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Abstract

Nonparametric item response theory (IRT) models consist of assumptions that restrict the joint item-score
distribution. These assumptions imply stochastic ordering properties that allow ordering of respondents
and items using the simple sum score and item mean score, respectively, and imply observable data
properties that are useful for investigating model fit. In this paper, we investigate these properties for two-
level nonparametric IRT. We introduce four two-level nonparametric IRT models. Two models pertain
to respondents nested in groups: The MHM-1, useful for ordering respondents and groups, and the
DMM-1, useful for ordering respondents, groups, and items. Two models pertain to groups rated by
multiple respondents: The MHM-2, useful for ordering groups, and the DMM-2, useful for ordering
groups and items. We define the model assumptions, derive implied stochastic ordering properties, and
derive observable data properties that are useful for model fit investigation. Relations between models and
properties are also presented.

Keywords: conditional association; latent variable models; manifest invariant item ordering; manifest monotonicity; nonpara-
metric item response theory

1. Introduction

Most item response theory (IRT) models implicitly assume that the respondents are a random sample
from the population envisaged. These IRT models assume one or possibly more latent variables only
at the level of the respondent, and we refer to these IRT models as single-level IRT models. However,
in many practical situations, the respondents are nested in groups. For example, students nested in
school classes rating their teacher’s instructional quality (Scherer et al., 2016), employees of the same
department assessing humor in the workplace climate (Cann et al., 2014), or nurses within the same
intensive care unit evaluating collaboration (Dougherty & Larson, 2010). In such situations, it is
inappropriate to assume that the respondents are a random sample due to the group effect. It is therefore
reasonable to use IRT models with a latent variable both on the respondent level and the group level (e.g.,
De Jong & Steenkamp, 2010; Fox, 2007; Fox & Glas, 2001). We refer to these IRT models as two-level IRT
models. This paper investigates the measurement properties of a general nonparametric two-level IRT
model, which was proposed by Snijders (2001), and which can be considered a two-level generalization
of the single-level nonparametric IRT models proposed by Mokken (1969) and Holland and Rosenbaum
(1986).
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Assume that a test consists of I items, indexed by i (i= 1,2, . . . ,I), and each item has m+1 ordered item
scores 0,1, . . . ,m. Assume that this test is administered to R randomly selected non-nested respondents,
indexed by r (r = 1, . . . ,R). Note that index r refers to the rth respondent in the sample. Before sampling, it
is not known which respondent from the population will be the rth respondent in the sample. Therefore,
Xri — defined as the score of the randomly selected rth respondent in the sample on item i—is a random
variable. In this paper, variables will be denoted by uppercase letters, and their realizations by lower
case letters. Hence, the realization of Xri is denoted by xri. For each respondent, the I item scores can be
collected in a vector Xr = (Xr1,Xr2, . . . ,XrI). Because the respondents are randomly and independently
sampled, we consider the R vectors Xr independent and identically distributed (i.i.d.) for all r. As the
respondents are non-nested, a single-level IRT model may be appropriate as a measurement model.
Let Θr be a random latent variable of the rth randomly sampled respondent. Analogous to Xri, Θr is
a random variable, because before sampling it is not known which respondent from the population
will be the rth respondent in the sample. Because the respondents are randomly and independently
sampled, the R variables Θr are i.i.d. for all r. Let θr be a value of respondent r on the random
latent variable Θr . For respondent r, the expected value on item i is E(Xri∣Θr = θr) = ∑m

x=1 P(Xri ≥
x∣Θr = θr). The expectation of Xri as a function of Θr , E(Xri∣Θr), is referred to as the item response
function (IRF; Chang & Mazzeo, 1994). Most single-level IRT models are defined by at least these three
assumptions:

1. Unidimensionality (UN): Latent variable Θr is unidimensional
2. Local independence (LI): Item scores Xri are independent given θr
3. Monotonicity (MO): P(Xri ≥ x∣Θr = θr) is nondecreasing in θr , for all i and for x = 1, . . . ,m

These assumptions are necessary to restrict the distribution of Xr (Junker & Ellis, 1997). The combina-
tion of UN, LI, and MO is also referred to as the monotone homogeneity model (MHM, Mokken, 1971;
Sijtsma & Molenaar, 2002; a.k.a. monotone unidimensional representation, Junker, 1993; Junker &
Ellis, 1997; unidimensional monotone latent variable model, Holland & Rosenbaum, 1986; and non-
parametric graded response model, Hemker et al., 1996, 1997). The MHM does not use parameters to
model the distribution of Θ and the relation between the item scores and Θr . The MHM is therefore
called a nonparametric IRT model.

A fourth assumption in nonparametric IRT is invariant item ordering. Suppose that the I items are
ordered by mean item score and numbered accordingly; that is, if i < j, then E(Xri) ≤ E(Xrj) for all i ≠ j.
Then,

4. Invariant item ordering (IIO): E(Xri∣Θr = θr) ≤ E(Xrj∣Θr = θr) for all θr

(Ligtvoet et al., 2011; Sijtsma & Hemker, 1998; Sijtsma & Junker, 1996). IIO means that the order in
difficulty is identical across all values of the latent variable. IIO allows the stochastic ordering of the
items using the mean item scores. For applications of IIO, we refer to Sijtsma et al. (2011). Following
Sijtsma and Van der Ark (2017, 2020, pp. 156–158; also see the Discussion), we call the model that
assumes UN, LI, MO, and IIO the double monotonicity model (DMM).

The MHM has several ordering properties. The MHM implies stochastic ordering of the manifest
variable by the latent variable (Hemker et al., 1996, 1997), which implies that latent variable can be
used stochastically to order the respondents on the unweighted sum score. More importantly, for
dichotomous items, the MHM implies monotone likelihood ratio (MLR; Grayson, 1988; Huynh, 1994;
Ünlü, 2008), which implies the property of stochastic ordering of the latent variable by the sum score
across the items (SOL; Hemker et al., 1997). Measurement properties MLR and SOL imply that the sum
score can be used to (stochastically) order respondents on the latent variable. For polytomous items,
the MHM does not imply MLR and SOL (Hemker et al., 1996, 1997); however, the MHM implies the
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measurement property of weak SOL (Van der Ark & Bergsma, 2010), which can be used for pairwise
ordering of respondents or groups on the latent variable.

These theoretical results justify ordinal person measurement by means of sum score Xr+ if the MHM
holds. Suppose that two respondents have sum scores a and b, respectively (a< b), then for dichotomous
items, due to the SOL property, the MHM implies E(Θr ∣Xr+ = a) ≤E(Θr∣Xr+ = b); for polytomous items,
due to the weak SOL property, the MHM implies E(Θr ∣Xr+ < a) ≤ E(Θr ∣Xr+ ≥ a). Hence, the sum score
stochastically orders the respondents on Θr . Alternatively, suppose that two respondents have latent
variable values t and u, respectively (t < u), then due to the monotonicity assumption the MHM implies
E(Xr+∣Θr = t) ≤ E(Xr+∣Θr = u). Hence the latent variable values stochastically orders the respondents
on the sum score, a property sometimes referred to a stochastic ordering of the manifest variable by Θr
(SOM; Hemker et al., 1997). These mutual ordering properties of Xr+ and Θr make Xr+ an attractive
estimator of Θr . Under the MHM, Xr+ is a consistent asymptotic normal estimator of Θr (Junker, 1991;
Stout, 1990).

The simple sum score is more intuitive for non-psychometricians than, for example, an estimated
latent variable because the sum score is defined on the scale of the test. Therefore, a higher sum score
has a fairly straightforward interpretation, such as responded to more items correctly or responded more
extreme to the items (Sijtsma & Hemker, 2000). In addition, using the sum score in scientific research
avoids sample-specific transformations, which benefits comparability across studies and contributes
to the replicability of results across studies (Edelsbrunner, 2022; Widaman & Revelle, 2022). Hence,
providing justification for using the sum score is relevant for psychometric research and testing practice,
even when the estimated latent variable is used for test construction and measurement evaluation
(Hemker et al., 2001).

The DMM implies an ordinal scale for both person and item measurement. Hence, besides using the
respondent sum score to order respondents on a latent variable, the mean item score can be used to
order the items on a latent difficulty scale. Using the mean item score has similar advantages as the
sum score for psychometric and testing practice: They have an intuitive interpretation, such as the
proportion correct or average extremeness in the sample. In addition, estimating a latent difficulty is
not straightforward and can have various interpretations that do not necessarily relate to the difficulty
in practice (Sijtsma & Hemker, 2000; Sijtsma & Meijer, 2001).

All popular unidimensional IRT models, such as the Rasch Model (Rasch, 1960), the two- and
three-parameter logistic models (Birnbaum, 1968), the graded response model (Samejima, 1969), the
rating scale model (Andrich, 1978), the partial credit model (Masters, 1982), and the sequential model
(Tutz, 1990), are special cases of the MHM (Van der Ark, 2001). Hence, if the goal of the test is to
order respondents, the MHM is preferred over popular parametric IRT models because, by definition,
the MHM fits better to the data than these parametric IRT models. If the goal of the test is estimating
the respondents’ scores on Θr , alternative methods are required, such as a smoothing procedure or
estimating a parametric IRT model (e.g., Ramsay, 1991; Sijtsma & Van der Ark, 2020, Chapter 4,
respectively). However, as these parametric IRT models are a special case of the MHM, investigating the
fit of the MHM is still useful because if the MHM does not fit, neither do the parametric IRT models.

The MHM poses testable restrictions on the data, referred to as observable properties. For example,
the MHM implies nonnegative inter-item covariances (e.g., Sijtsma & Molenaar, 2002, pp. 155–156).
Observable properties can be investigated in data to find evidence against the MHM assumptions.
Holland and Rosenbaum (1986) showed that the MHM implies conditional association (CA). Let Yr
and Zr be two mutually exclusive and exhaustive subsets of Xr . CA holds if for every partitioning
Xr = (Yr,Zr) and for all functions h and for all nondecreasing functions g1 and g2

Cov[g1(Yr),g2(Yr)∣h(Zr)] ≥ 0. (1)

The observable property CA is too comprohensive for a single testing procedure (see Ellis &
Sijtsma, 2023), but special cases of CA, including testing for nonnegative covariances, have been
proposed to test the MHM. We focus on manifest monotonicity (MM; Sijtsma & Hemker, 2000) and
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a testing procedure to identify locally dependent item sets using three cases of CA (Straat et al., 2016).
For dichotomous items, CA implies MM (Ligtvoet, 2022). Let Xr(i) =∑

I
j≠i Xri be the rest score of item i,

then MM means that

E(Xri∣Xr(i)) is nondecreasing in Xr(i). (2)

Hence, MM is the MO assumption with latent variable Θr replaced by an observable proxy Xr(i). Note
that for polytomous items, the MHM does not imply MM. Straat et al. proposed testing Cov(Xri,Xrj) ≥ 0,
Cov(Xri,Xrj∣Xrk) ≥ 0, and Cov(Xri,Xrj∣Xr(ij)) ≥ 0, where Xr(ij) = ∑k≠i,j Xrk. We refer to these three
inequalities as nonnegative inter-item covariances (NNIIC). As these three inequalities of NNIIC are
special cases of CA with g1(Yr) = Xri, with g2(Yr) = Xrj, and with h(Zr) = ∅, h(Zr) = Xrk, and
h(Zr) = Xr(ij), respectively, the MHM implies the three inequalities. Other CA-based observable
properties have been proposed by, for example, Ellis (2014) and Ligtvoet (2022). Ellis and Sijtsma
(2023) noted that these CA-based observable properties cannot distinguish between unidimensional
and multidimensional models, and these authors suggested using (also CA-based) conditioning on
added regression predictions (CARP) inequalities to investigate UN.

The DMM poses additional observable properties (see Ligtvoet et al., 2011). We focus on manifest
invariant item ordering (MIIO), which holds if for E(Xri) < E(Xrj),

E(Xri∣Xr(ij) = y) ≤ E(Xrj∣Xr(ij) = y) for all y and all i < j. (3)

Note that MIIO is the IIO assumption with latent variable Θr replaced by Xr(ij) = ∑k≠i,j Xrk. Other
observable properties of IIO have been proposed; for example, by Tijmstra et al. (2011).

The assumptions (UD, LI, MO, and IIO) discussed in this paragraph have not been formally defined
for two-level IRT models, and as a result, it is also unknown how these assumptions should be
investigated in test data. Also, the measurement properties MLR, SOL, and SOM nor the observable
properties MM, CA, and MIIO have been defined for two-level IRT models, and as a result, it is unknown
whether two-level IRT models imply these measurement properties in the same way as single-level IRT
models do. In the remainder of this paper, we generalize the MHM and DMM to two-level data on
both the respondent level and the group level. We build on the work of Snijders (2001), who proposed
a two-level nonparametric IRT model for scaling subjects (e.g., persons or groups) scored by multiple
respondents (i.e., multi-rater measurement) using dichotomous items. For the proposed models, we
establish which stochastic ordering properties and observable data properties are implied, and how they
are related. Note that the proofs have been diverted to the Appendix. Implications and recommendations
for practice and further research are discussed.

2. Two-level nonparametric IRT

Suppose a measurement instrument consists of I items, indexed by i or j (i,j = 1,2, . . . ,I; j ≠ i). Suppose
there are S groups, indexed by s (s = 1,2, . . . ,S), each consisting of Rs respondents, indexed by r(r =
1,2, . . . ,Rs). Note that index s refers to the sth group, and index r refers to the rth respondent in group s.
Before sampling, it is not known which group from the population of groups will be the sth group in the
sample, nor which respondent from the population of respondents will be the rth respondent in group s.
The groups are assumed to be a random sample from a population of groups, and the respondents within
a group are assumed to be a random sample from a population of respondents. Without loss of generality,
we assume the number of respondents per group is the same; that is, R1 =R2 =⋯=RS =R. Let Xsri denote
the score on item i of respondent r in group s, with realization xsri (xsri ∈ 0, . . . ,m). For dichotomous items,
m = 1 and xsri takes on value 1 if item i is endorsed or answered correctly by respondent r in group
s, and 0 otherwise. Let Xsr+ = ∑I

i=1 Xsri denote the respondent-level sum score. Let Xsi = R−1∑R
r=1 Xsri

denote the group-level score on item i (i.e., the mean score over respondents’ scores on item i within
group s), with realization xsi. Xsi can take on Rm+ 1 values with a minimum of 0 and a maximum of
m. Let Xs+ = ∑I

i=1 Xsi denote the group-level sum score. The vector of item scores for respondent r in
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group s is denoted Xsr = (Xsr1, . . . ,XsrI), with realization xsr = (xsr1, . . . ,xsrI). Because the respondents
within a group are randomly and independently sampled, the R vectors Xsr are considered i.i.d. within
each s for all r. The vector of all item scores for group s is denoted Xs = (Xs1, . . . ,XsR) = (Xsr1, . . . ,XsRI),
with realization xs = (xs1, . . . ,xsR) = (xsr1, . . . ,xsRI). Because the groups are randomly and independently
sampled, the S vectors Xs are considered i.i.d. for all s.

Let Θsr , ΓsΔsr be random latent variables of the rth randomly sampled respondent in the sth randomly
sampled group. Analogous to Θr in the single-level situation, these are random variables because before
the groups and respondents have been sampled, it is unknown which group from the population groups
will be the sth group, and which respondent from the population of respondents belonging to the
sth group will be the rth respondent. Variable Γs is considered a common group component, Δsr is a
combination of an individual (random) respondent effect and a group by respondent interaction effect,
and Θsr is the sum of these effects; that is,

Θsr = Γs+Δsr, (4)

(Snijders, 2001). Let εsri be a random latent variable that may be interpreted as an error term. Assumption
1 is a basic assumption(B) about the relation between the latent variables and the observed score Xsri
using function fi.

Assumption 1. Basic assumption of item scores and latent variables.

(B) Xsri = fi(Γs+Δsr,εsri). For all s,r, and i, Γs, Δsr , and εsri are independent. Furthermore, all Γs(s =
1, . . . ,S) are identically distributed, and all Δsr (s= 1, . . . ,S;r = 1, . . . ,R) are identically distributed,
with E(Δsr) = 0.

It follows from B that Θsr are identically distributed for all s,r, and that for a fixed item i, all εsri are
identically distributed for all s,r. B is assumed throughout this paper. The variances of Θsr , Γs, and Δsr
are denoted var(Θsr), var(Γs), and var(Δsr), respectively. Because Γs and Δsr are assumed independent,
var(Θsr) = var(Γs)+var(Δsr), for all s and all r. Let θsr be a group-respondent combination value on Θsr
of respondent r in group s, γs a value on Γs for group s, and δsr a value on Δsr for respondent r in group
s. Hence, for respondent r in group s, we assume there exist value θsr = γs+δsr .

Let P(Xsr = x∣Γs,Δsr) denote the probability of obtaining item-score pattern x given Γs and Δsr .
Throughout the rest of the paper, we assume homogeneity of Γs,Δsr and Θsr :

Assumption 2. Homogeneity assumption of Γs,Δsr and Θsr

(H) Homogeneity of the response probablities holds for Γs,Δsr and Θsr , hence, P(Xsr = x∣Θsr) =
P(Xsr = x∣Γs,Δsr)

Let

P(Xsri ≥ x∣Θsr) =
m
∑
y=x

P(Xsri = y∣Θsr), (5)

denote the probability of obtaining at least score x on item i given Θsr , which we refer to as the
respondent-level item-step response function. For respondent r in group s, the expected item score is
E(Xsri∣Θr = θr) =∑m

x=1 P(Xsri ≥ x∣Θsr = θsr). In two-level test data, we distinguish between a respondent-
level IRF (IRF-1, denoted Ei(⋅)) and a group-level IRF (IRF-2, denoted Ei(⋅)). IRF-1 is defined as

Ei(Θsr) = E(Xsri∣Θsr)
= ∑m

x=1 P(Xsri ≥ x∣Θsr),
(6)

where E(Xsri∣Θsr) equals the expected item score Θsr .
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Figure 1. An IRF-1 (Ei(Θsr); solid curve) and an IRF-2 (Ei(Γs); dashed curve) depicted on the same Θsr scale. The horizontal axis shows

one hypothetical group value γs, plus the θsr values of 10 randomly drawn respondents (r = 1, . . . ,10) from group s. Note that δsr is

represented by the length of the line segment between γs and the θsr values on the horizontal axis.

Let P(Xsri ≥ x∣Γs) denote the probability of obtaining at least score x on item i given Γs, which we refer
to as the group-level item-step response function. By H and the law of total expectation (e.g., Rice, 2006,
p 149), the item-step response function can be formulated as

P(Xsri ≥ x∣Γs) = E[P(Xsri ≥ x∣Θsr,Γs)∣Γs]

= E[P(Xsri ≥ x∣Γs+Δs,Γs)∣Γs]

= E[P(Xsri ≥ x∣Δs,Γs)∣Γs]

= E[P(Xsri ≥ x∣Θsr)∣Γs].

(7)

For a randomly selected respondent in group s, the expected item score is E(Xsri∣Γs = γs) =∑m
x=1 P(Xsri ≥

x∣Γs = γs). IRF-2 is defined as

Ei(Γs) = E(Xsri∣Γs)

= ∑m
x=1 P(Xsri ≥ x∣Γs)

= E[∑m
x=1 P(Xsri ≥ x∣Θsr)∣Γs] (Eq. 7)

= E[Ei(Θsr)∣Γs] (Eq. 6),

(8)

where E(Xsri∣Γs) equals the expected item score as a function of Γs. Note that because Δsr variables
are assumed i.i.d., E(Xsi∣Γs) = R−1∑R

r=1Ei(Γs) = Ei(Γs). Hence, the expected group-level item score
for group s is the value of the IRF-2 for Γs = γs. Figure 1 shows an hypothetical IRF-1 and IRF-
2. Because IRF-2 is the expectation of IRF-1 with respect to Δsr (Equation 8), IRF-2 is flatter than
function IRF-1.

2.1. Definitions of possible model assumptions
Besides the basic and homogeneity assumption (B and H, respectively), multiple assumptions of
nonparametric IRT for two-level data can be defined at level 1 (the respondent level) and at level 2
(the group level).

Definition 1. Unidimensionality (UN).

(UN-1) Unidimensionality at level 1 holds if Θsr is a unidimensional variable.
(UN-2) Unidimensionality at level 2 holds if Γs is a unidimensional variable.
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UN-1 and UN-2 mean that the item scores on the test or questionnaire are modeled using one latent
variable.

Definition 2. Local independence (LI).

(LI-1) Local independence at level 1 holds if

P(Xsr = xsr ∣Θsr = θsr) = ∏I
i=1 P(Xsri = xsri∣Θsr = θsr). (9)

(LI-2) Local independence at level 2 holds if

P(Xs = xs∣Γs = γs) =∏R
r=1 P(Xsr = xsr ∣Γs = γs). (10)

LI-1 means that respondent-level item scores (Xsri) are independent given θsr . LI-2 means that the
response vectors of respondents are independent given γs. LI-2 implies that between respondents, the
respondent-level item scores Xsri and Xspj (i ≠ j; r ≠ p) are independent given γs. However, within
respondents, respondent-level item scores Xsri and Xsrj (i ≠ j) are not independent given γs.

Definition 3. Monotonicity (MO).

(MO-1) Monotonicity at level 1 holds if P(Xsri ≥ x∣Θsr = θsr) is nondecreasing in θsr , for all i and
x = 1, . . . ,m.

(MO-2) Monotonicity at level 2 holds if P(Xsri ≥ x∣Γs = γs) is nondecreasing in γs, for all i and x =
1, . . . ,m.

MO-1 implies that, for each item, IRF-1 (Equation 6) is nondecreasing in Θsr , and MO-2 implies that,
for each item, IRF-2 (Equation 8) is nondecreasing in Γs. Note that in Figure 1, IRF-1 satisfies MO-1
and IRF-2 satisfies MO-2.

Definition 4. Invariant item ordering (IIO). For a set of I items with m + 1 ordered item-score
categories, for which the items are ordered and numbered such that E(Xsri) ≤ E(Xsrj) for all i < j, then

(IIO-1) Invariant item ordering at level 1 holds if E(Xsri∣Θsr = θsr) ≤ E(Xsrj∣Θsr = θsr) for all θsr .
(IIO-2) Invariant item ordering at level 2 holds if E(Xsri∣Γs = γs) ≤ E(Xsrj∣Γs = γs) for all γs.

IIO-1 means that the IRF-1s of different items do not intersect. IIO-2 means that the IRF-2s of
different items do not intersect. Note that the definition of IIO-1 and IIO-2 allows for ties, such that
for some values of the latent variable items may be equally difficult.

2.2. Relation between level 1 and level 2 assumptions
Theorem 1 gives the relations between the basic assumption and local independence at both levels.

Theorem 1. B implies LI-1 and LI-2.

The assumptions UN, LI, MO, and IIO were defined at both Level 1 and Level 2 (Definitions 1 to 4).
However, Theorem 1 shows that B implies both LI-1 and LI-2, and as a result, LI is no longer a necessary
assumption, as in all remaining proofs LI-1 and LI-2 may be replaced by B and H.

Theorem 2 gives the relations between the assumptions at level 1 and the assumptions at level 2.

Theorem 2. Under B and H, UN-1, MO-1, and IIO-1 imply UN-2, MO-2, and IIO-2, respectively.
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Table 1. Assumptions of the two-level nonparametric IRT models

Model Respondent-level assumptions Group-level assumptions

UN-1 LI-1 MO-1 IIO-1 UN-2 LI-2 MO-2 IIO-2

MHM-1 A A A I I I

DMM-1 A A A A I I I I

MHM-2 A A A

DMM-2 A A A A

Note: A = assumed, I = implied.

Figure 2. Hierarchical structure of the two-level nonparametric IRT models.

Theorem 2 shows that the level-1 assumptions imply their level-2 assumptions, but not the other
way around. Hence, the level-2 assumptions do not imply the level-1 assumptions. For example, if
respondent-level item scores depend both on Γs and on Δsr and var(Δsr)> 0, in general Θsr ≠ Γs, P(Xsri ≥
x∣Θsr) ≠ P(Xsri ≥ x∣Γs), and Ei(Θsr) ≠ Ei(Γs). As a result, UN-1, MO-1, and IIO-1 are not equal to UN-
2, MO-2, and IIO-2, respectively. It may be noted that because of the homogeneity assumption H, the
level-1 assumptions (UN-1, LI-1, MO-1, and IIO-1) are equivalent to the single-level nonparametric-
IRT assumptions (UN, LI, MO, and IIO), when Xsri is replaced by Xri and θsr by θr .

2.3. Models
Two-level nonparametric IRT assumptions can be used to define several nonparametric IRT models.
Analogous to the single-level nonparametric IRT models, we distinguish between the MHM and
the DMM, but in addition we also distinguish between the level on which they can be defined.
Snijders (2001) defined a two-level nonparametric IRT model for scaling groups with dichotomous
item scores using assumptions UN-1, LI-1, MO-1, and IIO-1. We present four models that allow
for both dichotomous and polytomous items. As mentioned before, for all models B and H are
assumed.

The first respondent-level model is the MHM-1, defined by assuming UN-1, LI-1, and MO-1
(Table 1, first row). The MHM-1 consists of level-1 assumptions, which imply UN-2, LI-2, and MO-
2 (Theorem 2). The second respondent-level model is the DMM-1, defined by assuming UN-1, LI-1,
MO-1, and IIO-1, implying UN-2, LI-2, MO-2, and IIO-2 (Table 1, second row). The first group-level
model is the MHM-2, defined by assuming UN-2, LI-2, and MO-2 (Table 1, third row). The second
group-level model is the DMM-2, defined by assuming UN-2, LI-2, MO-2, and IIO-2 (Table 1, fourth
row). Note that, for all models, LI-1 and LI-2 are implied by B, but we explicitly incorporate them into
the models, such that the models align more obviously to the single-level models.

Figure 2 shows the hierarchical structure of the four models, where an arrow indicates an implication.
The MHM-2 is the most general model, of which the other three are special cases. The DMM-1 is the
most restrictive model, implying the other three models. In the next sections, we derive some ordering
and observable properties implied by these models.
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3. Ordering properties of two-level nonparametric IRT models

We investigated four possible ordering properties for sum score Xsr+ at level 1 and sum score Xs+ at level
2: MLR, SOM, SOL, and weak SOL.

Definition 5. Monotone likelihood ratio (MLR; Ferguson, 1967, p. 208).

(MLR-1) Monotone likelihood ratio at level 1 holds if, for a < b, the probability ratio

P(Xsr+ = b∣Θsr)
P(Xsr+ = a∣Θsr)

is nondecreasing in Θsr. (11)

(MLR-2) Monotone likelihood ratio at level 2 holds if, for a < b, the probability ratio

P(Xs+ = b∣Γs)
P(Xs+ = a∣Γs)

is nondecreasing in Γs. (12)

Definition 6. Stochastic ordering of the manifest score by the latent variable (SOM; Hemker
et al., 1997).

(SOM-1) Stochastic ordering of the manifest score by the latent variable at level 1 holds if, for any
value x and t < u

P(Xsr+ ≥ x∣Θsr = t) ≤ P(Xsr+ ≥ x∣Θsr = u). (13)

(SOM-2) Stochastic ordering of the manifest score by the latent variable at level 2 holds if, for any
value x and t < u

P(Xs+ ≥ x∣Γs = t) ≤ P(Xs+ ≥ x∣Γs = u). (14)

Definition 7. Stochastic ordering of the latent variable by the manifest score (SOL; Hemker et al.,
1997).

(SOL-1) Stochastic ordering of the latent variable by the manifest score at level 1 holds if, for any
value t and a < b,

P(Θsr > t∣Xsr+ = a) ≤ P(Θsr > t∣Xsr+ = b). (15)

(SOL-2) Stochastic ordering of the latent variable by the manifest score at level 2 holds if, for any
value t and a < b,

P(Γs > t∣Xs+ = a) ≤ P(Γs > t∣Xs+ = b). (16)

Definition 8. Weak SOL (WSOL; Van der Ark & Bergsma, 2010).

(WSOL-1) Weak SOL at level 1 holds if, for any t and a

P(Θsr > t∣Xsr+ < a) ≤ P(Θsr > t∣Xsr+ ≥ a). (17)

(WSOL-2) Weak SOL at level 2 holds if, for any t and a

P(Γs > t∣Xs+ < a) ≤ P(Γs > t∣Xs+ ≥ a). (18)

In general, ordering property MLR implies SOM, SOL, and WSOL, and SOL implies WSOL (Hemker
et al., 1997; Lehmann, 1986, p. 85; Van der Ark & Bergsma, 2010). Hence, ordering property MLR-1
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implies SOM-1, SOL-1, and WSOL-1, whereas ordering property MLR-2 implies SOM-2, SOL-2, and
WSOL-2. The MLR, SOM, SOL, and WSOL results are valid for any monotone nondecreasing item
summary within respondents (e.g., all-correct score, rest-scores, subscores; Rosenbaum, 1984).

For two-level test data, it is unknown whether MLR, SOM, SOL, or WSOL are implied by the two-
level nonparametric IRT models. Theorem 3 gives the result for the strongest ordering property (MLR)
for the least restrictive models (MHM-1 and MHM-2) and generalizes to weaker ordering properties
and more restrictive models.

Theorem 3.

(a) For dichotomous item scores, the MHM-1 implies MLR-1.
(b) For dichotomous item scores, for R ≥ I, the MHM-2 implies MLR-2.

MLR is symmetric in its argument, so the statement Xsr+ has MLR in Θsr means that Θsr also has MLR
in Xsr+. Theorem 3 implies that for dichotomous items, under the MHM-1 Xsr+ is stochastically ordered
by Θsr (SOM-1) and Θsr is stochastically ordered by Xsr+ (SOL-1). It may be noted that Theorem 3(a)
is very similar to the result obtained by Grayson (1988) who proved for single-level dichotomous
item scores that the MHM implies MLR. Under the MHM-2, for R ≥ I, group-level item score Xs+ is
stochastically ordered by Γs (SOM-2) and Γs is stochastically ordered by Xs+ (SOL-2). Note that for
R < I, MLR-2 is implied for the sum score of any random subset of items of size I∗, for which I∗ < R.
Because the DMM-1 is a special case of the MHM-1 (see Figure 2), Theorem 3(a) also applies to the
DMM-1. Similarly, the MHM-1, the DMM-1, and the DMM-2 are special cases of the MHM-2 (see
Figure 2), Theorem 3(b) applies to these models as well.

For polytomous items, the single-level MHM and DMM generally do not imply MLR and SOL (see
Hemker et al., 2001, for counter examples), but these models do imply SOM (Hemker et al., 1996, 1997)
and weak SOL (Van der Ark & Bergsma, 2010). Theorem 4 and 5 show that these results generalize to
two-level models.

Theorem 4.

(a) The MHM-1 implies SOM-1.
(b) The MHM-2 implies SOM-2.

Theorem 4 implies that under the MHM-1 Xsr+ is stochastically ordered by Θsr (SOM-1) and under
the MHM-2, Xs+ is stochastically ordered by Γs (SOM-2). Because the DMM-1 is a special case of the
MHM-1, it also implies SOM-1. Also, because the MHM-1, the DMM-1, and the DMM-2 are special
cases of MHM-2, these models imply SOM-2.

Theorem 5.

(a) The MHM-1 implies WSOL-1.
(b) The MHM-2 implies WSOL-2.

Let 1(Xsr+ ≥ k) denote the dichotomized respondent-level sum score that takes on value 1 if Xsr+ ≥ k,
and 0 otherwise, and let 1(Xs+ ≥ k) denote the dichotomized group-level sum score that takes on value
1 if Xs+ ≥ k, and 0 otherwise. Then, Theorem 5 implies that under the MHM-1, Θsr is stochastically
ordered by 1(Xsr+ ≥ k) (WSOL-1), and that under the MHM-2, Γs is stochastically ordered by 1(Xs+ ≥ k)
(WSOL-2). Because DMM-1 is a special case of MHM-1, this model also implies WSOL-1. Also,
because the MHM-1, the DMM-1, and the DMM-2 are special cases of the MHM-2, these models
imply WSOL-2.
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4. Observable properties of two-level nonparametric IRT models

We define observable properties CA, MM, and MIIO for two-level IRT models. For single-level IRT
models, rest score Xr(i) was used in MM, and rest score Xr(ij) was used in NNIIC and in MIIO. These rest
scores are proxies for the latent variable that must be independent of the variables under investigation.
Because of the independence requirement, for two-level IRT models, these rest scores become more
involved. Table 2 provides an overview of these rest scores for classified by observable property and
level. The rest scores at Level 1 can be considered within-respondent rest scores, and the rest scores at
Level 2 can be considered between-level rest scores.

Definition 9 defines CA for two-level IRT models. First, partition Xsr into two mutually exclusive
and exhaustive sets Ysr and Zsr . For example, Ysr may contain Xsr1 and Xsr2 and Zsr the remaining item
scores. Second, partition the response vectors of the R respondents in group s — Xs1, . . . ,XsR — which
are collected in Xs, into three mutually exclusive and exhaustive sets: Ys1, Ys2, and Zs. For example, Ys1
could contain just Xsr , Ys1 could contain just Xs2, and Zs could contain the remaining response vectors
from Xs. Note that all scores of the same respondent are in the same set.

Definition 9. Conditional association (CA; Holland & Rosenbaum, 1986; Rosenbaum, 1988).

(CA-1) Conditional association at level 1 holds if

Cov[g1(Ysr),g2(Ysr)∣h(Zsr)] ≥ 0. (19)

(CA-2) Conditional association at level 2 holds if, for r ≠ p,

Cov[g1(Ysr),g2(Ysp)∣h(Zs(rp))] ≥ 0. (20)

CA-1 is conditional association of the scores within respondents, whereas CA-2 is conditional
association of the scores between respondents in the same group (see, also, Rosenbaum, 1988). As for
CA, CA-1, and CA-2 are too comprehensive for a single test procedure. The testing procedure to identify
locally dependent item sets using NNIIC (Straat et al., 2016) can be readily generalized to two-level
models: For Level 1, the three inequalities in NNIIC generalize to Cov(Xsri,Xsrj) ≥ 0, Cov(Xsri,Xsrj∣Xsrk) ≥
0, and Cov(Xsri,Xsrj∣Xsr(ij)) ≥ 0. For Level 2, let p, q, and r index three different respondents. The three
inequalities generalize to Cov(Xsri,Xspj) ≥ 0, Cov(Xsri,Xspj∣Xsqk) ≥ 0, and Cov(Xsri,Xspj∣Xs(rp,ij)) ≥ 0. Rest
scores Xsr(ij) and Xs(rp,ij) have been defined in Table 2.

Definition 10 defines MM for two-level IRT models. The rest scores used in Definition 10 have been
defined in Table 2

Definition 10. Manifest monotonicity (MM; Junker, 1993; Sijtsma & Hemker, 2000).

(MM-1) Manifest monotonicity at level 1 holds if the within-respondent item-rest regression
E(Xsri∣Xsr(i)) is nondecreasing in Xsr(i).

(MM-2) Manifest monotonicity at level 2 holds if the between-respondent item-rest regression
E(Xsri∣Xs(r,i)) is nondecreasing in Xs(r,i).

Table 2. Overview of rest scores used in observable properties in single-level and two-

level IRT models

Observable Single-level IRT Two-level IRT

property Level 1 Level 2

MM Xr(i) =∑
I
j≠i Xrj Xsr(i) =∑

I
j≠i Xsrj Xr(r, i) =

∑
R
p≠r∑

I
j≠i Xspj

R−1

NNIICa Xr(ij) =∑
I
k≠i, j Xrk Xsr(ij) =∑

I
k≠i, j Xsrk Xr(rp, ij) =

∑
R
q≠r,p∑

I
k≠i, j Xsqk

R−2

MIIO Xr(ij) =∑
I
k≠i, j Xrk Xsr(ij) =∑

I
k≠i, j Xsrk Xr(r, ij) =

∑
R
p≠r∑

I
k≠i, j Xspk

R−1

Note: a Pertains to the NNIIC given the rest score. The other two NNIIC inequalities do not use a rest
score.
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(first row)
Definition 11 defines MM for two-level IRT models. The rest scores used in Definition 11 have been

defined in Table 2
Definition 11. Manifest invariant item ordering (MIIO; Ligtvoet et al., 2010).

(MIIO-1) Manifest invariant item ordering at level 1 holds if, for E(Xsri) < E(Xsrj), E(Xsri∣Xsr(ij) =
y) ≤ E(Xsrj∣Xsr(ij) = y) for all y and all i < j.

(MIIO-2) Manifest invariant item ordering at level 2 holds if, for E(Xsri) < E(Xsrj), E(Xsri∣Xs(r,ij) =
y) ≤ E(Xsrj∣Xs(r,ij) = y) for all y and all i < j.

(second row).
In Theorem 7, 6, and 8, we state which two-level models imply the observable properties CA, MM,

and MIIO, respectively.
Theorem 6.

(a) The MHM-1 implies CA-1.
(b) The MHM-2 implies CA-2.

Because the DMM-1 is a special case of the MHM-1, it also implies CA-1. Also, because the MHM-1,
the DMM-1, and the DMM-2 are special cases of MHM-2, these models imply CA-2.
Theorem 7.

(a) For dichotomous items, the MHM-1 implies MM-1.
(b) For dichotomous items, the MHM-2 implies MM-2.

Because the DMM-1 is a special case of the MHM-1, it also implies MM-1. Also, because the MHM-1,
the DMM-1, and the DMM-2 are special cases of MHM-2, these models imply MM-2. As for single-
level IRT models, MM does not necessarily hold for polytomous items. However, MM-1 and MM-2
may still provide heuristic evidence for or against the MHM-1 and/or the MHM-2 (cf., Sijtsma & Van
der Ark, 2020, p. 151). Alternatively, if polytomous items are dichotomized, Theorem 7 holds (Junker &
Sijtsma, 2000).
Theorem 8.

(a) The DMM-1 implies MIIO-1.
(b) The DMM-2 implies MIIO-2.

Because the DMM-1 is a special case of the DMM-2, it also implies CA-2.

5. Relations between models and properties

In the previous sections, we defined four models, eight ordering properties, and six observable proper-
ties. In addition, we provided proofs for which model implied which property, for the least restrictive
model and strongest property possible. Because more restrictive models are special cases of models
with fewer restrictions, they are defined with at least the same assumptions that imply the property (see
Figure 2). Hence, more restrictive models imply the same properties as the more general models.

Table 3 provides an overview of the most important implications for each model. The
MHM-1 (Table 3, first column) implies (W)SOL-1 and (W)SOL-2. Hence, the MHM-1 implies an
ordinal respondent-level scale, on which respondents may be stochastically ordered on Θsr using Xsr+,
and an ordinal group-level scale, on which groups may be stochastically ordered on Γs using Xs+.
Methods for investigating the model fit of the MHM-1 are MM-1, CA-1, MM-2, and CA-2. In addition
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Table 3. Implied properties of the two-level nonparametric IRT models

Ordering property Model

MHM-1 DMM-1 MHM-2 DMM-2

MLR-1 D D

SOL-1 D D

SOM-1 A A

WSOL-1 A A

MLR-2 D D D D

SOL-2 D D D D

SOM-2 A A A A

WSOL-2 A A A A

Observable property Model

MHM-1 DMM-1 MHM-2 DMM-2

MM-1 D D

CA-1 A A

MIIO-1 A

MM-2 D D D D

CA-2 A A A A

MIIO-2 A A

Note: A=property is implied for dichotomous and polytomous items, D=property
is implied for dichotomous or dichotomized items only.

to the implications by the MHM-1, the DMM-1 (Table 3, second column) also implies an ordinal item
scale on which items may be stochastically ordered on their latent difficulty using the mean scores
on the items. Methods MIIO-1 and MIIO-2 can be used for investigating model fit of the DMM-1 in
addition to the methods of the MHM-1.

The MHM-2 (Table 3, third column) implies (W)SOL-2. Hence, the MHM-2 implies an ordinal
group-level scale on which groups may be stochastically ordered on Γs using Xs+. Methods for
investigating the model fit of the MHM-2 are MM-2 and CA-2. In addition to the implications by the
MHM-2, the DMM-2 (Table 3, fourth column) also implies an ordinal item scale on which items may
be stochastically ordered on their latent difficulty using the mean scores on the items. Methods MIIO-1
and MIIO-2 can be used for investigating model fit of the DMM-2 in addition to the methods of the
MHM-2.

The two-level nonparametric IRT models are defined on either or both the respondent level and the
group level. Depending on the interest of the researcher, one or both levels are relevant for scaling. If
the goal is to scale the respondents, it is sufficient to mainly focus on checking the respondent-level
assumptions of the MHM-1 or DMM-1. If the goal is to only scale the groups, as is the case in multi-
rater data, the group-level assumptions are of key interest. For example, if a group-level IRF is flat,
an item does not discriminate between low and high values of Γs. Such an item does not contribute to
accurate measurement on the group level. In addition, the respondent-level assumptions are informative
for investigating, for example, whether the respondents may also be ordered using their sum score, or
how the results relate to each other across levels. Therefore, even though investigating the MHM-2 or
DMM-2 is sufficient to determine model fit at the group level, investigating the MHM-1 or the DMM-1
by checking assumptions on both level 1 and level 2 is suggested. If model violations occur at level 1, it
is still possible that there are no violations at level 2, and the MHM-2 or the DMM-2 fits the data.
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6. Discussion

The main contribution of this paper is the establishment of ordering properties and observable proper-
ties for two-level nonparametric IRT models. Ordering properties MLR-1, MLR-2, SOL-1.SOL-2, weak
SOL-1, weak-SOL-2 SOM-1, and SOM-2 justify ordinal measurement using two-level nonparametric
IRT models, in a way that is similar to ordinal measurement in the more popular single-level nonpara-
metric IRT models. In addition, the observable properties MM-1, MM-2, CA-1, CA-2, MIIO-1, and
MIIO-2 allow researchers to investigate the fit of the two-level nonparametric IRT models. Combined,
these newly established ordering properties and observable properties enable the practical use of the
two-level measurement models.

Building on previous work by Snijders (2001), we introduced four models for two-level test data. For
level 1, we introduced the MHM-1, which allows ordering nested respondents on latent variable Θsr
using manifest variable Xsr+, and the DMM-1, which allows ordering nested respondents and items on
Θsr using Xsr+ and E(Xsri), respectively. For level 2, we introduced the MHM-2, which allows ordering
groups on latent variable Γs using manifest variable Xs+, and the DMM-2, which allows ordering groups
and items on Γs using Xs+ and E(Xsi), respectively. The hierarchical relations among the four models
show that the DMM-1 implies all other models and that the MHM-2 is the most general model (see
Figure 2).

In addition, we derived observable data properties implied by the models, which can be used
to investigate the model fit for a given data set. Specifically, we generalized the properties manifest
monotonicity, conditional association, and manifest invariant item ordering for the respondent level
and the group level. Theorem 7(b) showed the perhaps surprising result that, for a test consisting of
dichotomous items, even though group-level item scores are not dichotomous (because they combine
the item scores across respondents), still the strong results for dichotomous nonparametric IRT models
hold. In deriving level-2 properties from level-1 properties, assuming the individual respondent-
variables Δsr are i.i.d. proved to be a key ingredient. Assuming i.i.d. in test data is usually based on
the sampling design or data collection conditions in relation to the latent variable. However, finding
support for the i.i.d. assumption based on observable properties on the group level may be a valuable
topic for future research.

The properties derived in this paper apply at the population level. Koopman et al. (2023) suggested
statistical tests for MO-1, MO-2, IIO-1, and IIO-2 using observable properties MM-1, MM-2, MIIO-1,
and MIIO-2, respectively. Using simulated data, these authors found that the tests for MO-1, IIO-1 and
IIO-2 had satisfactory Type-1 error rates and power, whereas the tests for MO-2 had satisfactory Type-1
error rates but insufficient power (see also, Koopman, 2023). Note that both procedures deviated slightly
from the results in this paper, because they used level-2 item scores rather than the between-respondent
item scores that were used in the MM-2 and MIIO-2 definitions in this paper. Perhaps these latter item
scores increases the power of the significance test of MO-2.

Note that Molenaar (1997) originally defined the DMM nonintersecting item-step response func-
tions P(Xi ≥ x∣Θ) rather than an IRT model having nonintersecting item-response functions. As
investigating properties of items can be considered more relevant than investigating properties of item-
steps, the new definition of the DMM in terms of nonintersecting IRFs can be considered more useful.
In addition, the property of IIO is defined in terms of conditional expected item scores and fits better to
the new definition of the DMM than to the original definition. If there is reason to require an invariant
item-step order, an alternative DMM-like model may be proposed including this assumption. However,
one should realize that an invariant item-step order not necessarily implies an invariant item order
(Sijtsma & Hemker, 1998).

In this paper, we chose to expand on work by Snijders (2001) because of its strong link to the one-
level MHM and DMM. However, other generalizations of the MHM and DMM are possible. Within
the framework of this paper, one may also consider a within-group model, in which the IRFs are
assumed to be increasing only in δsr . Such a model may be useful if the focus is on within-group
comparison only rather than comparison of all respondents, or if items contain a relative component
in relation to a group aspect. Properties and applications of this model are yet unknown. Outside the
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framework proposed in this paper, Koopman, Zijlstra, De Rooij, and Van der Ark (2020) proposed
the nonparametric hierarchical rater model, a nonparametric version of the (parametric) hierarchical
rater model (Patz et al., 2002). Possibly other two-level parametric IRT models may be redefined as
a nonparametric model, such as the multiple raters model (Verhelst & Verstralen, 2001) or the rater
bundle model (Wilson & Hoskens, 2001). Alternatively, the nonparametric partial credit model or
nonparametric sequential model (Hemker et al., 1997, 2001, respectively) may be generalized to a two-
level framework.

The presented models in this paper are unidimensional models. Hence, for MHM-1 and DMM-1, it is
assumed that respondents across groups may be located on the same latent variable. This is quite a strict
assumption and whether this is sensible should be investigated, for example, by analysis on differential
item functioning (Holland & Wainer, 1993). Known methods within nonparametric IRT are comparing
scales and scale properties across groups (Sijtsma & Van der Ark, 2017; Van der Ark et al., 2008)
and performing an IIO analysis (Sijtsma & Junker, 1996). Two-level IRT modeling may benefit from
multidimensional generalizations for developing scales that explicitly separate a respondent and group
dimension. How these alternative models hierarchically relate to the models presented in this paper,
and what properties they imply, is a topic for further investigation.

The developments presented in this paper are part of a larger project to make all elements of Mokken
scale analysis available for two-level test data (Koopman, Zijlstra, & Van der Ark, 2020; Koopman
et al., 2022). Next steps in development should be aimed at developing group-level item selection
procedures and at allowing more complex research designs, such as a cross nested design in which
respondents score multiple groups.
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APPENDIX
Lemma A.1. UN-1 implies UN-2.

Proof. Equation 4 defines Θsr = Γs+Δsr , which implies Γs =Θsr −Δsr . However, as Γs does not depend on r, Γs = E(Θsr −Δsr) =
E(Θsr)−E(Δsr), where E(Θsr) denotes the expectation of Θsr over the respondents in randomly selected s. Because E(Δsr) = 0,
it follows that Γs = E(Θsr)within group s. If Θsr is unidimensional, its expectation E(Θsr) is also unidimensional. Variable Θsr
is unidimensional by UN-1; hence, variable Γs is also unidimensional. ◻
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Lemma A.2. MO-1 implies MO-2.

Proof. Let P(Δsr) denote the probability density function of the distribution of Δsr . By H, the group-level item-step response
function is

P(Xsri ≥ x∣Γs) = E[P(Xsri ≥ x∣Θsr)∣Γs] (Equation 7)
= ∫ P(Xsri ≥ x∣Θsr)P(Δsr ∣Γs)dΔsr.

(A.1)

As Δsr and Γs are independent by B, P(Δsr ∣Γs) = P(Δsr), and the last term of Equation A.1 reduces to

∫ P(Xsri ≥ x∣Θsr)P(Δsr)dΔsr. (A.2)

By MO-1, P(Xsri ≥ x∣Θsr = θsr) is nondecreasing in θsr . Hence, Equation A.1 is nondecreasing in γs, which equals the definition
of MO-2. ◻

Lemma A.3. IIO-1 implies IIO-2.

Proof. By IIO-1

E(Xsri∣Θsr = θsr) ≤ E(Xsrj∣Θsr = θsr) for all θsr
⇔ Ei(Θsr) ≤ Ej(Θsr)
⇔ ∫ Ei(Θsr)P(Δsr ∣Γs)dΔsr ≤ ∫ Ej(Θsr)P(Δsr ∣Γs)dΔsr
⇔ E[Ei(Θsr)∣Γs] ≤ E[Ej(Θsr)∣Γs]
⇔ Ei(Γs) ≤ Ej(Γs) (by H, Eq. 8)
⇔ E(Xsri∣Γs = γs) ≤ E(Xsrj∣Γs = γs) for all γs

. (A.3)

The final result in Equation A.3 equals the definition of IIO-2. ◻

Lemma A.4. MHM-1 implies that E(g(Xsr)∣Θsr = θsr) is nondecreasing in θsr for any bounded, nondecreasing function g(⋅).

Proof. By LI-1, scores Xsri within Xsr are independent given Θsr . By MO-1, Xsri is stochastically ordered in Θsr ; that is, for
t < u, P(Xsri ≥ x∣Θsr = t) ≤ P(Xsri ≥ x∣Θsr = u) for all i and all x. For a set of independent variables the stochastic ordering is
preserved under convolutions, for any bounded, nondecreasing function g(⋅) (Shanthikumar e.g., 2007, Theorem 1.A.3(b);
see also Ahmed et al. 1981, Lemma 3.3; Holland and Rosenbaum 1986, Lemma 2). Hence

E[g(Xsr)∣Θsr = t] ≤ E[g(Xsr)∣Θsr = u]. (A.4)

◻

Lemma A.5. MHM-2 implies E(g(Xs)∣Γs = γs) is nondecreasing in γs for any bounded, nondecreasing function g(⋅).

Proof. Assumptions UN-2, LI-2, and MO-2 are equivalent to Rosenbaum’s (1988) assumptions (1), (6), and (7), respectively,
which collectively define the item-bundel model. In his Lemma 1, Rosenbaum showed that for any bounded, nondecreasing
function g(⋅) for which UN-2, LI-2, and MO-2 holds, E(g(Xs)∣Γs = γs) is nondecreasing in γs (see, also, Kamae et al., 1977,
Proposition 1). ◻

Proof of Theorem 1. (B implies LI-1 and LI-2) ◻

Proof. The independence of the Γs, Δsr , and εsr by B implies that the εsr are independent given Γs+Δsr =Θsr , and that the (Δsr ,
εsr) are independent given Γs. This, combined with Xsri = fi(Γs +Δsr,εsr), implies LI-1 and LI-2 in the following way. For each
(s,r), given θsr , the Xsri are a function of εsri. Because for each (s,r), the εsri are independent given θsr , the Xsri are independent
given θsr , and LI-1 is implied. Furthermore, the Δsr,εsri are independent given Γs. Because Xsri are a function of (Γs +Δsr,εsri),
given Γs the Xsri are a function of (Δsr,εsri). Hence, Xsr are independent given Γs, and LI-2 is implied. ◻

Proof of Theorem 2. (Under B and H, UN-1, MO-1, and IIO-1 imply UN-2, MO-2, and IIO-2, respectively.) ◻

Proof. First, we consider the extreme case of no respondent variance: If var(Δsr) = 0, then Δsr = 0 and Θsr = Γs for all r and
all s. As a result, P(Xsri = x∣Θsr) = P(Xsri = x∣Γs), P(Xsri ≥ x∣Θsr) = P(Xsri ≥ x∣Γs), and E(Xsri∣Θsr = θsr) = E(Xsri∣Γs = γs).
Hence, UN-1 =UN-2 (Definiton 1), MO-1 =MO-2 (Definition 3), and IIO-1 = IIO-2 (Definition 4). Second, for var(Δsr) > 0,
Lemma A.1 proves that UN-1 implies UN-2, Lemma A.2 proves that MO-1 implies MO-2, and Lemma A.3 proves that IIO-1
implies IIO-2. ◻

Proof of Theorem 3. (For dichotomous item scores (a) the MHM-1 implies MLR-1 and (b) forRs ≥ I, the MHM-2 implies
MLR-2.) ◻
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Proof.

(a) The assumptions in MHM-1 are identical to the assumptions used by Grayson (1988, Theorem 2) and Huynh, 1994
to establish MLR of the sum score in Θsr , hence their proof can be applied.

(b) For clarity, we give the proof for R = I, but it can straightforwardly be generalized for R > I. Let D =R! be the number of
ways that respondents 1, . . . ,R can be ordered, and let d(d = 1, . . . ,D) be an index of possible respondent orderings.
Furthermore, let dr(r = 1, . . . ,R) denote the the position of respondent r in respondent-ordering d. For R > I, the
same method can be applied, but each permutation contains only I respondents, hence the number of permutations
D = R!

(R−I)! .
Let Xd

s+ = Xsd11 +Xsd22 + ...+Xsdr r + ...+XsdRR denote the group-level sum score in which each item score is taken
from a different respondent, with realization xd

s+. Let Xd
s = (Xd

s1,Xd
s2, . . . ,Xd

sI) denote the vector of item scores from
the respondent order from the dth permutation, with realization xd

s . For a given permutation *, let ∑{x∗s ∣x
∗′

s 1=x∗s+}
denote the sum over all possible patterns of I item scores that sum to x∗s+. Let Pi(γs) = P(Xsri = 1∣Γs = γs) and
let Qi(γs) = 1− Pi(γs). By LI-2, for r ≠ p, item scores Xsri and Xspj are independent conditional on γs. Hence, for
dichotomous items, the probability of obtaining group-level sum score x∗s+ is

P(X∗s+ = x∗s+∣Γs = γs) = ∑{x∗s ∣x
∗′

s 1=x∗s+}
∏I

i=1 Pi(γs)x∗si Qi(γs)(1−x∗si)

= ∑{x∗s ∣x
∗′

s 1=x∗s+}
∏I

i=1 Qi(γs)[ Pi(γs)

Qi(γs)
]x∗si .

(A.5)

Because∏I
i=1 Qi(γs) is constant across each item-score pattern x, Equation A.5 is identical to

P(X∗s+ = x∗s+∣Γs = γs) = ∏I
i=1 Qi(γs)∑{x∗s ∣x

∗′

s 1=x∗s+}
∏I

i=1 [
Pi(γs)

Qi(γs)
]x
∗
si . (A.6)

The form of the right-hand side in Equation A.6 is equal to the form used by Grayson (1988, Theorem 2) and Huynh,
(1994). Hence, their methods can be applied to establish MLR of the sum score X∗s+ in γs. Because E(X∗si ∣Γs = γs) =
E(Xsri∣Γs = γs),

E(X∗s+∣Γs = γs) = ∑I
i=1 E(X∗si ∣Γs = γs)

= ∑I
i=1 E(Xsri∣Γs = γs)

= E(Xs+∣Γs = γs),
(A.7)

it follows that MLR also holds for Xs+ in Γs.
◻

Proof of Theorem 4. ((a) The MHM-1 implies SOM-1 and (b) the MHM-2 implies SOM-2.) ◻

Proof.

(a) SOM-1 follows from the general result presented in Lemma A.4. First, note that the respondent-level sum score Xsr+
is a nondecreasing function of Xsr (e.g., Rosenbaum, 1984). Hence, by Lemma A.4, Xsr+ is nondecreasing in θsr , which
is the definition of SOM-1.

(b) SOM-2 follows from the general result presented in Lemma A.5. First, note that the group-level sum score Xs+ is a
nondecreasing function of Xs. Hence, by Lemma A.5, Xs+ is nondecreasing in γs, which is the definition of SOM-2.◻

Proof of Theorem 5. ((a) The MHM-1 implies WSOL-1 and (b) the MHM-2 implies WSOL-2.) ◻

Proof.

(a) MHM-1 implies SOM-1 of Xsr+ by Θsr (Theorem 4(a)). Van der Ark & Bergsma, (2010, Theorem) showed that SOM
implies WSOL, hence WSOL of Θsr by Xsr+ is implied.

(b) Similar to the proof in (a), the MHM-2 implies SOM-2 of Xs+ by Γs, hence, WSOL of Γs by Xs+ is implied. ◻

Proof of Theorem 6. (For dichotomous items (a) the MHM-1 implies MM-1 and (b) the MHM-2 implies MM-2.) ◻

Proof.

(a) The proof is analogous to the proof in Proposition 4.1a Junker, (1993). By the law of total expectation (e.g., Rice, 2006,
p 149) and LI-1

E(Xsri∣Xsr(i)) = E[E(Xsri∣Xsr(i),Θsr)∣Xsr(i)]
= E[Ei(Θsr)∣Xsr(i)].

(A.8)

For dichotomous items, under the MHM-1, by Theorem 3(a), Θsr is nondecreasing in Xsr(i) (SOL). Because Θsr
is stochastically ordered in Xsr(i), so is any nondecreasing function of Θsr , such as Ei(Θsr) (Equation 6; Shaked &
Shanthikumar 2007, Theorem 1.A.3.(a)), which completes the proof.
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(a) This proof is parallel to the proof in (a), which holds when substituting Θsr by Γs, Xsr(i) by Xs(r,i), Ei(⋅) by E(⋅), LI-1
by LI-2, and MHM-1 by MHM-2. ◻

Proof of Theorem 7. ((a) The MHM-1 implies CA-1 and (b) the MHM-2 implies CA-2.) ◻

Proof.

(a) The proof is similar to the proof of Theorem 1 by (Rosenbaum, 1984; see also Holland and Rosenbaum (1986,
Theorem 6). If CA-1 holds, the conditional covariance Cov[g1(Ysr),g2(Ysr)∣h(Zsr)] ≥ 0 (Definition 9). Using standard
algebra, it can be shown that this statement is equivalent to

E[g1(Ysr)g2(Ysr)∣h(Zsr)] ≥ E[g1(Ysr)∣h(Zsr)]E[g2(Ysr)∣h(Zsr)], (A.9)

(e.g., Rice, 2006, p. 138). Hence, we prove that under the MHM-1 Equation A.9 holds. By the law of total expectation,

E[g1(Ysr)g2(Ysr)∣h(Zsr)] = E{E[g1(Ysr)g2(Ysr)∣h(Z),θ]∣h(Zsr)}, (A.10)

(e.g., Rice, 2006, p. 138). By LI-1, Ysr and Zsr are independent given θsr . Hence,

E[g1(Ysr)g2(Ysr)∣h(Zsr)] = E{E[g1(Ysr)g2(Ysr)∣θsr]∣h(Zsr)}. (A.11)

Because, by LI-1, the values in Ysr are independent given θsr , they are associated (Esary et al., 1967, Theorem 2.1).
Therefore,

E[g1(Ysr)g2(Ysr)∣h(Zsr)] ≥ E{E[g1(Ysr)∣θsr]E[g2(Ysr)∣θsr]∣h(Zsr)}. (A.12)

By Lemma A.4, E(g1(Ysr ∣θsr) and E(g2(Ysr ∣θsr) are nondecreasing in θsr , hence, they are associated (Esary
et al., 1967, P4). In addition, by UN-1, θsr is a scalar and therefore associated (Esary et al., 1967, P3). Hence, it follows
that

E[g1(Ysr)g2(Ysr)∣h(Zsr)] ≥ E{E[g1(Ysr)∣θsr]∣h(Zsr)}E{E[g2(Ysr)∣θsr]∣h(Zsr)}. (A.13)

By the law of total expectation, the statement in Equation A.13 is equivalent to

E[g1(Ysr)g2(Ysr)∣h(Zsr)] ≥ E[g1(Ysr)∣h(Zsr)]E[g2(Ysr)∣h(Zsr)], (A.14)

which completes the proof.
(b) The proof is similar to the proof in (a). Throughout the proof, g1(Ysr) is kept the same, but g2(Ysr) is replaced by

g2(Ysp), with r ≠ p. Hence, g1 and g2 apply to different respondents within the same group. Furthermore, Zsr is
replaced by Zs(rp), hence to the vector that contains all item scores in group s, except the scores of respondents r
and p. Finally, θsr is replaced by γs, LI-1 by LI-2, and Lemma A.4 by Lemma A.5, which gives the proof for (b) (see,
also, Rosenbaum, 1988).

◻

Proof of Theorem 8. ((a) The DMM-1 implies MIIO-1 and (b) the DMM-2 implies MIIO-2.) ◻

Proof.

(a) This proof is similar to the proof of the Corollary by Ligtvoet et al., (2011). By IIO-1, E(Xsri∣Θsr = θsr) ≤ E(Xsrj∣Θsr =
θsr). By Equation 5, E(Xsri∣Θsr = θsr) ≤ E(Xsrj∣Θsr = θsr) equals

∑m
x=1 P(Xsri ≥ x∣Θsr = θsr) ≤ ∑m

x=1 P(Xsrj ≥ x∣Θsr = θsr)
⇔ ∑m

x=1 P(Xsri ≥ x∣Θsr = θsr)P(Xsr(ij) = y∣Θsr = θsr) ≤
∑m

x=1 P(Xsrj ≥ x∣Θsr = θsr)P(Xsr(ij) = y∣Θsr = θsr).
(A.15)

By LI-1, Xsri, and Xsr(ij) are independent given θsr , and their joint probability equals the product of their marginal
conditional probabilities (e.g., Rice, 2006, p. 84). Hence, Equation A15 equals

∑m
x=1 P(Xsri ≥ x,Xsr(ij) = y∣Θsr = θsr) ≤ ∑m

x=1 P(Xsrj ≥ x,Xsr(ij) = y∣Θsr = θsr). (A.16)
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Let F(Θsr) denote the cumulative distribution function of Θsr . Integrating both sides of Equation A.16 over Θsr
yields

∫ ∑m
x=0 P(Xsri ≥ x,Xsr(ij) = y∣Θsr = θsr)dF(Θsr) ≤

∫ ∑m
x=0 P(Xsri ≥ x,Xsr(ij) = y∣Θsr = θsr)dF(Θsr)

⇔ ∑m
x=1 P(Xsri ≥ x,Xsr(ij) = y) ≤ ∑m

x=1 P(Xsrj ≥ x,Xsr(ij) = y)
⇔ ∑m

x=1 P(Xsri ≥ x∣Xsr(ij) = y) ≤ ∑m
x=1 P(Xsrj ≥ x∣Xsr(ij) = y)

⇔ E(Xsri∣Xsr(ij)) ≤ E(Xsrj∣Xsr(ij)),

(A.17)

for all y and all i < j, completing the proof.
(b) The proof is parallel to the proof in (a). Replacing Θsr by Γs, θsr by γs, IIO-1 by IIO-2, LI-1 by LI-2, Xsr(ij) by Xs(r,ij),

proofs that the MHM-2 implies MIIO-2. ◻
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