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Shear significantly influences turbulence in the energy-containing range of shear-dominated
flows, and the longitudinal structure functions do not have a universal form as
they do in homogeneous isotropic turbulence. Despite this, the relative scaling of
structure functions exhibits universal sub-Gaussian behaviour in shear-dominated flows,
in particular for turbulent boundary layers, channels and Taylor—Couette flows. Our
investigation of a turbulent vertical buoyancy layer at Pr = 0.71 using direct numerical
simulation shows this universality even in moderate-Reynolds-number buoyancy-driven
but shear-dominated boundary layers. It is demonstrated that the universality is related
to the energy density of the eddies, which attains a hierarchical equilibrium in the
energy-containing range of shear-dominated turbulence. We conjecture that the universal
sub-Gaussian behaviour of the energy density of the energy-containing range, which
was considered to be non-trivial in prior studies, is related to the universal anomalous
scaling exponents of the inertial subrange turbulence. Based on this conjecture, we
propose a hypothesis that relates large-scale eddies and the intermittent dissipation field
in shear-dominated turbulence, highlighting a relationship between large and small scales.
A phenomenological model is also developed to predict the scaling, which is verified using
data from a turbulent boundary layer, half-channel and vertical buoyancy layer at friction
Reynolds numbers spanning four orders of magnitude. Excellent agreement is observed.
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1. Introduction

The scaling of turbulent flows has intrigued researchers for over a century, as
understanding the scaling would pave the way for a unified theory of turbulence. One of the
most influential works in this regard is the theory of Kolmogorov (1941) on homogeneous
isotropic turbulence. In large-Reynolds-number (Re) flows, at scales where viscosity and
integral length scales are insignificant (the inertial subrange), eddies with length scale [
only depend on the turbulent dissipation rate €. These eddies are significantly larger than
the Kolmogorov microscale; therefore, the dissipation effects are insignificant. According
to Kolmogorov (1941), at these scales, in homogeneous isotropic turbulence, the structure
functions (a proxy for turbulent eddies) of different orders scale as

Sy = (lu(x 4+ r) — u(@)|") = Culer)"?, (1.1)

where u is the velocity field subtracted from the mean, x is the longitudinal coordinate, r
is the separation distance and is representative of length scale /, C, is a constant, which
is not necessarily universal for different flows (Sreenivasan & Antonia 1997), and n is the
order of the structure function. All the relevant quantities are ensemble-averaged unless
specified. Throughout this paper, we use x, y and z to represent the streamwise, spanwise
and wall-normal directions, respectively.

In homogeneous isotropic turbulence, it has since been known that S, significantly
deviates from (1.1), especially for n > 3, and this has been referred to as intermittency. This
is due to the nature of €, which is not uniform but has intermittent regions of € significantly
different from the mean. Essentially, S, o< 7% instead of S, o /3 as in (1.1). Here, Cn
is often called the anomalous scaling exponent. Consequently, several phenomenological
models have been proposed to predict ¢, (Kolmogorov 1962; Frisch, Sulem & Nelkin
1978; Meneveau & Sreenivasan 1987; She & Leveque 1994). A major assumption in all
these models is that turbulence in the inertial subrange can be modelled as a random
multiplicative process.

Even in real-world shear-driven flows having significant large-scale anisotropy, the
inertial subrange scaling (S, o ") is recovered at small scales, i.e. at scales smaller
than the Corrsin length scale (Corrsin 1958) but larger than the Kolmogorov microscale
(Arneodo et al. 1996; Toschi et al. 1999; Toschi, Leveque & Ruiz-Chavarria 2000;
Gualtieri et al. 2002; Casciola et al. 2005; Attili & Bisetti 2012). This implies that the small
scales (inertial subrange) in shear-driven flows scale similarly to homogeneous isotropic
turbulence despite large-scale anisotropy. This result was also verified by de Silva et al.
(2015) using high-Re datasets of atmospheric and turbulent boundary layers.

However, the scaling of large-scale eddies is less certain. The exponents ¢, of the inertial
subrange are not expected to hold at scales where the outer length scales of a system
are comparable to r. Even external forces such as shear, buoyancy and stratification are
expected to alter the scaling properties of the integral-scale motions. In most engineering
flows, shear is almost always present and cannot be ignored. The variation of ¢, is
significant when shear is present, and several corrections have been proposed to predict
the scaling of the structure functions under the assumption that a power-law scaling holds
(Benzi et al. 1999; Toschi et al. 1999, 2000; Casciola et al. 2001, 2003, 2005; Gualtieri
et al. 2002). However, the power-law scaling of large-scale eddies is not unequivocal.
Recent studies of turbulent boundary layers, channels and pipes at high Re have shown
that the power-law scaling of structure functions is not always observed at large scales
(Davidson, Krogstad & Nickels 2006a; Davidson, Nickels & Krogstad 2006b; Davidson
& Krogstad 2009, 2014; Chung et al. 2015b; de Silva et al. 2015, 2017; Pan & Chamecki
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2016; Yang, Marusic & Meneveau 2016; Agostini & Leschziner 2017; Chamecki et al.
2017; Krug et al. 2017; Ghannam et al. 2018; Xie et al. 2021).

A different approach is to assume that at large scales, as the correlation between
the eddies is weak, turbulence can be approximated as an additive process rather than
multiplicative as assumed at small scales (Townsend 1976; Perry, Henbest & Chong
1986; Jiménez 1998; Mouri et al. 2006; Mouri, Hori & Takaoka 2009). This assumption
regarding turbulence at energy-containing scales, especially for turbulent boundary layers
and channels (Davidson et al. 2006b; Yang et al. 2016; Agostini & Leschziner 2017,
Marusic & Monty 2019), has received renewed interest in the past few years. Under this
assumption, the turbulence at scale r is statistically modelled as increments of eddies
(addends) that are identically and independently distributed. Conceptually, this is similar to
the model of Tennekes & Lumley (1972) and Jiménez (1998), which the authors formalised
in the spectral domain. This assumption regarding turbulence at large scales can be used
to explain scaling laws in the energy-containing range that are different from power-law
scaling (Davidson et al. 2006b; Chung et al. 2015b; de Silva et al. 2015; Yang et al. 2016;
Agostini & Leschziner 2017; Krug et al. 2017; Marusic & Monty 2019).

As the large scales can be approximated as a random additive process, turbulence at
the energy-containing scales is expected to be Gaussian under the central limit theorem.
However, it is well known that the energy-containing eddies in shear-dominated turbulence
exhibit sub-Gaussian scaling behaviour (Jiménez 1998; Meneveau & Marusic 2013;
Stevens, Wilczek & Meneveau 2014; de Silva et al. 2015, 2017; Krug et al. 2017).
Recently, based on experimental and numerical data, it has been demonstrated that the
even-order structure functions in turbulent boundary layers, channels and Taylor—Couette
flows exhibit non-trivial but universal sub-Gaussian scaling behaviour (de Silva et al. 2015,
2017; Krug et al. 2017). However, it is not clear why this particular form of scaling is
observed. The physical basis for the sub-Gaussian scaling is not understood, and it is not
apparent how intermittency affects the scaling (Davidson & Krogstad 2014; de Silva et al.
2017).

It is evident from the above discussion that our understanding of the scaling
of large-scale eddies in shear-dominated turbulence, especially structure functions of
different orders, is far from complete, which forms the primary motivation of the
current study. Here, we demonstrate that the energy ratio of the large-scale eddies in
shear-dominated turbulence is universal, which is different from the universality observed
in the scaling exponents of the inertial subrange. We then show that the universal scaling of
the energy ratio of the energy-containing range is related to the scaling of the intermittent
dissipation field in shear-dominated flows, which has been hitherto undetected and is one
of the novel aspects of the current study. Notably, we establish that the sub-Gaussian
scaling of the structure functions, which has been thought to be non-trivial in previous
studies (Krug et al. 2017; de Silva et al. 2017), is related to the anomalous scaling of inertial
subrange turbulence, providing a crucial link between large-scale eddies and the highly
intermittent turbulent dissipation. Further, we propose a phenomenological model that
sheds light on large-scale/small-scale interactions in shear-dominated turbulence while
accurately predicting the energy ratio for low-order and high-order structure functions.
The current results can form the basis for a theoretical framework that unites small and
large scales in shear-dominated turbulence.

The paper is organised as follows. The hypothesis and the phenomenological model
are described in § 2. An overview of the different numerical and experimental datasets
used in the current study is given in § 3. To ensure that the hypothesis is not limited
by low-Reynolds-number behaviour, we have investigated numerical and experimental
datasets of three different shear-dominated flows across friction Reynolds numbers
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(Rer = u.8/v, where u; is the friction velocity, § is the outer length scale and v is the
kinematic viscosity) spanning four orders of magnitude. The proposed phenomenological
model is validated in §4 by investigating low-order and high-order structure functions,
which account for the intense and rare fluctuations and those closer to the mean. Excellent
agreement is observed between the data and the proposed model, with the percentage
deviation being less than 10 %. The significance of the current theory with respect to
canonical wall turbulence is also highlighted in this section. The conclusions are given
in§5.

2. Hierarchical energy equilibrium of the eddies
2.1. Preliminaries

We begin our analysis by considering eddies having scale Lj <r < Lg, where
Ly (L = fooo Ry, dx, with R, being the two-point correlation in the streamwise direction)
is the integral length scale and Lg is the location at which R, — 0. While Lr imposes
a strict upper limit on the range of statistically significant scales, it cannot be said
that L; is a strict lower bound. We assume that L; imposes an upper bound on the
multiplicative process, beyond which the additive process dominates (Mouri et al. 2006,
2009). Nevertheless, the exact values are not of concern as Ly and Ly are only characteristic
scales. We use the terms energy-containing range and large scales to refer to this scaling
range.

For L; < r < Lg, we hypothesise that longitudinal structure functions of streamwise
velocity fluctuations Sy, scale according to the ansatz

1
;7 = Kopxf (r) + M. @.1)
Here, p = n/2 is the order, SZP is the normalised structure function, x is a quantity

of interest representing the eddies (elaborated below), K3, and My, are constants (not
universal for all turbulent flows) and r now corresponds to the non-dimensional separation

distance. The 1/p power is chosen to ensure that S%p would always have the units of S»,
i.e. energy per unit mass. Equation (2.1) differs from (1.1) in that a power-law scaling is not
explicitly assumed as f(r) is an arbitrary function, which can vary for different flows. The
exact functional form of f(r) is unnecessary for the proposed scaling and is not predicted.

Equation (2.1) ensures the relation Sy = 2{uu)(1 — Ry,,) is satisfied if f(r) = 1 — Ry,
x = (uu), Kr =2 and My =0 (Davidson et al. 2006b). The energy dissipation
and streamwise velocity variance are related as (uu) o (eLp)?/3 (Frisch 1995). In
shear-dominated turbulence, (uu) o< (uw), where (uw) is the Reynolds shear stress. In
the logarithmic region of turbulent boundary layers, (uw) ~ u% (Townsend 1976; Perry
et al. 1986; Marusic & Monty 2019). Equation (2.1) reduces to the following In(r) law in
turbulent boundary layers if f(r) = In(r) and x = u% (Davidson et al. 2006b):

S;l/f’ = A2 In(?) + By, (2.2)

where A, and B, are constants and 7, in this case, is normalised using the
distance-from-the-wall scaling or the dissipation length scale (Townsend 1976; Perry et al.
1986; Davidson & Krogstad 2014; Pan & Chamecki 2016; Chamecki et al. 2017; Marusic
& Monty 2019).

Therefore, x in (2.1) can be replaced with any correlated quantity. Hence, for the rest of
this paper, we focus on x instead of making explicit references to €, u,, (uu) and (uw).
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We restrict ourselves to positive structure functions in this study. Also, we only
work with absolute moments of structure functions as most phenomenological models
for inertial subrange turbulence revolve around absolute moments (Kolmogorov 1962;
Meneveau & Sreenivasan 1987; She & Leveque 1994). This also implies that the odd-order
moments do not vanish even if the velocity fluctuations in the energy-containing range are
assumed to be symmetric.

Along with structure functions, the ‘energy-density’ at scale r, which indicates the
energy of eddies having size r, is another representative quantity of the eddies (Townsend
1976; Davidson et al. 2006b). It is defined as

_ 2p
Ey=r . (2.3)

This relies on the observation that the ensembled averaged S;I/jp is differentiable even if
the eddies are modelled as discrete objects.

2.2. Phenomenological model

Turbulence, especially in the inertial subrange, is often conceptualised as eddies of
different sizes/intensities organised hierarchically (Kolmogorov 1941, 1962; Meneveau
& Sreenivasan 1987; She & Leveque 1994; Frisch 1995; Benzi et al. 1996; Ching et al.
2002; Jiang et al. 2006). Several studies of shear turbulence have postulated and observed
hierarchical structures even in the energy-containing range (Townsend 1976; Perry et al.
1986; Yang et al. 2016; Dong et al. 2017; Marusic & Monty 2019; Motoori & Goto 2021).
This paper also adopts the notion that the energy-containing eddies in shear turbulence
exhibit hierarchical properties.

Also, let us assume that a normalised structure function (as shown in (2.1)) of order p
indicates eddies having ‘intensity’ p (She & Leveque 1994; Frisch 1995). This would imply
that high-order structure functions are indicative of rare and intense fluctuations, while
low-order structure functions indicate fluctuations closer to the mean. This assumption
is reasonable as high-order structure functions are related to the tails of the probability
density functions (p.d.f.s) of velocity increments. In contrast, the low-order structure
functions are related to the core of the p.d.f.s. Such an assumption was also made in the
hierarchical structural model (HSM) of turbulence (She & Leveque 1994; She & Waymire
1995).

In a HSM, which is typically used to describe inertial subrange, it is assumed that the
structure functions of different orders attain a hierarchical equilibrium (She & Leveque
1994; She & Waymire 1995; Benzi et al. 1996; Ching et al. 2002; Jiang et al. 2006). In
this work, instead of focusing on structure functions themselves, we hypothesise that in
shear-dominated turbulence, at the large scales where the additive process approximation
holds, the energy of the eddies attains a ‘hierarchical equilibrium’ such that the energy of
eddies of size r having intensity p > 0 is related to the energy of eddies of size r having
intensity m > 0 as

E

E = Fpm, (2.4)
where F),,;, depends on p and m. Here, p and m refer to the order of the structure
function (p # m). Here, Fj,, indicates an underlying process in a statistical sense, and the
instantaneous energy ratio need not be equal to Fj,. It is to be observed that the energy
ratio of the eddies attains a hierarchical equilibrium and not the eddies themselves.
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For Gaussian statistics, F},, can be written as

po_ B G mepyy L@ D/ 03
moE, T [F(@m+ 1)/2)]1/m

where I" is the Gamma function (Winkelbauer 2012). For even-order moments, this
reduces to

_[ep—nuyr

_5 _ lep—nure
[2m — DHJ/m’

Fom = E_rrn = Gpm (2.6)
where !! is the double factorial (Krug et al. 2017).

We contend that F),, is governed by processes that are not strictly Gaussian. This is
based on several observations that revealed the sub-Gaussian nature of shear-dominated
turbulence (Jiménez 1998; Meneveau & Marusic 2013; de Silva et al. 2015, 2017; Krug
et al. 2017). The essence of this argument relies on the assumption that the non-Gaussian
scaling of shear-dominated turbulence observed in previous studies is related to the
non-Gaussian scaling of the energy ratio (verified in §§ 4.1 and 4.2, and discussed in § 4.4).

To account for this behaviour, we assume that two dominant processes govern the
eddies’ energy. One is a Gaussian process, and the other is a rare ‘defect’ event, which
modulates turbulence. The phenomenology of defect events is qualitatively similar to the
defect events of inertial subrange turbulence, which are responsible for the deviations
from Kolmogorov (1941) scaling. In the energy-containing range, the primary effect
of the defect events is to reduce the energy of the fluctuations and is responsible for
deviations from Gaussian scaling. This, on phenomenological grounds, is expressed as
Fom = GpuWpm, with Wy, governing the defect events. In this formulation, W, is a
correction term responsible for the non-Gaussian scaling. The rest of this section is
dedicated to examining Wp,,, as a model for W), allows us to quantify the deviation from
the Gaussian scaling.

Kolmogorov (1941) postulated that the small scales are universal and are completely
independent of the large scales. However, several studies since then have shown that the
large scales of turbulence influence the small scales (e.g. Kolmogorov 1962; Obukhov
1962; Kraichnan 1974, 1991; Landau & Lifshitz 1987; Frisch 1995; Yeung, Brasseur &
Wang 1995; Sreenivasan & Antonia 1997; Mouri et al. 2006, 2012). In inertial subrange
turbulence, the influence of large scales on small scales is observed in the coefficients and
not in the scaling exponents (Kraichnan 1974; Frisch et al. 1978; Frisch 1995; Sreenivasan
& Antonia 1997), suggesting that despite the scaling exponents of the structure functions
being universal, the large-scale structures affect the small scales. The influence of large
scales on small scales has also been demonstrated in shear-driven flows (e.g. Mathis,
Hutchins & Marusic 2009; Ganapathisubramani et al. 2012; Baars, Hutchins & Marusic
2016; Jacobi et al. 2021; Andreolli et al. 2023).

As large scales influence small scales, it is reasonable to assume that the large and
small scales share the same signatures. This does not imply that the small scales dictate
the properties of large scales but implies that large and small scales are related. In
shear-dominated turbulence, we assume this signature is evident in the energy ratio of
large-scale eddies. The inertial subrange scaling with intermittency corrections gives
us information about small scales. Statistically, we postulate that the defect events in
the energy-containing range are related to the defect events in the inertial subrange.
Consequently, we include the anomalous scaling of the inertial subrange to model
the large scales. Specifically, the distribution of the defect events in small scales is
related to the distribution across large scales, implying that W, is a function of the
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anomalous scaling exponents of the inertial subrange. Of course, the validity of this crucial
assumption requires verification using numerical and experimental data, which we address
in § 4.

Note that the inertial subrange scaling is recovered in shear-dominated turbulence at
scales larger than the Kolmogorov microscale and smaller than the Corrsin length scale
(Toschi et al. 1999; de Silva et al. 2015), suggesting that the above assumption on using
the anomalous scaling of inertial subrange for small scales in shear-dominated turbulence
is reasonable.

Based on the above arguments, we conjecture that (2.5) takes the following modified
form:

& _ _moupp L@+ 1D/ &
Em (F(2m+1)/2)1mg,’

where &, and §,, are the anomalous scaling exponents of normalised structure functions of
inertial subrange. Here, §, = ¢,/p and &,, = ¢, /m.
In (2.7), we use the HSM to calculate the anomalous scaling exponents &, (g = p or m)

(She & Leveque 1994):
g =asa=(s+2[1-(3)"]) /e 28)

where ¢, is the formulation given by She & Leveque (1994). Also, &, in (2.8) does not
violate Novikov’s inequality (Frisch 1995). This ensures &, /&,, < 1 for all p and m so long
as p > m. Therefore, F),;, in (2.7) would always exhibit sub-Gaussian behaviour.

Further, (2.8) can be decomposed as

&g = ( + rn/g) / q, (2.9a)

_ 2 2(1 2’ 2.9
w=—2[1-(5) ] 220

with n/3 being the Kolmogorov (1941) prediction and 7, being the intermittency
correction (She & Leveque 1994; Frisch 1995).

From (2.5), (2.7) and (2.9), we see that Gaussian scaling is recovered if 7, = 0 (without
any intermittency corrections) or if the dissipation is assumed to be uniform, as was
done by Kolmogorov (1941). Note that it is the intermittent dissipation field that leads
to anomalous scaling exponents in the inertial subrange (Kolmogorov 1962; Obukhov
1962; Frisch et al. 1978; Meneveau & Sreenivasan 1987; Dubrulle 1994; She & Leveque
1994; Frisch 1995; She & Waymire 1995; Benzi ef al. 1996; Sreenivasan & Antonia 1997).
This result is significant as it demonstrates that the departure from the Gaussian profile
of the energy ratio of large-scale eddies in shear-dominated flows is directly related to the
intermittency observed in inertial subrange turbulence of the same flow. Crucially, we use
the anomalous scaling exponents of the inertial subrange to model the energy ratio of the
large scales, highlighting a relationship between large and small scales. Note that we only
use the characteristic scales (mentioned in § 2.1) to identify the range at which (2.7) holds.
These are not exact numerical values as they depend on Re, the type of flow and the order
of the structure function.

A natural consequence of the above conjecture and (2.7) and (2.9) is that the defect
events in the energy-containing range are related to a Poisson distribution as §; can be
modelled using a Poisson process (Dubrulle 1994; She & Waymire 1995). This does not
state that the inertial subrange and the energy-containing range defect events are the same.

984 A28-7

2.7)

F pm — Gmepm = Upm


https://doi.org/10.1017/jfm.2024.231

https://doi.org/10.1017/jfm.2024.231 Published online by Cambridge University Press

K.R. Maryada and others

It only suggests that these are related. Also, it is emphasised that this does not imply that
the scaling of the energy ratio of large-scale eddies is similar to isotropic turbulence, as
(2.7) is distinct from (1.1) with or without intermittency corrections.

Now, we comment on the signature of intermittency and universality at large scales in
shear-dominated turbulence. In inertial subrange turbulence, it is known that the presence
of hierarchical moments of turbulent dissipation is a signature of intermittency and
universality (Dubrulle 1994; She & Leveque 1994; She & Waymire 1995; Benzi et al.
1996). At large scales, the signature of intermittency and universality is the hierarchical
energy equilibrium of the eddies, leading to sub-Gaussian scaling. The present picture of
sub-Gaussian scaling holds irrespective of the ‘physical shape’ of the eddies but only in
the relative distribution of the energy across eddies of different intensities (the definition
of energy ratio).

Note that when we refer to the intermittency of large scales, it is not related to
the external intermittency observed in shear turbulence. In shear turbulence, external
intermittency is often referred to as the turbulent/non-turbulent interface between the fully
turbulent flow and the stationary/irrotational ambient (Chauhan, Philip & Marusic 2014;
Gauding et al. 2021; Gustenyov et al. 2023).

The present scaling is not related to the SO(3) decomposition or the integral structure
function scaling of shear turbulence. The SO(3) decomposition is primarily used to
isolate turbulence’s isotropic and anisotropic components (Arad, L’vov & Procaccia 1999;
Biferale et al. 2002; Casciola et al. 2005). The integral structure function scaling predicts
the scaling exponents by assuming that a power-law scaling exists (Toschi er al. 2000),
which is unrelated to the present study. In this study, we work with normalised structure
functions (2.1), and f(r) is assumed to be an arbitrary function (see § 2.1 for details) and
does not always have a power-law scaling (Davidson et al. 2006b; de Silva et al. 2015; Krug
et al. 2017). It is stressed that this study investigates the energy ratio and does not examine
the scaling exponents of inertial subrange turbulence. Also, this hypothesis differs from
what is observed in the inertial subrange, where the structure functions exhibit generalised
extended self-similarity, hierarchy and universality (Arneodo et al. 1996; Benzi et al. 1996;
Ching et al. 2002; Jiang et al. 2006). Equation (2.7) differs from the (generalised) extended
self-similarity formulation. In the present case, the energy ratio of the large-scale eddies
of different orders attains universality even if the eddies themselves are not assumed to be
universal.

3. Description of the numerical and experimental datasets

To verify the conjectured equation (2.7), we investigate the longitudinal structure functions
in turbulent boundary layers (SLTEST, MBL1 and MBL2) using data from Kunkel &
Marusic (2006), Hutchins et al. (2009), Baars et al. (2015, 2016), de Silva et al. (2015,
2017), turbulent half-channel flow (C590) of MacDonald (2022) and vertical buoyancy
layers (N580 and N395). The datasets used in the current study are summarised in table 1.

SLTEST (Kunkel & Marusic 2006) corresponds to a field test, while MBL1 (Hutchins
et al. 2009) and MBL2 (Baars et al. 2015, 2016) correspond to wind tunnel experiments
at the University of Melbourne. The measurements were obtained using hot-wire
anemometry, and further details are available in the relevant publications.

The relative scaling of longitudinal structure functions of SLTEST and MBLI1 are from
de Silva et al. (2017). For the MBL2 dataset (Baars et al. 2015, 2016), the longitudinal
structure functions were calculated using Taylor’s frozen turbulent hypothesis, akin to what
is done by de Silva er al. (2015, 2017) and Krug et al. (2017).
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Case Flow Reference Technique ~ Rey
SLTEST Atmospheric boundary layer Kunkel & Marusic (2006) Hot-wire 3 % 10°
MBLI1 Boundary layer Hutchins ef al. (2009) Hot-wire 19000
MBL2 Boundary layer Baars et al. (2015, 2016) Hot-wire 14750
C590 Half-channel flow MacDonald (2022) DNS 590
N395 Vertical buoyancy layer Present DNS 395
N580 Vertical buoyancy layer Present DNS 580

Table 1. Summary of the experimental and numerical datasets.

We use direct numerical simulation (DNS) data for the half-channel flow and vertical
buoyancy layer. The half-channel flow (C590) was simulated using a fourth-order
staggered-grid finite-difference scheme described by Chung et al. (2015a). The reader is
referred to MacDonald (2022) for additional details on numerical methods and boundary
conditions. DNS of the vertical buoyancy layer (N395 and N580) was performed using
an in-house second-order finite volume code (Armfield et al. 2003), which has been
previously used to simulate turbulent natural convection (Maryada et al. 2023). Numerical
simulations were performed at Pr = 0.71 using the non-dimensional governing equations
and boundary conditions described by Maryada et al. (2023), and we refer the reader to the
same paper for further details. The vertical buoyancy layer is a simplified representation
of a vertical natural convection boundary layer immersed in a stably stratified medium
(Giometto et al. 2017; Maryada et al. 2022, 2023). It is a buoyancy-driven flow (a model
for vertical convection) in contrast to turbulent flat plate and channel flow boundary layers,
which are driven by the momentum of the free stream or pressure differential.

To date, the structure functions of vertical buoyancy layers (vertical convection problems
in general) have not been examined extensively, and it is not evident how similar or
different these flows are when compared with canonical wall turbulence. In the general
context of vertical convection, the vertical buoyancy layer investigated in this study is
in the ‘classical regime’ and not the ‘ultimate regime’ (Ng et al. 2017; Ke et al. 2023;
Maryada et al. 2023). In the classical regime, most of the turbulence is observed in the
outer layer (wall-normal locations beyond the velocity maximum) and not close to the wall.
This implies that the vertical buoyancy layer does not exhibit all the essential features of
canonical wall turbulence (Ng et al. 2017; Ke et al. 2023), making it distinct from turbulent
boundary layers and channels. Hence, it is examined in this study. We shall return to this
flow configuration in § 4.3 where it is shown that the vertical buoyancy layer, despite its
differences, exhibits the energy ratio universality of (2.7).

It is well known that high-order structure functions are prone to errors due to poor
convergence. For SLTEST and MBLI, the convergence was verified until 2p = 10
(de Silva et al. 2015). For MBL2 and DNS data, the convergence of the structure
functions was checked using the methodology suggested by Huisman, Lohse & Sun (2013),
Meneveau & Marusic (2013) and de Silva er al. (2015, 2017), and the data reported
correspond to converged statistics (until 2p = 8 for N580 and N395, and 2p = 6 for C590
and MBL?2 datasets). As a representative case, figure 1(a) shows the premultiplied p.d.f. of
the velocity increment at 7+ &~ 7000 (r+ > L;r) for the MBL2 dataset. The area under the
curve in the figure is the moment, and the smoothness of the curve suggests convergence
(Huisman et al. 2013; Meneveau & Marusic 2013; Stevens et al. 2014; de Silva et al.
2015, 2017). Figure 1(b) shows the normalised second-, fourth- and sixth-order structure
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Figure 1. (a) Premultiplied p.d.f. of the velocity increment (A,u™ = [ut (x +r) — uT(x)]) at r* &~ 7000 and
zt & 825 for the MBL2 dataset. All the curves in panel (a) are normalised by an arbitrary factor J, such that the
maximum is one for all orders. () Normalised second-, fourth- and sixth-order structure function for the same
dataset as panel (a) shows the smoothness of the computed structure function. In panel (b), r* is normalised

using z* and Sél/f is normalised using u% to facilitate easy comparison with de Silva et al. (2015, 2017). This
normalisation is not essential for the present scaling (see § 2).

functions for the same dataset, highlighting its smoothness. Similar results were observed
for N580, N395 and C590 datasets and are not shown for brevity.

4. Results and discussion

The energy ratio is calculated by computing the slope between normalised structure
functions of different orders using a least squares method, similar to the methodology
employed by de Silva er al. (2017) and Krug et al. (2017, 2018). The authors do not
explicitly state it as the energy ratio, but from § 4.4, it is evident that their studies are
equivalent to the present case. This differs from the extended self-similarity observed in
inertial subrange turbulence, where the relative slope of the logarithm of the structure
functions exhibits similarity and universality (Benzi et al. 1993; Grossmann, Lohse &
Reeh 1997). In the present case, the slope is calculated directly, which is the energy ratio.

The rest of this section is dedicated to analysing high-order and low-order structure
functions across different flows and at different wall-normal locations. The symbols and
labels in the various plots below are summarised in table 2.

4.1. High-order structure functions

First, we examine the scaling of the structure functions at locations where the viscous
effects are negligible. The viscous effects are negligible in the outer layer (wall-normal
locations beyond the velocity maximum) of the vertical buoyancy layer (Maryada et al.
2023), and at z* > 2.64/Re, for turbulent boundary layers and channels (Wei et al. 2005).

Figure 2(a) shows E) /E] for all the different datasets. The error bars for SLTEST and
MBLI1 represent the 95p % confidence interval (de Silva er al. 2017). For the rest of the data,
the standard deviation of the fit is better or comparable to that of SLTEST and MBL1 and,
hence, not shown for clarity. It is evident from the figure that, for all the flows considered,
the scaling deviates significantly from (2.5) at higher orders (2p > 3), which represents
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Case Label Symbol Wall-normal location
rezt ~zt /Re,
SLTEST SLTEST 1.6 x 10* 0.005
MBLI MBLI1 . 800 0.042
N395 N395E o 180 0.455
MBL2V x 100 0.007
MBL2 MBL2W « 260 0.018
MBL2L . 825 0.056
C590B A 15 0.025
C590L v 76 0.123
€590 C590H . 205 0.5
C5900 o 530 0.898
N580C o 60 0.103
N580 N580E o 260 0.448
N580F o 405 0.698

Table 2. The wall-normal locations where the longitudinal structure functions were calculated for the different
datasets. Here, z™ corresponds to the wall-normal location in viscous units, while z /Re, corresponds to the
wall-normal location in outer units. The labels and symbols are the same as in figures 2 and 3. See table 1 for
details of different cases.

(a) (b)
4F --- eq.(2.5) v C590H . F - (2.5) o C5900 ’
— eq.(2.7) x MBL2L — @27 o N580C
o N3580E [ SLTEST A C590B N580F
3t N395E [ MBLI v C590L X MBL2V ]
L
=
~
Y

2p

2p

Figure 2. The energy ratio of longitudinal structure functions for different flows. See text and table 1 for details
on the different symbols. (a) £, /E] of different flows at wall-normal locations where the effect of viscosity is
negligible. (b) Effect of wall-normal location on EI’) /E'. Equation (2.5) is the Gaussian scaling and (2.7) is the
proposed scaling. See table 2 for a description of the different labels.

the Gaussian scaling. However, it closely follows the scaling in (2.7), which is related to
the anomalous scaling of the inertial subrange, demonstrating the efficacy of the proposed
scaling.

Having established that the scaling at high orders is universal at moderate Re; and
at locations where the effects of the wall are minimal, we now investigate the effect of
wall-normal location. Figure 2(b) shows the scaling of energy ratio for C590, MBL2 and
N580 datasets. Viscosity is significant for C590B and MBL2W. It is evident that (2.7)
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Figure 3. E/E] for low-order fractional p. See table 2 for a description of the different labels.

correctly predicts the scaling at different wall-normal locations for all the flows considered,
even in regions where viscosity is dominant.

The hierarchical scaling is observed for cases N395, N580 and C590, where Re; is
significantly smaller than that of MBL1, MBL2 and SLTEST, demonstrating that the
hierarchical scaling develops at moderate Re, even if the asymptotic high-Re, behaviour
is absent. This was observed by de Silva et al. (2017) and Krug et al. (2017) in shear-driven
wall turbulence for even-order structure functions, but here, we have shown that the scaling
is also valid for odd-order absolute structure functions. It is valid even in a buoyancy-driven
flow, which is discussed in § 4.3.

Here, it is worth mentioning that (2.7) also holds for C590B, demonstrating that the
dynamics of the large scales (r > Lj) in the buffer layer in wall turbulence can also be
approximated using an additive process. This sub-Gaussian scaling was also observed in
Taylor—Couette turbulence (Krug et al. 2017), suggesting that (2.7) would correctly predict
the scaling even in those situations.

4.2. Low-order fractional structure functions

High-order structure functions investigated in § 4.1 represent the tails of the p.d.f.s of the
velocity increments. The tails of the p.d.f.s correspond to rare events, and it is not certain
that the tails always contain universal effects (Chen et al. 2005). The low-order structure
functions, however, correspond to the core of the p.d.f.s (common/frequent events). The
effects of the rare events, which dominate high-order moments, are insignificant for
low-order moments. Therefore, we investigate the scaling of the energy ratio of the
fractional moments for 0.1 <2p < 1.5 as it acts as a more stringent measure to test
the universality of energy ratio and the validity of (2.7). The scaling of the energy
ratio is shown in figure 3, where it is clear that the data follow (2.7) better than (2.5).
The deviation from Gaussian scaling for low-order moments is evident for all the flows
considered, demonstrating that the anomalous scaling also characterises the fluctuations
close to the mean and does not only correspond to rare events. This strongly suggests
that the non-Gaussian scaling is present for all the energy-containing fluctuations in
shear-dominated flows. Like the inertial subrange, where a transitional behaviour for ¢,
is absent for structure functions of order above and below unity (Sreenivasan et al. 1996),
transitional behaviour is also not present for the energy ratio.
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It should be noted that due to the unavailability of data (precise numerical values) for
the MBLI1 dataset, it is not shown in figures 2(b) and 3. The Re; of MBL2 (Re; =~ 14 750)
is comparable to MBL1 (Re; = 19000) and, therefore, one should expect quantitatively
similar results for the MBL1 dataset.

The scaling of the energy ratio of high-order and low-order structure functions indicates
that the energy-containing eddies attain a form of universality in different shear-dominated
flows, with the scaling being related to turbulent dissipation. It is again stressed that the
present similarity concerns the energy ratio of the eddies and not the eddies themselves.

4.3. Universality of the energy ratio in a turbulent vertical buoyancy layer

In figures 2 and 3, it is evident that the universality of the energy ratio observed in
turbulent boundary layers and channels is also observed in a turbulent vertical buoyancy
layer. As discussed in § 3, the vertical buoyancy layer investigated in this study is a
buoyancy-driven flow and is substantially different from canonical wall turbulence. In this
case, the streamwise velocity variance in the vertical buoyancy layer (vertical convection
in general) is produced by both shear and buoyancy (Giometto et al. 2017; Maryada et al.
2022, 2023; Ke et al. 2023). The presence of shear and buoyancy fluxes results in the
large-scale eddies being governed by two different processes, in contrast to canonical
wall turbulence where only shear is present (Tennekes & Lumley 1972). Therefore, it is
not trivial that we observe the present scaling. Despite this, we observe shear-dominated
scaling, with the similarity not limited to low-order statistics but also governing intense
and rare fluctuations.

Crucially, the strong distance-from-the-wall scaling observed in the logarithmic regions
of turbulent boundary layers is not observed in the vertical buoyancy layer (especially in
the ‘classical regime’, i.e. at moderate Re;), indicating that the scaling proposed in this
study is not limited to attached eddies alone. This, combined with the scaling observed
in the viscosity-dominated regions of canonical wall turbulence (see figure 2b), again
suggests that the physical shape of the eddies is not essential for the energy ratio scaling
to hold.

This striking observation of shear-dominated scaling in the vertical buoyancy layer
shows that certain vertical convection problems in the ‘classical regime’ can be analysed
using a framework similar to shear-driven flows.

4.4. Significance of the present hypothesis

It is worthwhile to briefly discuss the present hypothesis’s significance and applicability.
First, we examine how the present hypothesis relates to works of de Silva et al. (2017)
and Krug er al. (2017). In those studies, the authors focused on A,/A,, instead of the
energy ratio (the authors specifically focused on A,/Aj, but the same conclusions hold
for different m). From § 2.1, we can see that EI’, = pu% for the In(r) law (2.2), which
is valid in the logarithmic region of turbulent boundary layers (Davidson et al. 2006b;
de Silva et al. 2015; Chamecki et al. 2017). From (2.4), we can write Fy,, = Ay /A =
EI’, /E,,. Therefore, A, /A, and F),,, are mathematically equivalent. In figure 2(a), SLTEST,
MBL1 and MBL2L correspond to the logarithmic region of the turbulent boundary layer,
demonstrating that the above relation holds. A consequence of the equivalence of A, /Ay,
and Fp,, is that the present model also provides an elegant solution to the fundamental
issue of relating A,/A, of wall turbulence to the universal intermittency exponents
(de Silva et al. 2017).
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The previous paragraph implies that the coefficient A, in the In(r) law is related to the
energy of the eddies, which is a function of the anomalous scaling exponents of the inertial
subrange. De Silva et al. (2015) have shown that the structure functions and the one-point
moments of streamwise velocity fluctuations are related in the logarithmic region of
turbulent boundary layers. Therefore, it is trivial to see that the sub-Gaussian scaling
of one-point moments of streamwise velocity fluctuations is also related to the energy
ratio, which is related to the intermittent scaling of dissipation. This again highlights a
relationship between large and small scales.

5. Concluding remarks and outlook

In summary, we have shown that shear-dominated turbulence attains a hierarchical
equilibrium state at large scales (L; < r < Lgr) such that the energy ratio of the
eddies takes a universal non-Gaussian form. We establish that this is related to the
anomalous scaling observed in inertial subrange turbulence (at least for 0.1 < 2p < 10),
demonstrating a relationship between the large and small scales in shear-dominated flows.
A phenomenological model is also proposed to explain this behaviour. By examining data
from numerical simulations and experiments, it is shown that the high-order (2p > 2)
and low-order (0.1 < 2p < 2) energy ratios deviate from Gaussian scaling but closely
follow the proposed model, implying that the anomalous scaling is apparent for both
rare and frequent events characterising turbulence. The scaling is also valid at different
wall-normal locations and under diverse flow conditions, implying that the hierarchical
universality of the energy ratio is evident across various turbulent flows so long as shear is
dominant. The universality observed is remarkable as it demonstrates that the hierarchical
energy equilibrium, as postulated in (2.7), is present and that some form of universality
is observed in large scales of shear-dominated turbulence, which are often considered to
have significant non-universal effects.

The above observations concerning the correlation between the sub-Gaussian statistics
of large scales and the anomalous scaling exponents of inertial subrange turbulence would
aid in developing empirical turbulence models that assume a superposition of eddies due
to a hierarchical additive process (Marusic & Monty 2019). Another potential application
of the present work concerns validating numerical simulations and experiments, which
mostly rely on spectra. However, investigating the high-order properties, such as the
relative energy density, would be a much more rigorous test to assess the accuracy
(Meneveau & Marusic 2013; de Silva er al. 2015). Further, this theory can be used to
develop scaling theories that relate the generalised scaling of small scales (Benzi et al.
1996) to the energy ratio of large scales. This is particularly interesting as it would allow
us to develop a more refined picture of intermittency in shear-dominated turbulence,
including small and large scales.
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