A direct method of obtaining the Foci and Directrices from the general equation

$$
\left(a, b, c, f ; g, h(x, y, 1)^{2}=0\right.
$$

By D. K. Picken, M.A.
The general equation of the second degree in two variables

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

can be brought by a direct process into the form

$$
(x-\xi)^{2} \stackrel{1}{i}(y-\eta)^{2}=(l x+m y+n)^{2},
$$

the determination of the constants ξ, η, l, m, n depending only on the solution of quadratic equations; so that the method is suitable for determining the foci, directrices, and eccentricities of conics with given numerical equations.

The equation (1) may be written

$$
(\lambda-a) x^{2}-2 h x y+(\lambda-b) y^{2}=\lambda\left(x^{2}+y^{2}\right)+2 g x+9 f y+c
$$

and if λ is a root of the quadratic equation

$$
\begin{equation*}
(\lambda-a)(\lambda-b)=h^{2} \text { or } \phi(\lambda) \equiv \lambda^{2}-(a+b) \lambda+a b-h^{2}=0, \tag{2}
\end{equation*}
$$

[Discriminant $\left.\left\{(a-b)^{2}+4 h^{\prime 2}\right\}\right]$
the equation (1) becomes

$$
(l x+m y)^{2}=\lambda\left(x^{2}+y^{2}\right)+2 y x+2 f y+c
$$

where

$$
l^{2}=\lambda-a, \quad m^{2}=\lambda-b \quad \text { and } \quad l m=-h,
$$

or $\quad(l x+m y+v)^{2}=\lambda\left(x^{2}+y^{2}\right)+2(l v+g) x+2(m v+f) y+v^{2}+c$

$$
\begin{equation*}
=\lambda\left\{\left(x+\frac{l \nu+g}{\lambda}\right)^{2}+\left(y+\frac{m \nu+f}{\lambda}\right)^{2}\right\} \tag{3}
\end{equation*}
$$

if v be so chosen that

$$
(l v+g)^{2}+(m v+f)^{2}=\lambda\left(v^{2}+c\right)
$$

i.e., if ν be a root of the quadratic equation

$$
\begin{equation*}
\left(l^{2}+m^{2}-\lambda\right) v^{2}+2(g l+f m) v+g^{2}+f^{2}-\lambda c=0 \tag{4}
\end{equation*}
$$

or

$$
\begin{aligned}
& \frac{a b-h^{2}}{\lambda} v^{2}-2(g l+f m) v+\lambda c-g^{2}-f^{2}=0 \\
& \quad \lambda-l^{2}-m^{2}=a+b-\lambda=\frac{a b-h^{2}}{\lambda} \text { by (2)), }
\end{aligned}
$$

(since
of which the discriminant is

$$
\begin{aligned}
& {\left[g^{2}(\lambda-a)+f^{2}(\lambda-b)-2 f g h-c\left(a b-h^{2}\right)+\left(g^{2}+f^{2}\right) \frac{a b-h^{2}}{\lambda}\right]} \\
& \equiv\left[\left(g^{2}+f^{2}\right)\left(\lambda+\frac{a b-h^{2}}{\lambda}\right)-a g^{2}-b f^{2}+c h^{2}-2 f g h-a b c\right] \\
& \equiv\left(g^{2}+f^{2}\right)(a+b)-a g^{2}-b f^{2}+c h^{2}-2 f g h-a b c, \text { by (2) } \\
& \equiv-\Delta \text {. }
\end{aligned}
$$

If we suppose a, b, c, f, g, h all real and a positive, the equation (1) is satisfied by real point-pairs unless ($a b-h^{2}$) and Δ are both positive, i.e., the equation (1) corresponds to a curve which can be drawn on the $x y$ plane unless ($a b-h^{2}$) and Δ are both positive.

The roots of the quadratic (2) are then real and they are separated by a or by b (i.e., neither of them lies between a and b); hence, if their values are λ_{1} and λ_{2} we shall have $\lambda_{1}-a, \lambda_{1}-b$ both positive and $\lambda_{2}-a, \lambda_{2}-b$ both negative, and therefore l_{1}, m_{1} are real numbers and l_{2}, m_{2} are imaginary numbers.
Also $l_{1}{ }^{2} l_{2}{ }^{2}=\left(a-\lambda_{1}\right)\left(a-\lambda_{2}\right)=\phi(a)=-h^{2}=\left(b-\lambda_{1}\right)\left(b-\lambda_{2}\right)=m_{1}{ }^{2} m_{2}{ }^{2}$ and \therefore since $\quad l_{1} m_{1} l_{2} m_{2}=h^{2}$, we have

$$
l_{1} l_{2}+m_{1} m_{2}=0
$$

i.e., the two straight lines given by the equations

$$
l_{1} x+m_{1} y=0, \quad l_{2} \iota x+m_{2} \imath y=0
$$

(in which the coefficients are real numbers) intersect at right angles.
Consider separately the cases in which the equation (1) represents (i) an ellipse, (ii) an hyperbola.
(i) For the Ellipse: $a b>h^{2}$ and $\Delta<0$;
therefore b is of the same sign as a, that is positive, and $(a+b)$ is positive ; hence λ_{1} and λ_{2} are both positive.

Let ν_{1}, v_{1}^{\prime} be the roots of equation (4) when $\lambda=\lambda_{1}$ and let $\nu_{2}, \nu_{2}^{\prime} ", ", ", \quad, \quad \lambda=\lambda$; then ν_{1}, v_{1}^{\prime} are real since $\sqrt{-\Delta}$ and $\left(g l_{1}+f m_{1}\right)$ are real and $\nu_{2}, \nu_{2}^{\prime}$ are complex since $\left(g l_{2}+f m_{2}\right)$ is imaginary.

Hence the two equations

$$
l_{1} x+m_{1} y+v_{1}=0, \quad l_{1} x+m_{1} y+v_{1}^{\prime}=0
$$

give "real directrices"; the corresponding "real foci" being

$$
\left(-\frac{l_{1} \nu_{1}+g}{\lambda_{1}},-\frac{m_{1} \nu_{1}+f}{\lambda_{1}}\right) \text { and }\left(-\frac{l_{1} \nu_{1}^{\prime}+g}{\lambda_{1}},-\frac{m_{1} \nu_{1}^{\prime}+f}{\lambda_{1}}\right) ;
$$

these foci clearly both lie on the line given by

$$
l_{2}\left(\lambda_{1} x+g\right)+m_{2}\left(\lambda_{1} y+f\right)=0 \text {, i.e., the major axis ; }
$$

and, by a similar process, the "imaginary foci" lie on the perpendicular line given by

$$
l_{1}\left(\lambda_{2} x+g\right)+m_{1}\left(\lambda_{2} y+f\right)=0, \text { i.e., the minor axis. }
$$

The "eccentricity" e_{1} corresponding to the real foci and directrices is given by

$$
e_{1}^{2}=\frac{l_{1}^{2}+m_{1}^{2}}{\lambda_{1}}=\frac{+\sqrt{\left(l_{1}^{2}-m_{1}^{2}\right)^{2}+4 l_{1}^{2} m_{1}^{2}}}{\lambda_{1}}=\frac{+\sqrt{(a-b)^{2}+4 h^{2}}}{\lambda_{1}} .
$$

(ii) For the Hyperbola : $a b<h^{2}$ and therefore λ_{1} is positive and λ_{2} negative; Δ may be either negative or positive:
(A) If Δ is negative, the work is the same as for the case (i);
$\nu_{1}, \nu_{1}^{\prime}$ are real and the corresponding eccentricity, foci and directrices are real, while ν_{2}, v_{2}^{\prime} are complex and the corresponding eccentricity, foci and directrices are not real.
(B) If Δ is positive,
ν_{1}, v_{1}^{\prime} are complex and the corresponding foci and directrices are not real ; the eccentricity is real ;
ν_{3}, v_{2}^{\prime} are pure imaginary numbers, therefore the equations

$$
l_{2} x+m_{2} y+v_{2}=0, \quad l_{2} x+m_{2} y+v_{2}^{\prime}=0
$$

represent straight lines, the real directrices ; and the corresponding foci are

$$
\left(-\frac{l_{2} \nu_{2}+g}{\lambda_{2}},-\frac{m_{2} \nu_{2}+f}{\lambda_{2}}\right) \text { and }\left(-\frac{l_{2} \nu_{3}^{\prime}+g}{\lambda_{2}},-\frac{m_{2} \nu_{2}^{\prime}+f}{\lambda_{2}}\right)
$$

and the eccentricity is given by $e^{2}=\frac{-\sqrt{(a-b)^{2}+4 h^{2}}}{\lambda_{3}}$.

In this case (B), the introduction of imaginary numbers into the determination of the real foci and directrices may be avoided by writing the original equation

$$
(a+\mu) x^{2}+2 h+y+(b+\mu) y^{2}=\mu\left(x^{2}+y^{2}\right)-2 g x-2 f y-c
$$

and proceeding as above.
Example of Numerical Case.
C. Smith, p. 210 .

$$
\left.x^{2}-6 x y+y^{2}-2 x-2 y+5=0 \quad \text { (} \Delta \text { negative }\right)
$$

can be written

$$
(\lambda-1) x^{2}+6 x y+(\lambda-1) y^{2}=\lambda\left(x^{2}+y^{2}\right)-2 x-2 y+5 .
$$

Choose λ to satisfy

$$
(\lambda-1)^{2}=9, \text { so that } \lambda_{1}=4, \lambda_{2}=-2 .
$$

then λ_{1} gives $\quad 3(x+y)^{2}=4\left(x^{2}+y^{2}\right)-2 x-2 y+5$

$$
\text { i.e., } \quad 3(x+y+v)^{2}=4\left\{\left(x+\frac{3 v-1}{4}\right)^{2}+\left(y+\frac{3 v-1}{4}\right)^{2}\right\}
$$

if ν be so chosen that $(3 v-1)^{2}=9\left(3 v^{2}+5\right)$

$$
\begin{gathered}
\text { i.e., } 3 r^{2}-6 v-9=0 \quad \text { or } \quad v^{2}-2 v-3=0 \\
\therefore \quad v_{1}=3, \quad v_{1}^{\prime}=-1 .
\end{gathered}
$$

The directrices are $x+y+3=0, x+y=1 ;$ the corresponding foci are $(-2,-2)$ and $(1,1)$ and the eccentricity is $\sqrt{\frac{3}{2}}$.

The Ratio of Incommensurables in Elementary Geometry. By Professor A. Brown.

