameter

restrictions are supported by their data.3

To this end, we identify the nonlinear common factor restriction required to support Wilkins’s

interpretation, suggest an associated Wald test to compare his proposed specification to alterna-

tivemodels, anddemonstrate its efficacyvia stochastic simulation.Wecaution researchersagainst

privileging any single specification bydefault. Instead,we advocate that they undertake a general-

to-specific specification search using a higher-order ADL(p,q) model, test whether lags in the

structural equations are proxying for residual autocorrelation, and properly calculate quantities

of interest.

1 Model Equivalence and Common Factor Restrictions

As first illustrated by Sargan (1964), time-lagged realizations of a model’s structural terms—the

outcome and its predictors—can be used to proxy for time-lagged realizations of its stochastic

error process. Consider

yt = xtβ +ut , where ut = ρut−1+ e t ,

y and x are covariatesmeasuredat time t, andut is anautoregressiveerror term,which is a function

of prior realizations (via ρ) and contemporaneous white noise residuals e t . Using the familiar

backshi� operator L and rearranging terms, this process can be expressed as an ADL(1,1):

yt = xtβ +ut , where ut = ρut−1+ e t , (1a)

yt = xtβ + (1−ρL)−1e t , (1b)

(1−ρL)yt = (1−ρL)xtβ + e t , (1c)

yt = ρyt−1+xtβ −ρxt−1β + e t , (1d)

yt = αyt−1+xtβ1+xt−1β2+ e t . (1e)

This demonstrateshowanADL(1,1)model captures theerror persistence fromaPA(1) processusing

lags of observed variables.4 This approach iswidely knownandhasbeendiscussedat length in the

time-series literature (Hendry and Mizon 1978; Sargan 1964, 1980). Historically, this specification

was valuable, because ADLmodels could be estimated using ordinary least squares.

Yet, Sargan (1980) and others cautioned that this approach has limitations. First, the equiva-

lence is only obtained if the implied common factor restrictions of the reduced-form parameters

are valid. That is, Equation (1e) can only be interpreted as a static model with autocorrelation in

the residuals if β2 = −αβ1, allowing the simplification undertaken in the step from Equation (1d)

to (1e).5 If xt−1 has independent effects, these restrictions are notmet, and the estimator is biased

(Sargan 1964).6 Second, even when this restriction is satisfied, the ADL(1,1) model is inefficient,

since the static model has fewer parameters to be estimated (Hendry and Mizon 1978).

3 Arbitrating between the PA(1) and ADL(2,1) models presumes that the analyst has first classified their data as stationary
(Webb, Linn, and Lebo 2020), specified a balanced model where all the dynamic features of the regressand (order of
integration, trend, seasonality, etc.) are accounted for (Enns and Wlezien 2017; Granger 1990; Pickup and Kellstedt 2020),
and determined the ADL(2,1) model is parsimonious and dynamically complete. If instead the data are nonstationary,
conventional hypothesis testing procedureswill not be appropriate for the ADL or PA (Enns et al. 2016), instead researchers
should use the critical value bounds developed by Webb, Linn, and Lebo (2019).

4 As we demonstrate in the Online Appendix, this equivalence can also be demonstrated without the use of the backshi�
operator.

5 While it is well known, we derive this common factor restriction in the Online Appendix.
6 To clarify, we use “independent effects” to indicate that the mean of the outcome is a function of these inputs and that
they are not simply a proxy for stochastic error persistence. Put differently, in their absence, the model would suffer from
omitted variables bias, and not simply inefficiency.
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In a recent piece, Wilkins (2018) uses similar reasoning to argue that an ADL(2,1) model can be

used to estimate a PA(1) process with autocorrelation in the residuals, thereby resolving the issue

of LDVs raised in Achen (2000). As above, this can be achieved as follows:

yt = αyt−1+xtβ +ut , where ut = ρut−1+ e t , (2a)

yt = αyt−1+xtβ + (1−ρL)−1e t , (2b)

(1−ρL)yt = (1−ρL)αyt−1+ (1−ρL)xtβ + e t , (2c)

yt = (ρ +α )yt−1−ραyt−2+xtβ −ρxt−1β + e t , (2d)

yt = α1yt−1+α2yt−2+xtβ1+xt−1β2+ e t . (2e)

From this, Wilkins (2018) argues in favor of the ADL(2,1) model as a more general approach, since,

unlike the LDV model considered by Achen (2000), the ADL(2,1) model is robust to this additional

error persistence.

While Wilkins’s strategy echoes that of Sargan and others, he is silent on their cautions. Most

importantly, he does not discuss the common factor restriction required for this model equiva-

lence tohold. Aswedetail in theOnlineAppendix, anADL(2,1) process can reduce toaPA(1) process

withautocorrelation in the residuals if, andonly if,β 2
2
+β1β2α1−α2β

2
1
= 0.When this doesnothold,

it implies that the second-order lag of the outcome or the first-order lag of the predictor has true,

independent effects on the contemporaneous outcome. That is, they have an effect above and

beyondproxying for the lagged stochastic error, so interpreting theseestimates as such can lead to

amischaracterizationof thedynamicprocess. Forexample, ina regressionofpresidential approval

(y) on consumer sentiment (x), the Wilkins (2018) approach assumes that there is no lagged effect

of consumer sentiment (xt−1) and no second-order autocorrelation in approval (yt−2), with the

coefficients of these covariates understood to exclusively reflect error persistence. When these

assumptions are invalid—e.g., lagged consumer sentiment impacts contemporaneous approval—

this interpretation of the parameters is not supported.

Not only would this mischaracterize specific coefficient estimates, but any marginal effects

obtained from these parameters will also be incorrect. For example, the LRM for the effect of x

on y for an ADL(2,1) model is

β1+β2

1−α1−α2

, (3)

which Wilkins (2018) argues can recover the LRM for the PA(1) process as

β −βρ

1−α −ρ +αρ
=

β (1−ρ)

(1−α )(1−ρ)
=

β

1−α
, (4)

where the reduced-formcoefficients from theADL(2,1)model are substituted in for their functional

relations in the PA(1) process with autocorrelation in the residuals.7 However, Equations (3) and

(4) will only be equal if the common factor restriction—i.e., β 2
2
+ β1β2α1 −α2β

2
1
= 0—holds.8 This

restriction can be satisfied, given the right set of reduced-form coefficients; however, it should not

be assumed. Only in stylized cases (e.g., α2 = 0 and β2 = 0) will it be easy for researchers to easily

determine whether the restriction is satisfied, andmore o�en, it will entail complicated combina-

7 Wilkins (2018) also argues that the LRMs should be calculated with dynamics of x in the denominator. Since there is some
controversy on this issue and it is not the focus of our paper, we simply assume that x is a static series.

8 An alternative formulation of the LRM under Wilkins’s (2018) assumptions is
β̂1

1−(β̂2/β̂1+α̂1)
, where the ADL(2,1) coefficients

are used to produce the PA(1) LRM,
β

1−α . We make use of this in our simulations in Section 2.1.
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tions of the coefficients (e.g., β1 = 5,β2 = 2,α1 = 0.5, and α2 = 0.36).9 When this restriction is not

satisfied, Equation (4)mischaracterizes the LRM, inaccurately reflecting both the direct effect (i.e.,

β1+β2 , β ) and thepersistence (i.e., 1−α1−α2 , 1−α ).10 Usingour earlier example of presidential

approval, misinterpreting the effect of lagged consumer sentiment as error persistence impacts

not only (β2), but propagates through the LRM to bias our understanding of the effect of consumer

sentiment on approval more generally.

As such, it is important for researchers to determine whether they have a traditional ADL(2,1)

process, i.e., Scenario A, where the structural lags have independent effects, or a Wilkins (2018)

ADL(2,1) process, i.e., Scenario B, where these lags are proxies for the stochastic error process.

Even when Wilkins’s interpretation is correct (Scenario B), and an ADL(2,1) model can rightly be

reparameterized as a PA(1) model, Wilkins’s estimation strategy is inefficient, because it estimates

onemore reduced-form parameter than necessary to identify the structural equations. Moreover,

one loses anadditional year of data, since yt−2 is usedas an input. Neither of thesematters asymp-

totically, but efficiency losses are greater in shorter series. This is especially important in time-

series analysis, where sample coefficient estimates are used as inputs for additional quantities

of interest (e.g., the LRM and impulse response functions). For these nonlinear combinations of

coefficients, slight efficiency losses may have severe consequences.

In the next section, we use simulated data to quantify the costs of using the Wilkins (2018)

strategy when its assumptions are not maintained. Given these costs, we also demonstrate how

researchers canuseasimpleWald test—evaluatingβ 2
2
+β1β2α1−α2β

2
1
=0—todistinguishbetween

Scenarios A and B in Section 2.2.

2 Simulations

We use simulations to evaluate the bias in the LRM under incorrect assumptions and the efficacy

of our proposed Wald test. The outcome, y, is generated:

yt = α1yt−1+α2yt−2+β1xt +β2xt−1+ut , (5)

where xt ∼ N (0,1) and ut = ρut−1 + e t with e t ∼ N (0,1). We hold the contemporaneous effect

fixed, β1 = 5, varying the strength of the lagged predictor via β2 = {0.00, 0.25, 0.50, 0.75, 1.00,

1.25, 1.50, 1.75, 2.00, 2.25, 2.50}, the lagged outcomes via α1 = {0.00, 0.20, 0.40} and α2 = {0.00,

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, and the residual autocorrelation via

ρ = {0.00, 0.20, 0.40}. For each combination of parameters, we generate 1,000 simulated data

sets with sample sizes ofT = 50, 100, 200, 1000.11

2.1 LRM Bias Associated with Incorrect Specification
One traditionally uses Equation (3) to calculate the LRM from the estimates of an ADL(2,1) model.

For comparison, we directly calculate the LRM interpretation proposed by Wilkins (2018) given in

Equation (4), which uses the ADL(2,1) estimates to capture a PA(1) process with autocorrelation.

We calculate the bias for the LRM as the difference between the true LRM,
β1+β2

1−α1−α2
, and the LRM

suggested by the Wilkins (2018) strategy,
β̂1

1−(β̂2/β̂1+α̂1)
, where the coefficients from the ADL(2,1)

model are substituted to represent the LRM for the PA(1) process,
β

1−α
. If the data support the

9 Fully evaluating the latter case would also require uncertainty estimates beyond those typically reported with individual
coefficient estimates, as one would need to estimate the variance of β 2

2
+β1β2α1 −α2β

2
1
.

10 One could argue that since (3) produces unbiased LRMs for general ADL(2,1) processes, this should just be preferred.
However, as we note throughout, under the conditions given by Wilkins (2018), using the ADL(2,1) actually produces
efficiency lossesand risks inferential errorson thecoefficientsonxt−1 and yt−2. This iswhy researchers shoulduse tests like
the one given here to arrive at the correctmodel specification first and then calculate the LRMdirectly from the coefficients
of that model.

11 The first three sample sizes are common in applied work, while the last approximates asymptotics.
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Figure 1. LRM bias over values of α2. Notes: Median bias is computed based on the difference between the
true LRM (Equation (3)) and the LRM restrictions suggested by Wilkins (2018). Results are shown for T = 50,
α1 = 0.4, and ρ = 0.4.

Wilkins (2018) interpretation, these twowill be equal to one another, as in Equation (4). If the data

do not support the Wilkins (2018) interpretation, the difference between the two will reflect the

extent of the bias from reinterpreting the ADL(2,1) estimates as if they had been produced by a

PA(1) process with residual autocorrelation.

Because these LRMs are nonlinear in parameters, the resultant biases will also change in a

nonlinear fashion. In Figure 1we focus on the consequences of changes toα2 (x-axis), holding β2 at

fixed values (0.0 in panel 1, 1.0 in panel 2, and 2.0 in panel 3). The curves show the median bias in

theLRMs (y-axis). Ineachpanel, there isonlyonesetof conditionswhere thebias is equal to zero. In

the first panel, there is no biaswhen β2 = 0 andα2 = 0. When β2 , 0 in the second and third panels,

the LRMs are biased except for the conditions, where the value of α2 exactly offsets β2, (α2 = 0.12

and β2 = 1) and (α2 = 0.32 when β2 = 2), respectively. The bias increases as α2 increases beyond

these thresholds. In sum, where there is a true effect of yt−2, the LRM proposed by Wilkins (2018)

is biased. However, in applied data settings, we would not know whether this bias attenuates or

inflates the LRM, because it is a nonlinear combination of several parameters.

We show similar results in Figure 2, where we focus on changes to β2 (x-axis) while holding α2

at fixed values (0.0 in panel 1, 0.3 in panel 2, and 0.5 in panel 3). As before, in the first plot, the LRM

bias is 0when β2 = 0 andα2 = 0. Equations (3) and (4) are equivalent in this condition. As the value

of β2 increases along the x-axis, the LRM implied by theWilkins (2018) strategy underestimates the

true value of the LRM at an increasing rate. The same pattern exists in the second (α2 = 0.3) and

third (α2 = 0.5) plots, but the y-intercept for the bias (β2 = 0) is different in both cases.

The results presented in Figures 1 and 2 demonstrate the potential problemswith assuming the

restrictionsproposedbyWilkins (2018). If the trueDGP is anADL(2,1), the LRM formulaproposedby

Wilkins (2018) is a biased estimator. Moreover, in applied research, the direction and magnitude

of the bias are difficult to predict, because the nature of the bias depends on the values of α1,

α2, β1, and β2. As such, researchers cannot confidently assume the effects are being under- or

overestimated.

2.2 A Wald Test for the ADL(2,1) Against a PA(1) with Autocorrelation
The results presented in the last section highlight the perils associatedwith incorrectly calculating

the LRM for an ADL(2,1) process as though it were generated by a PA(1) process. On the other hand,

Wilkins (2018) demonstrates the biases risked by failing to impose these restrictionswhen the true
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Figure 2. LRM bias over values of β2. Notes: Median bias is computed based on the difference between the
true LRM (Equation (3)) and the LRM restrictions suggested by Wilkins (2018). Results are shown for T = 50,
α1 = 0.4, and ρ = 0.4.

DGP is a PA(1) process with autocorrelation in the residuals. In either case, proceeding purely from

assumption is a risky strategy.

In Section 1, we discussed a possible test to evaluate the restrictions assumedbyWilkins (2018).

This draws from a strategy outlined by Sargan (1964, 1980), which demonstrates how Wald tests

can be used to compare a wide range of time-series specifications. Specifically, we test whether

estimated ADL(2,1) coefficients are consistent with a PA(1) process with residual autocorrelation

by testing

β 2
2 +β1β2α1−α2β

2
1 = 0. (6)

This nonlinear Wald test is χ2 distributed with 1 (the number of restrictions being tested) degree

of freedom. The null hypothesis is that the ADL(2,1) is indistinguishable from a PA(1) with resid-

ual autocorrelation. The alternative hypothesis is that the data were generated by an alterna-

tive ADL(2,1) process, where yt−2 and xt−1 have independent effects. As such, this test enables

researchers to evaluate whether their data are consistent with the interpretation suggested by

Wilkins (2018) or not, avoiding the biases demonstrated above.

We demonstrate the efficacy of the proposed test using the simulations described in the

previous section.12 The results are presented in Table 1, which has four panels, one for each of the

sample sizes. Each element in each panel gives the rejection rate for the respective combination

of α1, α2, and β2.13

Looking first at the rejection rates when α2 = β2 = 0 (in italics), we demonstrate the size of

the test. These rejection rates are, approximately, the expected 0.05, with somewhat worse

performance in small samples. Demonstrating the power of the test is not straightforward,

since, as noted above, increases to the individual parameters do not always increase the total

of β 2
2
+ β1β2α1 − α2β

2
1
. Therefore, we focus on a particular case (α1 = 0.4 and α2 = 0.0), where

β 2
2
+ β1β2α1 −α2β

2
1
strictly increases (0.00, 0.56, 1.25, 2.06, and 3.00) as β2 increases (0.00, 0.25,

0.50, 0.75, and 1.00), thereby giving us clearer insight into the power of the test.

12 As before, we present results for ρ = 0.4 in the main text, with results for ρ = 0.0 and ρ = 0.2 in the Online Appendix.
13 Recall that the tested condition, i.e., Equation (6), is not linearly (or even monotonically) increasing in these individual

parameters. Therefore, to aid interpretation, we also calculate and report the value of the sample test statistic implied by
various combinations of parameters. These results are given in the Online Appendix.
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Table 1. Wald test for ADL(2,1) against PA(1), ρ = 0.4.

β2 = 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

T = 50 T = 100

α2 = 0.0 0.07 0.07 0.08 0.12 0.24 0.06 0.06 0.08 0.18 0.41

α1 = 0.0 α2 = 0.2 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.0 0.07 0.09 0.18 0.37 0.66 0.05 0.10 0.29 0.64 0.94

α1 = 0.2 α2 = 0.2 1.00 1.00 1.00 0.98 0.91 1.00 1.00 1.00 1.00 1.00

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.0 0.06 0.14 0.35 0.69 0.90 0.06 0.20 0.60 0.95 1.00

α1 = 0.4 α2 = 0.2 1.00 1.00 0.98 0.89 0.58 1.00 1.00 1.00 1.00 0.91

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 200 T = 1000

α2 = 0.0 0.06 0.06 0.09 0.28 0.68 0.05 0.05 0.23 0.86 1.00

α1 = 0.0 α2 = 0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.0 0.06 0.12 0.47 0.90 1.00 0.05 0.41 0.99 1.00 1.00

α1 = 0.2 α2 = 0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.0 0.05 0.32 0.88 1.00 1.00 0.05 0.89 1.00 1.00 1.00

α1 = 0.4 α2 = 0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α2 = 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Rejection rates are the proportion of the 1,000 simulations where β2
2
+ β1β2α1 −α2β

2
1
= 0. The Wald

tests are χ2 distributed with q = 1 degrees of freedom.

First, for each sample size, the power of the test is strictly increasing in the magnitude of

the population parameter—that is, as we move to the right across the table in this row. In the

asymptotic sample size (T = 1,000), for example, we see that corresponding rejection rates to

each condition are: 0.05, 0.89, 1.00, 1.00, 1.00. Encouragingly, we see that the size of the test is

exact, and the power of the test quickly increases to unity. Comparing these conditions across T

demonstrates the importance of sample size. In theT = 50 case, for example, the rejection rates

drop to: 0.06, 0.14, 0.35, 0.69, 0.90. This indicates, as onewould expect, that themagnitudes of the

parameters will need to be larger to discriminate betweenmodels when sample sizes are small.

The results presented in this section demonstrate that the test proposed by Sargan (1964) to

distinguish static processeswith residual autocorrelation fromADL(1,1) processes canbe extended

to PA(1) processes with residual autocorrelation and ADL(2,1) processes. While an ADL(2,1) model

canbeused to approximate a PA(1) processwith serially correlated errors, one cannot assume that

all ADL(2,1)models are simply capturing dynamics in the error process. Even small coefficients can

produce large differences in the two models. As such, we offered a test for analysts to distinguish

the two processes.

3 Discussion

Dynamic specification is critical to sound inference. However, accurately specifyingmodel dynam-

ics is complicated, because (a) theory is usually silent on the specific structure of long-run

relationships and (b) we typically rely on data that are not collected with our specific hypotheses

inmind. Given these challenges, researchers have long-sought, single, plug-and-playmodels that

Scott J. Cook and Clayton Webb ` Political Analysis 567

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.53


can be used to ensure results are not a consequence of mismodeled dynamics. These efforts

are misguided, however, as there is no single best model that can be applied in all conditions.

Minimally, researchers need to first consider whether their data are stationary (Webb, Linn, and

Lebo 2020), and then determinewhether their estimatedmodels are balanced (Granger 1990) and

dynamically complete (Hendry 1995). Only then should the specific model specification concerns

discussed here be taken up.

We demonstrate that the Wilkins’s (2018) ADL(2,1)-as-PA(1) with autocorrelation approach is

only appropriate under a restrictive set of assumptions about the reduced-formparameters of the

ADL(2,1). When these conditions are not met, this approach risks misunderstanding the dynamic

process and produces biased quantities of interest, such as the LRM. To avoid this, we detail a test

that can be used to determine whether the conditions assumed by Wilkins (2018) are satisfied.

We note, however, that the conditions highlighted byWilkins (2018) suggest amore parsimonious

model is appropriate. In general, we argue that testing whether lagged systematic terms, as in

ADL(p,q ) models, are proxying for error persistence is sound practice, as it helps to avoid over-

parameterized models and possible misattribution of coefficient effects. The results presented in

Table 1 highlight that the test generally performs well, helping researchers to determine whether

their ADL(2,1) coefficients are indistinguishable fromaPA(1) processwith residual autocorrelation,

or indicate a more general ADL(2,1) process.

While our discussion and simulations above are limited to a specific case where the analyst

is arbitrating between two well-defined DGPs, applied researchers are likely to face less clear-

cut choices. Time-series analyses are bedeviled by a number of practical challenges including

more complex dynamic processes, inappropriate sampling and aggregation, and under-powered

tests. Despite this, the strategy we articulate here can, and should, be incorporated as part of

standard practice. First, analysts should begin with a plausible general model that reflects what

their theory and pretesting tell them about their data and test restrictions on this model to

arrive at a dynamic specification that is simultaneously parsimonious and dynamically complete

(Hendry 1995). Second, since lagged systematic terms have power against error persistence,

researchers should use the test discussed above in conjunction with traditional testing-down

approaches. Finally, analysts should draw complete inferences from their models by calculating

the LRM and other quantities of interest (De Boef and Keele 2008). We also caution researchers

against overinterpreting coefficients for direct effects of lagged covariates. As demonstrated both

here and in Wilkins (2018), these terms have power against stochastic processes, which invites

misinterpretation, as the coefficients may reflect systematic effects, stochastic effects, or both.
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