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Geophysical granular flows, such as avalanches, debris flows, lahars and pyroclastic
flows, are always strongly influenced by the basal topography that they flow over.
In particular, localised bumps or obstacles can generate rapid changes in the flow
thickness and velocity, or shock waves, which dissipate significant amounts of energy.
Understanding how a granular material is affected by the underlying topography is
therefore crucial for hazard mitigation purposes, for example to improve the design
of deflecting or catching dams for snow avalanches. Moreover, the interactions with
solid boundaries can also have important applications in industrial processes. In this
paper, small-scale experiments are performed to investigate the flow of a granular
avalanche over a two-dimensional smooth symmetrical bump. The experiments show
that, depending on the initial conditions, two different steady-state regimes can be
observed: either the formation of a detached jet downstream of the bump, or a shock
upstream of it. The transition between the two cases can be controlled by adding
varying amounts of erodible particles in front of the obstacle. A depth-averaged
terrain-following avalanche theory that is formulated in curvilinear coordinates is
used to model the system. The results show good agreement with the experiments for
both regimes. For the case of a shock, time-dependent numerical simulations of the
full system show the evolution to the equilibrium state, as well as the deposition of
particles upstream of the bump when the inflow ceases. The terrain-following theory
is compared to a standard depth-averaged avalanche model in an aligned Cartesian
coordinate system. For this very sensitive problem, it is shown that the steady-shock
regime is captured significantly better by the terrain-following avalanche model,
and that the standard theory is unable to predict the take-off point of the jet. To
retain the practical simplicity of using Cartesian coordinates, but have the improved
predictive power of the terrain-following model, a coordinate mapping is used to
transform the terrain-following equations from curvilinear to Cartesian coordinates.
The terrain-following model, in Cartesian coordinates, makes identical predictions to
the original curvilinear formulation, but is much simpler to implement.
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1. Introduction
Granular free-surface flows are encountered in many geophysical and industrial

processes. They occur at a wide range of scales from table-top flows in a rotating
drum (Gray 2001) to geophysical mass flows, such as avalanches (Savage & Hutter
1989), debris flows (Iverson & Denlinger 2001; Johnson et al. 2012) and pyroclastic
flows (Branney & Kokelaar 1992; Mangeney et al. 2007). Despite differences in
scale of several orders of magnitude, all of these flows may be considered shallow,
after the initial release, with typical flow thicknesses being much smaller than
in-plane length scales, and they can therefore be modelled with a relatively simple
depth-averaged avalanche theory. Such shallow-water-type equations were first used to
model snow avalanches (Grigorian, Eglit & Iakimov 1967), before Savage & Hutter
(1989) presented one of the earliest formal derivations. They used a Mohr–Coulomb
internal rheology and a constant Coulomb basal friction law, which introduced
additional source terms into the momentum equation as well as an earth pressure
coefficient multiplying the depth-averaged pressure, that switched between ‘active’
and ‘passive’ values dependent on whether the flow was dilatational or compressional.
These equations were then applied to the motion of a finite mass of granular material
on a slope with variable topography by using a slope fitted curvilinear coordinate
system (Savage & Hutter 1991; Greve & Hutter 1993). Since their seminal work, this
theory has been used in many different situations and extended to two-dimensional
flows (downslope and transverse) over complex topography (Gray, Wieland & Hutter
1999; Wieland, Gray & Hutter 1999; Mangeney-Castelnau et al. 2003; Bouchut &
Westdickenberg 2004; Doyle, Hogg & Mader 2011).

Gray, Tai & Noelle (2003) simplified the Savage & Hutter (1989) model to a
conservative shallow-water-like structure with source terms, by assuming that the
in-plane deviatoric stresses were negligible and hence that the effective earth pressure
coefficient was equal to unity. This was significant because the resulting hyperbolic
system of equations admitted discontinuous solutions with abrupt changes in material
thicknesses and velocities, features that drastically change the overall properties
of the flow and represent a key challenge in natural hazard mitigation, as well
as optimisation of industrial processes. Such ‘shock waves’ have been extensively
studied for a single layer of Newtonian fluid, whether it be direct applications to
geophysical events such as tidal bores (Stoker 1949; Chanson 2009) or underwater
dune formation (Fourriere, Claudin & Andreotti 2010; Andreotti et al. 2012), or
more fundamental studies into the stability of hydraulic jumps in the presence of a
single obstacle (Lawrence 1987; Baines & Whitehead 2003; Defina & Susin 2003)
or in a wavy channel (Wierschem & Aksel 2004). High-speed granular free-surface
flows exhibit shock waves (Gray et al. 2003) that are very similar to those observed
in shallow water (Rouse 1938; Ippen 1949), gas dynamics (Ames Research & Staff
1953) and flows in collapsible tubes (Shapiro 1977). These shocks may be generated
in a number of different ways, for example using an obstacle (Hakonardottir et al.
2003; Hakonardottir & Hogg 2005; Cui & Gray 2013) or a contraction (Aker &
Bokhove 2008) in the flow. Studies into granular flows past obstacles in particular
(e.g. Tai et al. 1999; Gray et al. 2003; Cui, Gray & Johannesson 2007; Gray & Cui
2007; Johannesson et al. 2009) provide useful insight for the design of deflecting or
catching dams for geophysical hazards, where understanding the shock structure is
crucial. A recent review article on the applications of the theory to geophysical flows
and small-scale experiments is given in Delannay et al. (2017).

Incorporating the effects of topography as well as the presence of erodible material,
which may cause the flow to bulk up, remain key challenges in developing accurate
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Multiple solutions for granular flow over a bump 79

mathematical models of geophysical mass flows. Recent studies have shown that the
topography, in particular centrifugal forces related to curvature effects, have a major
impact on the seismic signals that are generated by an avalanche (Favreau et al.
2010; Levy et al. 2015). These signals can be used to determine the flow history and
properties such as its velocity and rheology for example (Brodsky, Evgenii Gordeev &
Kanamori 2003). Since understanding and quantifying the rheology of a geophysical
flow remains one of the main difficulties in predicting their behaviour, it is of crucial
importance to accurately quantify the topography effects in those inverted seismic
signals which represent an interesting method for direct measurement of geophysical
events (Farin, Mangeney & Roche 2014; Levy et al. 2015). Another key aspect
for geophysical flows is the existence of erodible material in the path of the flow,
which may often have been left by a previous event. Laboratory experiments have
shown that the presence of an erodible granular substrate can drastically change the
behaviour of the flow by enhancing the runout distance (Mangeney et al. 2010; Farin
et al. 2014) or giving rise to erosion–deposition waves (Edwards & Gray 2015) that
could have an important effect on the amount of material transported.

In some flow configurations the presence of obstacles can lead to grain-free
regions, as well as shocks, when material flows around an obstruction (Gray et al.
2003; Cui & Gray 2013), and it is still possible to capture this behaviour within
the depth-averaged framework of Gray et al. (2003). In other cases, a build-up of
material on the upstream side of a barrier may eventually lead to overtopping (Faug,
Beguin & Chanut 2009; Chanut, Faug & Naaim 2010) and, if the oncoming velocities
are sufficiently high, particles losing contact with the base and becoming airborne
to form a granular jet (Hakonardottir et al. 2003; Faug 2015). Beyond the take-off
point, the depth-averaged governing equations are no longer directly applicable,
but Hakonardottir et al. (2003) showed that individual particle trajectories may be
accurately predicted using a ballistic approach.

This paper investigates the dynamics of dense granular flows down an inclined
chute, with a smooth bump acting as an obstacle to the flow. Interestingly, two
contrasting steady-state regimes are found to coexist, for the same chute angle and
mass flux, with only the initial distribution of grains on the chute determining
which is selected. If the chute is initially empty, the flow leaving the hopper is
able to accelerate sufficiently so that it takes off and forms a granular jet when
moving over the bump. However, placing erodible particles in front of the obstacle
reduces the energy of the oncoming flow and can generate a shock upstream of
the bump. A depth-averaged avalanche theory (Savage & Hutter 1991; Gray et al.
1999) in a curvilinear coordinate system that follows the topography of the bump
is able to accurately predict both the take-off point of the jet (which may then
subsequently be modelled as a series of ballistic trajectories) as well as the shock
position and thickness profile at steady state. Time-dependent numerical solutions
of this terrain-following avalanche model are used to show the transient dynamics
before the system reaches equilibrium, as well as the deposition of a static deposit
on the bump once the inflow ceases. A standard depth-averaged avalanche theory in
an aligned Cartesian coordinate system (Savage & Hutter 1989; Gray et al. 2003)
is also presented and compared to the curvilinear terrain-following model for the
shock at steady state. For this highly sensitive problem, this demonstrates that it is
important to take into account the local changes in the slope inclination and the basal
curvature in the depth-averaged momentum balance (Savage & Hutter 1991; Gray
et al. 1999), rather than using a fixed inclination and topography height gradients
to describe the effect of flowing over the bump. For many geophysical applications,
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however, it is not convenient to set-up terrain-following curvilinear coordinates. In
§ 7.2 it is therefore shown how to use a coordinate transformation to convert the
curvilinear terrain-following model of Savage & Hutter (1991) and Gray et al. (1999)
into Cartesian coordinates, i.e. it is explicitly shown how to produce a Cartesian
terrain-following avalanche model.

2. Small-scale experiments

The experimental set-up consists of a 1.8 m long smooth Perspex chute, inclined at
an angle θ to the horizontal, with rigid side walls 5 cm apart. The base of the chute
incorporates a smooth bump extending across the width of the channel, described
by a hyperbolic secant profile with a maximum height of 4.75 cm and with its
centre located 43 cm downstream of the inflow. The bump has a characteristic length
scale of 4 cm, which implies that ∼90 % of its amplitude change occurs over a
downstream distance of 12 cm and its wavelength is therefore approximately 24 cm.
The experiments are performed with spherical glass beads of diameter 600–800 µm,
which are coloured blue and white to aid visualisation. Grains are loaded into a
hopper at the top of the channel and released from rest using a double gate system
consisting of a fixed gate to control the initial flow thickness h0 and another movable
barrier to control the release time. For all of the experiments presented here the
gate height remains constant at h0 = 1.5 cm; qualitatively similar behaviour has been
observed when different values are used.

Two different types of initial condition are implemented in experiments. In the first,
the chute is cleared of all downstream particles before the gate is opened, so that the
granular material flows down a smooth, empty channel. In the second, static particles
(of the same type) are placed slightly upstream of the bump, and the oncoming
flow from the hopper then travels over a partially erodible bed. These different
initial conditions evolve to two dramatically different stable steady-state regimes,
which shall be referred to as the ‘jet’ and the ‘shock’, respectively. Figures 1 and 2
show the time evolution of these two types of flows, and figure 3 shows the final
steady-state behaviour. Supplementary movies of these flows are available online
at https://doi.org/10.1017/jfm.2017.41.

An initially empty chute usually leads to the formation of a jet. As soon as the gate
is opened, the grains flow out of the hopper and accelerate downstream. For slope
angles θ > 35◦, they reach a sufficiently high velocity to detach from the base and
become airborne as they flow over the bump. Once they have passed this take-off
point, the grains approximately follow ballistic trajectories, before landing at a point
downstream of the bump (see figure 1 and movie 1).

A jet may still form when only a small mass of particles is placed in front of the
obstacle. In this case, the oncoming material has enough momentum to entrain the
erodible bed into the bulk flow, which then takes off as before. However, adding more
static particles can lead to the formation of a steady shock upstream of the bump (see
figure 2 and movie 2). When sufficient mass is added, the erodible layer provides
enough resistance to drastically decrease the bulk velocity of the accelerating flow
from the inlet, without itself being pushed over the top of the bump. To conserve
mass, the flow thickness must consequently increase, and this sharp transition in flow
height and velocity is referred to as a granular shock. Some material may also be
scattered into the air during initial impact with the stationary material, as seen in
figure 2. The shock propagates upstream until it reaches a steady-state position. It is
also possible to generate shocks using alternative dissipative mechanisms. One such
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Multiple solutions for granular flow over a bump 81

FIGURE 1. Snapshots of an experiment showing the time evolution of the jet to the steady
state. As the oncoming material flows over the top of the bump it is able to detach from
the base and follow ballistic trajectories, before landing and coming into contact with the
chute once again. The experiment is performed at a constant slope angle θ = 39◦ with
pictures taken at approximate times t= 0.3; 0.6; 0.9 and 4.0 s. Note that the images have
been slightly rotated to maximise space. The bump height of 4.75 cm acts as a scale. The
time-dependent evolution is shown in supplementary movie 1, which is available online.
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82 S. Viroulet and others

FIGURE 2. Snapshots of an experiment showing the time-dependent evolution of the shock
towards steady state. As the oncoming material from the inflow collides with the layer
of static particles upstream of the bump there is a sharp decrease in bulk velocity and
associated increase in flow thickness. This shock propagates upstream until it reaches
an equilibrium position. The experiment is performed at a constant slope angle θ = 39◦
with pictures taken at times t= 0; 0.4; 0.7; 1.0; 1.5 and 4.0 s. Note that the images have
been slightly rotated to maximise space. The bump height of 4.75 cm acts as a scale. A
supplementary movie is available online.
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FIGURE 3. Experimental results showing the two different steady states possible for the
same slope angle and different initial conditions. Both experiments have been performed at
θ = 40◦ with the same inflow conditions. Note that the images have been slightly rotated
to maximise space. The bump height of 4.75 cm acts as a scale.

approach is demonstrated in supplementary movie 3, where an initially empty chute
leads to the formation of a jet, and a rigid obstacle is temporarily placed into the path
of the flow. This again leads to a shock that eventually settles down to an equilibrium
position. Movie 3 also shows that the shock position remains stable to perturbations
in the flow. After reaching steady state, the flow is again obstructed downstream of
the shock. This momentarily causes the shock to migrate upstream, but as soon as
the obstacle is removed the shock relaxes back to its steady-state position. Similarly,
sweeping away small amounts of the slower moving material in the shock causes it
to temporarily move downstream before returning to its original position. However,
sweeping away a larger proportion of the slowly moving grains can lead to complete
remobilisation and transition back to the jet regime.

When an initial deposit of static particles is used to generate a steady shock, a
critical mass of stationary material is required to sufficiently reduce the momentum of
the flowing grains. This critical mass depends on the inclination angle of the chute.
Several experiments have been performed with varying slope angles and masses
of erodible particles to determine the necessary conditions for the formation of a
steady shock. The results are summarised in figure 4, which shows a phase diagram
indicating whether a shock or a jet is formed, depending on the slope angle and
mass of static grains. As expected, more particles are needed to generate a shock
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FIGURE 4. Phase diagram showing the formation of a steady jet (E) or a shock (u)
depending on the slope angle θ and mass of stationary material upstream of the bump.
Also shown are the extreme slope angle regions, where it is not possible to keep any
particles at rest (high slope angles) or a spontaneous shock forms and propagates upstream
to the gate (low angles).

when the slope angle is higher. For slope angles of 34◦ or lower, the flow never
becomes fast enough to pass over the bump, and a shock is spontaneously generated
even when there are no static particles. However, the shock does not reach a steady
state and keeps propagating upwards until it reaches the gate and the flow stops
completely. Contrastingly, for steep slopes θ > 41◦, the friction on the smooth base
is not sufficient to keep any particles placed in front of the obstacle at rest. They
roll over the bump and a jet always forms. Assuming there are enough particles in
front of the bump to create a shock in the first place, the position of the shock does
not depend on the initial mass. Note that the phase diagram of figure 4 is specific
to this precise experimental set-up. In general, the critical mass and maximum and
minimum slope angles for steady-shock formation will depend on the geometry and
position of the bump, the inflow gate height and the frictional properties of the chute
and specific granular material used. However, it is expected that qualitatively similar
behaviour will be found for all configurations.

3. Depth-averaged terrain-following avalanche theory
The flow is modelled using a depth-averaged avalanche theory that is based on the

work of Savage & Hutter (1991) and Gray et al. (1999), and which uses a curvilinear
coordinate system to follow the basal topography. This is referred to throughout this
paper as the terrain-following avalanche model. In order to construct the curvilinear
coordinates, an inclined Cartesian coordinate system OXZ is first defined, with the unit
vector i aligned with the downslope direction of the chute, which lies at a constant
angle θ to the horizontal. The unit vector k is perpendicular to the chute and points
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upwards. The shape of the rigid topography on which the avalanche flows is then
described by

Z = b(X)= 0.0475 sech
(

X − 0.43
0.04

)
, (3.1)

where the coefficients are all in metres. This is illustrated in figure 5(a) and forms
a reference surface for the terrain-following curvilinear coordinate system Oxz, where
the position vector of a point is given by the distance x along this reference surface
and the height z in the direction normal to the base (see Gray et al. 1999, and figure 6
for details). For a small increment in the down chute coordinate dX, there is a small
increment in the topography height db and by Pythagoras’ theorem the associated
increment in the curvilinear coordinate dx satisfies dx2 = dX2 + db2. In differential
form this implies

dx
dX
=
√

1+
(

db
dX

)2

, (3.2)

which can be integrated to give a mapping between the downstream distance in
curvilinear and Cartesian coordinates, i.e.

x=
∫ X

0

√
1+

(
db
dX

)2

dX′. (3.3)

The curvilinear coordinate is therefore just the arc length of the basal topography. As
a result, the curvilinear distance is slightly longer than the Cartesian distance as shown
in figure 5(b). A key advantage of the terrain-following model (Savage & Hutter 1991;
Gray et al. 1999) is that, as the avalanche flows over the topography, it experiences
changes in the local slope inclination ζ with the downstream coordinate x. The angle
is computed from the definition of the topography (3.1) by

ζ = θ − tan−1

(
db
dX

)
, (3.4)

where θ is the angle of the Cartesian coordinates to the horizontal. If the chute is
inclined at an angle of θ = 39◦ then the local slope inclination ζ ranges between
approximately 8◦ and 70◦ as shown in figure 5(c). The local variation of the
inclination angle ζ has a very important influence on the net balance between the
downslope acceleration and the resistance due to basal friction in the terrain-following
model. The final element of the curvilinear coordinate system is that it also takes
account of changes in curvature κ , which is defined as

κ =−dζ
dx
=− 1

∆b

dζ
dX
= 1
∆3

b

d2b
dX2

, (3.5)

where the factor

∆b =
√

1+
(

db
dX

)2

. (3.6)

Note that the final result in (3.5) follows from differentiating arctan. Once the local
inclination ζ and the curvature κ have been computed from the prescribed topography
(3.1), the mapping (3.3) is used to convert them to functions of x. It should be noted
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FIGURE 5. Plots of (a) the topography, (b) the curvilinear coordinate x (dashed line) and
X (solid line) (c) the local slope inclination angle ζ for a chute angle θ = 39◦ and (d) the
curvature κ (solid line) and second derivative of the topography d2b/dX2 (dashed line), as
functions of the Cartesian downslope coordinate X.
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O

Z

H

h

X

x

z

FIGURE 6. Sketch of the different coordinate systems used in this paper. The Cartesian
OXZ axes are aligned at a constant angle θ to the horizontal. The topography on which
the avalanche flows is then defined in terms of a surface Z= b(X). This forms a reference
surface for the slope-fitted curvilinear coordinate system Oxz, with the x-axis following the
reference surface and being locally inclined at an angle ζ (x) to the horizontal. The z-axis
is in the direction of the local normal, which is at an angle ζ to the gravity acceleration
vector.

that the curvilinear coordinates introduce a singularity corresponding to where adjacent
z-axes intersect (Gray et al. 1999), which occurs at a height z = 1/κ . For the flow
over a smooth bump considered here, κ is never large enough that the thickness of
the avalanche is greater than the local radius of curvature 1/κ of the topography, so
there is no overlap of coordinates.

Following Gray et al. (1999) the depth-averaged mass and momentum balance
equations for the terrain-following avalanche model in curvilinear coordinates are

∂h
∂t
+ ∂

∂x
(hū)= 0, (3.7)

∂

∂t
(hū)+ ∂

∂x
(χhū2)+ ∂

∂x

(
1
2

gh2 cos ζ
)
= h

(
g sin ζ − ū

|ū|µ(g cos ζ + χκ ū2)

)
,

(3.8)

respectively, where g represents the gravitational acceleration, h is the flow thickness
measured normal to the base, ū is the depth-averaged velocity in the direction of the
reference surface and µ is the effective friction coefficient, which may, in general,
depend on the flow variables. Note that the system (3.7)–(3.8) implicitly assumes that
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the density is constant and uniform, i.e. the flow is incompressible. In addition, the
earth pressure coefficient (Savage & Hutter 1989) is assumed to be unity, based on
the scaling analysis of Gray & Edwards (2014).

The shape factor

χ = u2

ū2
, (3.9)

arises in the depth integration of the momentum transport equation to account for
the fact that the product of the depth-averaged velocity is not, in general, equal to
the average of the velocity product. Particle image velocimetry (PIV) measurements
of the accelerating region through the side walls suggest that the vertical velocity
may be approximated by a linear profile of the form u = ū(α + 2(1 − α)z/h), with
a shear parameter α ≈ 0.87 representing a large degree of basal slip. This gives a
corresponding shape factor χ = 1.006. Although the presence of side wall friction may
influence these measurements (Baker, Barker & Gray 2016) they are consistent with
surface and basal velocity measurements performed by Faug et al. (2015) in the centre
of their channel, which suggest χ = 1.009 if a Bagnold profile with basal slip is used
to calculate χ . Similarly small deviations of χ away from unity are also obtained
in the discrete element simulations of Brodu, Richard & Delannay (2013). For this
reason the velocity profile is approximated here by plug flow, which corresponds to
a value χ = 1. The curvature term κχhū2 on the right-hand side of (3.8) is a key
feature of the depth-averaged terrain-following model, and describes the enhancement
or reduction of the basal pressure due to centrifugal forces as the avalanche flows over
topography, in the same way as one is pushed down harder or thrown up into the air
on a roller coaster.

With the assumption that χ = 1, the characteristics of the governing equations (3.7)
and (3.8) are given in (x, t) space by

dx
dt
= λ±, (3.10)

where the characteristic wave speeds are

λ± = ū±√gh cos ζ . (3.11)

This motivates the definition of the granular Froude number

Fr= |ū|√
gh cos ζ

, (3.12)

as the ratio of the flow speed to the speed of surface gravity waves, and it can be
seen that for supercritical flow (Fr>1) both characteristics move in the same direction,
whereas in the subcritical regime (Fr< 1) they travel in opposite directions.

3.1. Steady solution
As observed during the experiments, the flow can evolve into a steady state, and in
this steady state the depth-averaged mass and momentum balance equations, (3.7) and
(3.8), reduce to

d
dx
(hū)= 0, (3.13)

d
dx
(hū2)+ d

dx

(
1
2

gh2 cos ζ
)
= h

(
g sin ζ − ū

|ū|µ(g cos ζ + κ ū2)

)
. (3.14)
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The mass balance equation (3.13) can be integrated directly, subject to the boundary
condition that the avalanche velocity and thickness at the inflow are ū0 and h0,
respectively, to give a relation between the flow thickness and the velocity

hū= h0ū0. (3.15)

By expanding out the derivatives, noting that the slope angle ζ is x-dependent in this
curvilinear system, and dividing equation (3.14) by h, the depth-averaged momentum
balance becomes

ū
dū
dx
+ g cos ζ

dh
dx
− 1

2
gh sin ζ

dζ
dx
= g cos ζ (tan ζ −µ)−µκ ū2, (3.16)

where (3.13) has been used to simplify (3.16) and it has been assumed that ū > 0.
Substituting κ = −∂ζ/∂x for the curvature and using (3.15) to replace the depth-
averaged velocity allows (3.16) to be written as a single ordinary differential equation
(ODE) governing the evolution of the flow thickness,

dh
dx
= h3g cos ζ (tan ζ −µ)− hµκ(h0ū0)

2 − 1
2 gh4κ sin ζ

h3g cos ζ − (h0ū0)2
. (3.17)

For a given basal friction coefficient µ and inflow conditions (h0, ū0), equation (3.17)
can be integrated numerically subject to h = h0 at x = 0. This gives the thickness
profile h(x) as material leaves the hopper, which is identical for both the jet and
shock regimes. The depth-averaged velocity profile can then be recovered from the
mass balance equation (3.15). In the experiments material accelerates and thins as
it comes out of the inflow gate, and this behaviour is recovered in the numerical
solutions if dh/dx 6 0 at x = 0. The curvature terms in (3.17) are negligible at the
inflow, and since tan ζ >µ for accelerating flows the numerator is always positive at
x= 0. Examining the denominator, it can be seen that (3.17) only admits accelerating
solutions if Fr0 > 1, where

Fr0 = ū0√
gh0 cos ζ0

, (3.18)

is the inflow Froude number and ζ0 is the inclination angle at x = 0. For the rest
of this paper it will be assumed that the Froude number at the inflow equals unity,
i.e. Fr0= 1, which corresponds to an infinite gradient at the inflow. This is consistent
with the notion that particles are fully mobilised along the inside wall of the hopper
and are free to move downwards, i.e. there is no dead zone adjacent to the hopper
wall. As these particles exit the hopper they are therefore moving down normal to
the chute, before they are accelerated downstream. Note that it is possible to choose
other values Fr0> 1 with less steep thickness profiles (see e.g. Cui & Gray 2013), but
further justification for setting Fr0= 1 will be given in § 3.2. With this choice there is
a singularity in (3.17) at the origin. A power series expansion can be used to integrate
directly from the inflow position. To achieve this, the curvature terms are neglected
and the ODE is written in the alternative form

dx
dh
= f (h), (3.19)

where the function

f (h)= h3g cos ζ0 − (h0ū0)
2

h3g cos ζ0(tan ζ0 −µ), (3.20)
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satisfies f (h0)= 0. Expanding about this point by assuming

h(x)= h0 + hε(x), |hε| � |h0|, (3.21)

allows the leading-order behaviour of the ODE (3.19) near the inflow to be written
as

dx
dhε
= hεf ′(h0), where f ′(h0)= 3

h0(tan ζ0 −µ(h0))
. (3.22)

Here, the relationship ū0=√gh0 cos ζ0 has been used to simplify the derivative f ′(h0),
which is a positive constant. Equation (3.22) can be solved, subject to hε = 0 at x= 0,
to give

hε(x)=±
√

2x
f ′(h0)

. (3.23)

Choosing the negative root to ensure a thinning, accelerating flow, the thickness is
calculated near the hopper by the algebraic expression

h(x)= h0 −
√

2x
f ′(h0)

, (3.24)

and for positions further downstream it is computed numerically using the full ODE
(3.17). In the complete absence of curvature terms, and a constant basal friction
coefficient µ, it is also possible to construct an exact solution by integrating (3.17)
directly and solving a cubic equation for ū (see Cui & Gray 2013, p. 320).

3.2. Basal and wall friction
For a given basal topography, the only parameter left in (3.7), (3.8) is the effective
friction µ. An efficient way to determine this coefficient on a smooth slope is
to measure the surface velocity of the accelerating flow and match it to the
one-dimensional theory (see Cui & Gray 2013). A similar approach is adopted
here by using a high-speed camera (Teledyne DALSA Falcon2 with macro lens) to
capture images of the top of the flow at a frame rate of 2000 frames per second (fps).
The resolution is sufficient to capture details of circa 100 µm, and individual grains
are seen to travel approximately one grain diameter between frames for the highest
slope angles. These images are processed with the PIV software PIVlab for MATLAB
(Thielicke & Stamhuis 2014) to calculate the surface velocity profiles us(y) (where
y is the transverse coordinate across the chute) at different downstream locations
X. The camera is always aligned perpendicular to the local slope, so the measured
velocity corresponds to the curvilinear value, and the velocities are averaged over the
time window that the images cover.

The results of this PIV are shown in figure 7 for slope angles θ = 38◦ and θ = 40◦.
All of the profiles show clear curvature across the chute, with wall friction effects
leading to noticeably smaller velocities towards the lateral boundaries (Brodu et al.
2013; Faug et al. 2015; Baker et al. 2016). This confirms that any measurements
made from the side may not be representative of the overall flow, and also suggests
that the effective friction coefficient should account for friction at the wall as well as
the base. Following Taberlet et al. (2003), an effective friction coefficient that models
both the basal and side wall contributions can be expressed as

µ=µb + h
W
µw, (3.25)
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FIGURE 7. Time-averaged surface velocity profiles us(y) at different downslope locations
X, calculated using high-speed camera images and PIV from the top of the flow.

where µb and µw are constant coefficients for the basal and wall friction, respectively,
and W is the chute width. This is a friction law designed for smooth frictional
beds, as opposed to a rough bed friction law, such as those of Pouliquen (1999) and
Pouliquen & Forterre (2002), where a layer of particles is glued to the bed. The
thickness-dependent wall friction term will be negligible for a thin accelerating flow,
but might become significant after the shock where the flow thickness is comparable
to the channel width. Note that expression (3.25) only has empirical support for
h/W < 1.5 (Taberlet et al. 2003), but the flows studied in this paper remain in this
regime. Substituting (3.25) into the ODE (3.17) allows the thickness profile, and
subsequently the depth-averaged velocity, to be calculated for material leaving the
gate. Figure 8 shows the resulting velocity profiles, which have been converted to
Cartesian downslope distances X, for ease of comparison, by inverting the integral
mapping (3.3). Material accelerates downslope as it leaves the hopper, is slowed
down by the topography and then accelerates once more after passing the bump.
All of the experimental measurements are taken upstream of the take-off point for
the formation of the jet, which implies that the equations for dense granular flows
still apply. For calibration, the PIV results are averaged in the cross-slope direction
(since the model is one-dimensional). Assuming plug flow, the surface velocities
correspond to the depth-averaged ū, and choosing µb = tan(23◦) and µw = tan(7.5◦)
gives a good fit for both slope angles, as shown in figure 8 (solid lines). Note that
this agreement provides justification for the choice Fr0 = 1 at the inflow, since trying
to model the experimental results using larger values Fr0 > 1 give unphysical values
for the friction parameters and/or less satisfactory fits to the data points. Also shown
in figure 8 are the theoretical profiles in the absence of wall friction (dashed lines).
In this thin accelerating regime this additional friction term is almost negligible, but
it is expected to play a more significant role in the thicker flows near the shock
and hence is included in the effective friction coefficient µ. As a final point, the
corresponding basal topography is also represented in figure 8, with shaded regions
corresponding to where the basal friction is greater than the downslope component
of the gravitational acceleration (µb > tan ζ ). The evolution of the flow velocity with
this topography strongly resembles the results obtained from numerical simulations
of rock falls in Montserrat (Levy et al. 2015).
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FIGURE 8. Surface velocities, averaged in both time and transverse position, measured
at different downslope locations X using PIV (◦). Solid and dashed lines represent the
solution to (3.17) with µ = tan(23◦) + (h/W) tan(7.5◦) and µ = tan(23◦) respectively,
both with h0 = 0.015 m and Fr0 = 1 at the inflow. A not-to-scale schematic of the
basal topography is included for both slope angles, with shaded areas representing where
µb > tan ζ .

4. Formation of a jet downstream of the obstacle
When there are no (or too few) grains initially upstream of the bump, a jet usually

appears downstream of the obstacle (see figures 1, 3(a) and 4, as well as movie 1).
When the flow is released from the hopper it accelerates downslope before being
directed upwards (relative to the chute base) and detaching from the topography at a
take-off point, where all the particles lose contact with the base and proceed to follow
a parabolic trajectory. The take-off point corresponds to where the normal traction at
the base of the avalanche vanishes. Following Gray et al. (1999), this normal traction
in curvilinear coordinates is expressed by

nb
· (σ bnb)=−ρgh cos ζ − ρκhū2, (4.1)

where σ b is the Cauchy stress at the base, ρ is the flow density (assumed constant)
and h, ζ , κ and ū are all x-dependent. Setting (4.1) to zero, the normal traction
vanishes when

ū2 =−g cos ζ
κ

. (4.2)

The depth-averaged velocity along the chute can be calculated by integrating the
ODE (3.17) to determine h(x) and then using the mass balance equation (3.15) to
determine ū, as shown in § 3.2 and figure 8. The computed velocity can then be
used to determine the take-off point x = xJ , where condition (4.2) is satisfied. The
corresponding flow thickness hJ = h(xJ) and depth-averaged velocity ūJ = ū(xJ) can
then be extracted and used as initial conditions for the jet, whose motion is computed
by using Newton’s second law (assuming the only body forces are due to gravity) to
determine the trajectory of airborne particles. Note that it is much easier to compute
the jet dynamics in the aligned Cartesian coordinate system than in the curvilinear
system. In Cartesian variables the initial take-off point at the free surface of the flow
(XJS, ZJS) is found from the curvilinear coordinates by the projections

XJS = X(xJ)− hJ sin βJ, (4.3)
ZJS = b(X(xJ))+ hJ cos βJ, (4.4)
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where X(xJ) represents the Cartesian abscissa of the take-off point xJ , ζJ = ζ (xJ) is
the inclination of the x-axis at the take-off point and βJ = θ − ζJ is the angle between
the z and Z axes at this same position. Throughout this paper the free surface of the
non-airborne avalanche is reconstructed with a similar projection method to (4.3)–(4.4)
at a general point (x,h). Assuming the dominant velocity is purely downslope at x= xJ
(i.e. the flow is tangential to the topography at the take-off point), the initial take-off
velocity has components (UJ,WJ) in the downslope and normal directions, respectively,
where

UJ = ūJ cos βJ, (4.5)
WJ = ūJ sin βJ. (4.6)

The trajectories (X(t), Z(t)) are then governed by the second-order ODEs

d2X
dt2
= g sin θ, (4.7)

d2Z
dt2
=−g cos θ, (4.8)

which may be integrated subject to the initial conditions (4.3)–(4.6) to give

X(t)= 1
2 gt2 sin θ +UJt+ XJS, (4.9)

Z(t)=− 1
2 gt2 cos θ +WJt+ ZJS. (4.10)

Solving (4.9) for time t and substituting into (4.10) implies that

Z(X)=− 1
2 gT(X)2 cos θ +WJT(X)+ ZJS, (4.11)

where

T(X)=− UJ

g sin θ
+
√(

UJ

g sin θ

)2

+ 2(X − XJS)

g sin θ
, (4.12)

and the positive root is chosen in (4.12) to ensure that X > XJS for positive times.
Equations (4.11), (4.12) determine the trajectory of the top surface of the jet once
the initial positions (4.3) and (4.4) are determined. Trajectories for particles starting at
heights between zero and hJ may also be constructed in a similar manner, but lie close
to the surface jet trajectory, due to the shallowness of the flow and the assumption of
plug flow prior to take-off.

Figure 9 shows a comparison between the theoretical and experimental surface
jet trajectories, at two different slope angles θ = 38◦ and θ = 40◦. In both cases,
the (dashed) paths given by (4.11) and (4.12) show fairly good agreement with
experiments for the centre of the jet. There is, however, significant vertical spreading
of the airborne material, with the effective flow thickness becoming much greater
compared to the upstream region. One possible explanation for this is that there
is vertical shear through the depth of the avalanche prior to take-off, since this
would imply that the upper particles have greater take-off velocities and follow
higher trajectories. However, as already noted, the amount of shear is low, and a
more probable reason for the vertical spreading is the effect of wall friction. The
theory is quasi-one-dimensional, with a single mean value of velocity used at each
cross-slope position in the flow. However, as shown in figure 7, particles at the walls
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(a)

(b)

FIGURE 9. Comparison of the surface jet trajectories for the depth-averaged theory (4.11),
(4.12) (dashed lines) and experimental results for a slope angle (a) θ =38◦ and (b) θ =40◦.
The solid lines are calculated using the measured surface velocities at the centre of the
channel for the top of the jet, and the dash-dotted lines are using the wall velocity for the
lower trajectory (see figure 7). The red dots represent the surface take-off points (xJ, hJ).
Note that the images have been slightly rotated to maximise space. The bump height of
4.75 cm acts as a scale.

are slower than the mean and those in the centre are faster. The images in figure 9
are taken from the side of the chute through clear walls, so that the upper trajectories
in figure 9 actually correspond to the fastest particles in the centre. Similarly, the
lower paths are the slower moving wall particles. By keeping the take-off position xJ
predicted by (4.2) and instead imposing the surface velocity measured at the middle
of the flow for X= 0.40 m (near the take-off point), much better agreement is found
for the surface trajectories at both slope angles (see solid lines in figure 9). In the
same way, using the surface velocity measured near the walls gives a significantly
improved fit for the lower paths (see dash-dotted lines in figure 9). Hence, much
of the apparent spreading of the jet can be accounted for by including wall friction
effects. The underestimation of the top surface of the jet may also be explained by
the fact that the surface velocities are slightly underestimated by the theory near the
take-off point (especially for θ = 40◦), as seen in figure 8.

5. Formation of a steady shock upstream of the obstacle
As observed during the experiments, introducing a static deposit of particles in

front of the obstacle can cause a steady shock to form before the bump instead
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of a jet behind it (figure 3 and movie 2). This shock separates a thin fast moving
(supercritical) upstream region from a slower (subcritical) regime with an associated
increase in thickness on the downstream side. Experimentally, there is a rapid, but
smooth, transition across the shock, with a width that is controlled by the viscosity
of the system (Whitham 1974). The mean shock position (referred to as simply shock
position from this point onwards) is defined to be the point of maximal free-surface
gradient dh/dx in this zone. Conversely, in the hyperbolic inviscid depth-averaged
theory (3.7)–(3.8) the shock represents a mathematical discontinuity and therefore has
an infinitesimally small width and unique downslope position. Despite this important
difference, the model is able to predict the key features of the position of the shock
and corresponding thickness profile.

The jump conditions govern the conservation of mass and momentum when the
thickness and velocity are discontinuous. They are derived from the integral form of
the conservation laws using a limiting argument (see e.g. Chadwick 1976). For the
case of a one-dimensional stationary shock at x= xs, the general form (e.g. Gray et al.
2003; Gray & Cui 2007) reduces to

JhūK= 0, (5.1)
q

hū2 + 1
2 gh2 cos ζs

y= 0, (5.2)

where the local chute inclination angle ζs= ζ (xs) and the jump brackets Jf K= f+− f−
denote the difference between the enclosed function on the forward (+) and rearward
(−) sides of the shock. Note that the source terms do not enter into the momentum
jump (5.2), since their integral vanishes as the control volume is shrunk down onto
the shock (Chadwick 1976). Written out explicitly, equations (5.1) and (5.2) are

h−ū− = h+ū+, (5.3)
h−(ū−)2 + 1

2 gh2
− cos ζs = h+(ū+)2 + 1

2 gh2
+ cos ζs, (5.4)

giving two expressions relating the unknown quantities h±, ū±. The shock position xs
is also unknown at this stage.

The mass jump condition (5.1) implies that hū is the same on either side of the
shock and, using (3.15), it follows that the volume flux is equal to h0ū0 everywhere
on the chute, i.e.

h0ū0 = h−ū− = h+ū+ = hū. (5.5)

This can be used to eliminate the velocities ū± in the momentum jump condition (5.4)
and it also follows that the ODE (3.17) governs the thickness on both the upstream
and downstream sides of the shock.

To ensure that sufficient information is propagated into the shock in order to
determine its position, the causality condition (see e.g. Ockendon et al. 2004) states
that three families of characteristics must travel into the discontinuity. Note this is
also equivalent to the Lax entropy condition (Lax 1957), which ensures that the
vanishing viscosity solution of the equations is selected. Assuming that ū is positive,
it follows from the definition of the characteristics (3.10)–(3.11) that this occurs if
and only if the upstream side is supercritical (Fr > 1) and the downstream side is
subcritical (Fr < 1), giving a range of permissible shock positions. The ODE (3.17)
can then be integrated forward in space from x = 0 up to x = xs, giving h− and ū−,
before applying the jump conditions (5.3) and (5.4) to calculate h+ and ū+. The
downstream region of the flow is found by integrating (3.17) with initial condition
h= h+ at x= xs.
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O

Z

X

FIGURE 10. Diagram showing a sketch of the solution structure of the shock. There is a
supercritical flow (Fr>1) out of the hopper, which transitions to a subcritical flow (Fr<1)
across a shock located at xs in curvilinear and Xs in Cartesian coordinates, respectively.
At x1 and X1 the flow transitions smoothly back from a subcritical to a supercritical flow
of height h1. The inflow height is denoted h0.

Even after enforcing the causality condition, there is a non-unique way of choosing
the shock position xs. This is in direct contrast to the experimental set-up, which
selects a specific shock position for a given slope angle. There is a very simple
mathematical resolution of this issue. Immediately after the shock the flow is
subcritical, so the solution can either continue to decelerate and thicken, which
is not what is observed, or it can accelerate. If it accelerates, then the Froude number
will increase, and when it reaches unity the denominator of the ODE (3.17) will be
zero and hence the thickness gradient becomes infinite (dh/dx→∞), which is again
unphysical. The only exception to this is when the numerator of (3.17) is also zero,
which implies that the gradient is undefined, or at least must still be determined
by L’Hôpital’s rule. In this latter case it is possible to produce a smooth transition
from subcritical to supercritical flow as the avalanche accelerates down the chute,
as sketched in figure 10 and shown in figure 11. There is therefore a critical point,
x= x1 (say), where the Froude number is equal to one and hence the flow speed is
equal to the gravity wave speed.

The critical point is analogous to the sonic point in gas dynamics (e.g. Laney 1998)
and plays a vital role in selecting the correct shock position, in a parallel way to flows
in collapsible tubes (Shapiro 1977). Denoting the flow thickness and velocity at x1 by
h1 and ū1, respectively, and recalling that Fr0=1 at the inflow as well as at the critical
point, it follows that

h0ū0 = h1ū1, (5.6)
ū0√

gh0 cos ζ0
= ū1√

gh1 cos ζ1
= 1, (5.7)

where (5.6) represents the conservation of mass (3.15), and the slope angles at the
inflow and the critical point are ζ0 = ζ (0) and ζ1 = ζ (x1), respectively. Using (5.6) and
(5.7) the thickness at the critical point is

h1 = h0

(
cos ζ0

cos ζ1

)1/3

, (5.8)

which can be substituted into the numerator of (3.17) to give

h3
1g cos ζ1(tan ζ1 −µ(h1))− h1µ(h1)κ1(h0ū0)

2 − 1
2 gh4

1κ1 sin ζ1 = 0. (5.9)

This can then be solved for the location x= x1 of the critical point using a standard
numerical root finding technique. At the critical point the Froude number is equal to
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FIGURE 11. Comparison of the experimental and theoretical (white line) free-surface
profile for the steady shock at a slope angle θ = 39◦. Note that the image has been slightly
rotated to maximise space. The bump height of 4.75 cm acts as a scale.

unity and both the numerator and the denominator of the ODE (3.17) are equal to
zero. The gradient of the solution at the critical point therefore has to be determined
either by a Taylor series expansion or by L’Hôpital’s rule (see appendix A for details).
However, once the position and gradient of the critical point have been determined, the
ODE (3.17) can be integrated both upstream and downstream of x= x1, to construct a
solution that transitions smoothly from subcritical flow (for x< x1) to supercritical flow
(for x> x1) as sketched in figure 10. The final part of the problem is to connect the
smoothly varying solution through the critical point to the supercritical solution that
emerges from the hopper described in § 3. By construction the mass jump condition
(5.1) is satisfied everywhere, so it only remains to find the shock position x= xs where
the momentum jump condition (5.2) is satisfied, which can again be solved for using
a standard numerical root finding method. There are in fact two solutions; however,
only the one that lies furthest upstream is stable to small perturbations and this is the
one that is observed in experiments.

Figure 11 shows a comparison of the thickness profile for the experiment and theory,
at a slope angle θ = 39◦. The shock position is in relatively good agreement with the
experiment. There are, however, some discrepancies in the flow thickness, especially
in the shock region, where, as already noted, the flow is non-shallow and has a rapid
(but smooth) transition in thickness. This is in contrast with the discontinuity predicted
by the shallow-water model. It is possible to construct smooth shocks by including a
depth-averaged version of the µ(I)-rheology (Gray & Edwards 2014) into the theory
as in Edwards & Gray (2015). However, this is based on the rough-bed friction law
(Pouliquen 1999), which is inconsistent with the Coulomb-type law (3.25) and thus
not included here. Another important effect that is missing is the dilatation of the flow.
Faug et al. (2015) recently observed that, for avalanches on steep slopes on a smooth
base, the supercritical flow becomes more dilute as it leaves the gate and accelerates
downstream, whereas after the shock the solids volume fraction is increased in the
slower moving regime. This would potentially lead to an under prediction of the flow
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thickness in the accelerating region and an over prediction of the thickness after the
shock.

In addition, a much greater degree of shear is observed in the thick region,
immediately behind the shock, compared to the accelerating regions, with particles
at the bottom becoming close to static, especially at lower angles of inclination.
Long exposure photographs indicate that all the grains are in fact in motion, but
there is certainly much greater shear through the flow, than in the region upstream
of the shock. This shear is not accounted for by the theory, since plug flow is
assumed everywhere. In the thick region the velocity profile at the side wall is better
approximated by an exponential function (see e.g. Wiederseiner et al. 2011) of the
form

u= Λū
exp(Λ)− 1

exp
(
Λ

z
h

)
, (5.10)

which has a corresponding shape factor

χ = u2

ū2
= Λ

2

(
exp(Λ)+ 1
exp(Λ)− 1

)
. (5.11)

For the value of Λ = 3.24 found by Wiederseiner et al. (2011) this gives a shape
factor χ = 1.75, which is no longer close to unity. It is therefore surprising that the
theory is able to accurately describe such regions. There are two places in (3.8) where
χ appears. The first is in the momentum transport term and the second is in the
centrifugal correction to the basal pressure. It is useful to define two non-dimensional
parameters

P1 = χhū2

1
2 gh2 cos ζ

= 2χFr2, and P2 = κχhū2

gh cos ζ
= χκhFr2. (5.12a,b)

The first is the ratio of the momentum transport terms to the depth-averaged pressure
gradient in the momentum balance (3.8), whilst the second is the ratio of the
centrifugal pressure correction to the basal pressure in the source terms. The product
κh is always less than unity, otherwise the avalanche is thicker than the intersection
point of the curvilinear coordinates. Moreover the Froude number typically lies
between 0.19 < Fr < 0.25 in the thick slowly moving region of the flow, as shown
in figure 13. Hence the Froude number squared lies in the range 0.03 to 0.06, and
the ratios P1 and P2 are very small unless χ is very large. It follows that even if
there was a fairly large deviation of χ away from unity, its effect in the thick, slowly
moving region would be small. The simple depth-averaged model therefore provides
a good approximation in the slowly moving region despite the shape factor being
unrepresentative of the shear profile. Conversely, in the thin fast moving regions,
where momentum transport terms and centrifugal effects can dominate, there is
considerable slip at the base of the avalanche, so that χ = 1 (as assumed) is a good
approximation. Remarkably, then, despite the simplicity of the model there is an
excellent agreement between the experimental and theoretical shock position for a
wide range of slope angles, using the same friction coefficients obtained in § 3.2, as
shown in figure 12.

6. Time and spatially dependent numerical simulations
The full governing equations (3.7)–(3.8) are now solved numerically to show the

transient evolution to the equilibrium shock state described in the previous section, as
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FIGURE 12. Variation of the mean shock position Xs with slope angle θ for experiments
(symbols) and the depth-averaged terrain-following model (solid line). The horizontal error
bars of ±0.1◦ are determined by the precision of our digital inclinometer, while the
vertical error bars indicate the relative uncertainties associated with the measurement of
the shock position.

well as the formation of a static deposit on the bump when the inflow ceases. The
hyperbolic system is solved using the shock-capturing non-oscillatory central scheme
of Kurganov & Tadmor (2000), whose semi-discrete formulation is combined with a
second-order Runge–Kutta time integrator.

In order to solve the system, the depth-averaged equations (3.7), (3.8) together with
the friction law (3.25) are written in terms of conserved variables in vector form as

∂w
∂t
+ ∂f (w)

∂x
= S(w), (6.1)

where w= (h, m)T is the vector of conserved variables h and m= hū. The resulting
convection flux function f and source term vector S= (0, S)T are given by

f =
 m

m2

h
+ h2

2
g cos ζ

 , S=
 0

hg sin ζ −µ ū
|ū|
(
hg cos ζ + κχm2/h

) . (6.2)

The critical inflow Fr= 1 at x= 0 means that two inflow conditions must be specified
(e.g. Weiyan 1992), which are the same as those for the steady ODE, i.e.

h(0, t)= h0, (6.3)
m(0, t)= h0ū0. (6.4)

Computations are carried out in a domain 0 6 x 6 0.8 m, which is discretised over
16 000 grid cells. The initial static distribution of mass that is placed in front of the
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FIGURE 13. The Froude number Fr as a function of the curvilinear coordinate x for a
steady-shock solution at an inclination θ = 39◦. The shock lies at x= xs and the Froude
number equals unity at x= x1. The thick slowly moving region lies approximately between
xs 6 x 6 0.37 m.

bump in order to trigger the shock is parameterised by the initial conditions

h(x, 0)= hinit(x), m(x, 0)= 0, (6.5a,b)

where the function hinit(x) is prescribed. Figure 14 shows a simulation of an avalanche
as it flows down a plane inclined at θ = 39◦ and hits a static deposit that has been
left by a previously computed avalanche. In fact, the final deposit that is computed at
the end of this simulation, which is shown in figure 15, is indistinguishable from the
initially assumed deposit, so the solution is quasi-periodic in nature.

As the avalanche first impinges on the deposit, at approximately 0.22 s, it generates
an erosion shock that accelerates the thin static deposit on the bump into a slowly
moving thick layer of material. This shock, which is similar to those observed by
Edwards & Gray (2015), propagates rapidly downslope and reaches the end of the
static deposit at approximately 0.52 s, and dissipates. At the same time as the static
material is being mobilised, the fast moving upstream avalanche produces a shock at
the rear of the thick slowly moving layer, which also moves downslope, but at a much
slower rate than the erosive shock at the front. At approximately 0.68 s this shock
reverses direction and slowly starts to propagate upstream, reaching the steady-state
equilibrium position at approximately t= 5 s, with no further propagation of the shock
occurring before the final image in figure 14 at t= 8 s.

It is very important to note that if the static layer of grains were replaced by a
rigid smooth topography with the same shape, the flow would automatically develop
into the jet solution, which would be even stronger due to the slightly steeper slope.
In the absence of the dissipation mechanism, provided by the erodible grains, the
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FIGURE 14. Temporal evolution of the free-surface height towards steady state for a shock
at slope angle θ = 39◦. Note that the images have been slightly rotated to maximise space,
the aspect ratio is 1:1 and the bump height of 4.75 cm acts as a scale. The final image
corresponds to tsteady = 8 s. A supplementary movie is available online.
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FIGURE 15. Temporal evolution of the free-surface height once the inflow ceases at slope
angle θ = 39◦. Note that the images have been slightly rotated to maximise space, the
aspect ratio is 1:1 and the bump height of 4.75 cm acts as a scale. The final image
corresponds to tsteady = 15 s. A supplementary movie is available online.
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oncoming avalanche tip would simply propagate smoothly across the new topography
in the same way as it does upstream and downstream of the erodible layer. The
erodible material is therefore vital for the brief formation of the downslope-facing
erosive shock shown at t = 0.3 and t = 0.4 s in figure 14. This dissipates a lot
of energy by mobilising the static grains, and, crucially, thickens and slows the
oncoming flow allowing the upslope-facing shock to be triggered. This very fine
balancing of different physical effects is what makes this experiment such a sensitive
and interesting one.

Figure 15 shows another sequence of simulation images, which start from the
steady-shock solution shown in figure 14. At t = 10 s the inflow is instantaneously
closed off, with the fast moving tail of the avalanche reaching the shock at t= 10.24 s.
At this point the steep shock collapses, with some material being pushed upslope
until 10.50 s and the avalanche then slowly thinning as the residual material, that is
able to creep over the bump, slowly flows downslope. By t = 14 s a static deposit
is formed on the upstream side of the bump. This material is sufficient to trigger
any subsequent oncoming avalanche into the steady-shock regime. As previously
mentioned it is essentially this deposit that provided the initial condition (6.5a,b) for
the beginning of the simulations shown in figure 14. A supplementary movie showing
the full time-dependent development of the solution from the impingement of the
avalanche onto the static deposit to the formation of the static deposit at the end is
available online.

The numerical computations are compared to experiments in figure 16, where the
free-surface profiles are overlaid on the experimental photos. The slope angle is again
θ = 39◦, but this time the initial condition is set by the actual free-surface profile of
the static grains in the experiment. As the avalanche impinges on the static deposit
some of the particles are thrown into the air during the mobilisation process, rather
than generating the simulated erosive shock on the downstream side of the slowly
moving material. However, this anomaly rapidly propagates through the deposit and
dissipates. The rearward shock between the slowly moving, recently mobilised, grains
and the rapid upstream avalanche has already started to move upslope by t= 0.8 s in
both the experiments and the computation. The experimental shock wave is diffuse
and probably somewhat upstream of the computed shock, but it is in reasonable
agreement. As the experimental shock attains its equilibrium position, described in
§ 5, the numerical shock catches up with it, so that at steady state, the mean position
of the diffuse shock and the jump are remarkably close. This is a particularly strong
vindication of the theory given how sensitively dependent the shock position is on
the basal friction and the chute inclination. It should be noted, however, that when
the grains flow over the bump, the avalanche is on the verge of detaching from
the base at t = 0.8 s, and the flow is quite dilute on the downstream side. As the
backward-propagating shock establishes itself, it becomes more efficient at slowing
the grains, and the dilute region on the lee side of the bump is reduced in size,
although there is some dilation even at steady state, which occurs at times greater
than 4 s.

7. Comparison between standard and terrain-following approaches

It is also possible to derive a simpler depth-averaged theory in aligned Cartesian
coordinates OXZ for modelling the shock evolution and steady-state position (see e.g.
Savage & Hutter 1989; Gray et al. 2003; Gray & Edwards 2014). This is referred
to as the standard depth-averaged avalanche model throughout this paper. This theory
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FIGURE 16. Temporal evolution of the theoretical free-surface profile (red solid lines) to
the exact steady-state solution (green dashed line) for a shock at slope angle θ = 39◦. Note
that the images have been slightly rotated to maximise space, the aspect ratio is 1:1 and
the bump height of 4.75 cm acts as a scale.
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assumes that the slope is inclined at a fixed mean angle and the effects of terrain
only enter the equations via a topography height gradient in the source term, i.e.
there is no local variation in the slope angle and there are no centrifugal effects. For
this rather sensitive experiment, the terrain-following model (see e.g. Savage & Hutter
1991; Gray et al. 1999) described in §§ 3–6 is much more successful at predicting the
steady-state shock position than the standard model. In addition, the standard approach
is also unable to predict the take-off point of the jet. These results therefore provide
compelling evidence of the advantages of the terrain-following approach.

7.1. The standard depth-averaged avalanche model
Using a Cartesian coordinate system OXZ aligned at a constant angle θ to the
horizontal (as shown in figure 6), the flow thickness H(X, T) and depth-averaged
velocity Ū(X, T) are now measured perpendicular and parallel, respectively, to the
X-axis. The depth-integrated mass and momentum balance equations (see e.g. Savage
& Hutter 1989; Gray et al. 2003; Gray & Edwards 2014) are then

∂H
∂T
+ ∂

∂X
(HŪ)= 0, (7.1)

∂

∂T
(HŪ)+ ∂

∂X
(HŪ2)+ ∂

∂X

(
1
2

gH2 cos θ
)
=HS, (7.2)

where the shape factor χ has been assumed to equal unity. The source term S is
composed of the downslope component of gravity, Coulomb basal friction, wall
friction and topography gradients, and is equal to

S= g cos θ
(

tan θ − Ū
|Ū|

(
µb +µw

H
W

)
− db

dX

)
. (7.3)

Note that in the standard approach, the effect of topography arises purely from the
downslope component of the basal pressure acting on the bump in the basal shear
stress (see e.g. Gray et al. 2003; Gray & Edwards 2014). This is, therefore, a much
less sophisticated treatment of the topography than the terrain-following approach,
where both the local inclination angle varies as a function of x and the basal pressure
accounts for centrifugal forces. It has, nevertheless, proved to be very useful for
simulating complicated flows past obstacles, where shock waves are generated (see
e.g. Gray et al. 2003; Gray & Cui 2007; Aker & Bokhove 2008; Cui & Gray 2013).

Following the same approach as in § 3.1, it follows that integrating the steady-state
depth-integrated mass balance equation (7.1) in X implies that

HŪ =H0Ū0, (7.4)

where the thickness and depth-averaged velocity at the inflow are H0 and Ū0,
respectively. Moreover, the mass jump condition, JHŪK= 0, implies that the volume
flux per unit width is equal to H0Ū0 everywhere. The steady-state depth-integrated
momentum balance (7.2) then implies that the ODE governing the thickness upstream
and downstream of the shock is

dH
dX
=

H3g cos θ
(

tan θ −µb −µw
H
W
− db

dX

)
H3g cos θ − (H0Ū0)2

, (7.5)
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where it has implicitly been assumed that Ū > 0. Note that the denominator in (7.5)
takes the same form as in the terrain-following system (3.17), and the numerator is
similar except with a topography gradient replacing the curvature term. In the standard
model, the Froude number is defined as

Fr= |Ū|√
gH cos θ

, (7.6)

and this is again assumed to be equal to unity at the inflow. Hence, the inflow velocity
Ū0=√gH0 cos θ . At the critical point, which lies at X=X1, the Froude number is also
equal to unity and the denominator in the ODE (7.5) is equal to zero. It follows that
the thickness at the critical point, H1, is the same as the thickness at the inflow, i.e.

H1 =H0. (7.7)

In order to ensure the thickness gradients in the ODE (7.5) remain bounded at X=X1
the numerator must also be zero, which implies that

tan θ −µb −µw
H1

W
− db

dX

∣∣∣∣
X1

= 0. (7.8)

Since the topography b= b(X) is given by (3.1) and H1 =H0, equation (7.8) can be
solved numerically to find the position of the critical point X = X1.

In the same way as in the terrain-following solution, the ODE (7.5) is integrated
backwards, and forwards, away from the critical point to construct a solution for H
that varies smoothly between subcritical (X < X1) and supercritical flow (X > X1). A
smoothly varying supercritical solution can also be constructed from the inflow and
the two portions are pieced together by applying the momentum jump condition

q
HŪ2 + 1

2 gH2 cos θ
y= 0, (7.9)

to find the position of the shock X = Xs. Figure 17 shows the computed shock
position as a function of the slope angle θ . The inflow conditions and wall friction
µw = tan(7.5◦) are kept at the same constant values as in § 3, but different basal
friction coefficients µb are plotted (black dashed lines). For each angle, it is possible
to choose µb so that the shock position is predicted by the Cartesian theory, for
example the value µb = tan(27.5◦) gives good agreement at θ = 39◦ (dash-dotted
line in figure 17). However, the same parameters are unable to reproduce the results
at other slope angles, whereas the terrain-following approach matches the shock
position across the whole range for the same friction coefficients (solid line). This is
highlighted in figure 18, which shows a comparison between the thickness profiles
obtained with both theories and the experiments. At 39◦ there is little difference
between the two theories and both fit the experimental data equally well. However, at
37◦ the terrain-following system gives a significantly improved fit, with the standard
model predicting a shock position far upstream of the actual location. Note that
the basal friction value µb = tan(27.5◦) required for fitting the standard theory at
θ = 39◦ is unphysically high and not representative of that calculated using PIV
(µb = tan(23◦)). When using the experimentally measured value (µb = tan(23◦)), the
prediction of the shock position is far away from the actual values at low slope angles.
At higher angles (θ = 36◦) for µb = tan(23◦), the standard theory is unable to predict
any shock solutions at all. The measured friction values are not high enough to be
able to satisfy the momentum shock condition in the standard system. This is another
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FIGURE 17. Shock position Xs as a function of the slope angle θ . The symbols are
experimental data, and the solid red line shows the terrain-following theory, computed in
curvilinear coordinates with the measured µb= tan(23◦) and µw= tan(7.5◦) from PIV. The
different black dashed lines denote the standard Cartesian theory, calculated with fixed
wall friction µw = tan(7.5◦) and varying basal friction µb, with the value µb = tan(27.5◦)
chosen as the best fit to the shock position at θ = 39◦ (dash-dotted line). The green dashed
line shows the terrain-following avalanche model computed independently in Cartesian
coordinates, which, as expected, exactly reproduce the curvilinear results.

advantage of the terrain-following model since shocks are observed experimentally
for a wider range of angles than the standard theory predicts.

7.2. Coordinate transformation of the terrain-following model
For practical applications the topography is often defined by a geographical
information system (GIS) model in Cartesian coordinates with a vertical axis
aligned with gravity. In order to benefit from the improved predictive power
of the terrain-following model it would therefore be useful to express it in a
Cartesian coordinate system. As a specific example of this, it is now shown how
the terrain-following model can be transformed from the curvilinear Oxz coordinates
to the aligned Cartesian coordinates OXZ used by the standard model. This can be
achieved by making the simple transformation of variables

t= T, x=
∫ X

0

√
1+

(
db
dX

)2

dX′, (7.10a,b)

which implies that the derivatives

∂

∂t
= ∂

∂T
,

∂

∂x
= 1
∆b

∂

∂X
, (7.11a,b)
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(a)

(b)

FIGURE 18. Comparison of the experimental steady-state free-surface position with the
solution of the terrain-following avalanche model (solid white line) and the standard theory
(red dashed line) for (a) a slope angle θ = 37◦ and (b) a slope angle θ = 39◦. Note that
the images have been slightly rotated to maximise space. The bump height of 4.75 cm
acts as a scale.

where the normalisation factor ∆b, defined in (3.6), is repeated here for completeness

∆b =
√

1+
(

db
dX

)2

. (7.12)

Since ∆b is a function of X only, it can be incorporated inside the time derivative to
write the terrain-following mass and momentum balances (3.7)–(3.8) in conservative
form and in Cartesian coordinates as

∂

∂T
(∆bh)+ ∂

∂X
(hū)= 0, (7.13)

∂

∂T
(∆bhū)+ ∂

∂X
(χhū2)+ ∂

∂X

(
1
2

gh2 cos ζ
)
=∆bhSterrain-following, (7.14)

where the terrain-following source term is

Sterrain-following =
(

g sin ζ − ū
|ū|µ(g cos ζ + χκ ū2)

)
. (7.15)
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It is important to recognise that the transformation (7.10a,b) does not change the
model, i.e. it is still the terrain-following theory of Savage & Hutter (1991) and
Gray et al. (1999). It is just expressed in a Cartesian coordinate system. For GIS
applications, the same transformation will also work, except that now the topography
height (3.1) must be given relative to Cartesian coordinates aligned with gravity,
rather than the inclined coordinates used by the standard model. This idea is not
new. Bouchut et al. (2003) and Bouchut & Westdickenberg (2004) have investigated
various general transformations of the Savage & Hutter (1991) model, including into
an arbitrary system of final coordinates. A simplified treatment is provided in § 3.1
and appendix A of Mangeney et al. (2007), but the new features of the transformed
model are not really exploited fully, since the paper is focused on levee formation
on an inclined plane, where the standard and terrain-following models are identical.

7.3. The steady-shock solution for the terrain-following model in Cartesian
coordinates

The steady-shock problem of § 5 is now considered again to explicitly demonstrate
that the transformation of variables (7.10a,b) does not change the resultant predictions
of the terrain-following model. In general, the unsteady jump conditions for the depth-
averaged mass and momentum balances, (7.13) and (7.14), are

Jhū−∆bhVnK= 0, (7.16)
q

hū2 −∆bhūVn + 1
2 gh2 cos ζ

y= 0, (7.17)

where Vn = dX/dT is the shock speed expressed in Cartesian variables. Since the
curvilinear shock velocity vn = ∆bVn, it follows that the Cartesian curvilinear jump
conditions (7.16) and (7.17) are precisely the same as the general unsteady curvilinear
jump conditions. In particular, when the shock speed is equal to zero, these also
reduce to the steady curvilinear jump conditions (5.1) and (5.2) used in the shock
solution in § 5.

Assuming steady fully developed flow, the mass balance (7.13) can be integrated
subject to the condition that h= h0 and ū= ū0 at the inflow to show that

hū= h0ū0, (7.18)

which, by virtue of the steady mass jump condition, is valid everywhere. Similarly,
assuming that the shape factor χ is equal to unity, the steady-state depth-averaged
momentum balance (7.14) can be expanded using (7.18) and (3.5) to show that the
ODE governing the flow thickness is

1
∆b

dh
dX
= h3g cos ζ (tan ζ −µ)− hµκ(h0ū0)

2 − 1
2 gh4κ sin ζ

h3g cos ζ − (h0ū0)2
. (7.19)

Since
dh
dx
= 1
∆b

dh
dX
, (7.20)

equation (7.19) is precisely the same as the curvilinear formulation of the ODE (3.17)
except that it is expressed in Cartesian coordinates. It follows that both the jump
conditions and the ODE are exactly equivalent and, hence, that the terrain-following
model gives the same results in both the Cartesian and the curvilinear formulations.
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To confirm this, the steady-state shock solution has been computed independently,
using the terrain-following model in Cartesian coordinates. In figure 17 the shock
position as a function of inclination angle, computed using Cartesian coordinates,
is shown by the green dashed line. It lies precisely on top of the red solid line,
which shows the solution of the terrain-following model computed in curvilinear
coordinates. The results of the terrain-following model are, as one would expect,
therefore completely independent of the coordinate system that the equations are
solved in.

Using the terrain-following model in Cartesian coordinates does, however, have the
advantage that if the topography is defined in Cartesian coordinates, it does not have
to be converted into curvilinear variables before the model can be used. Moreover,
the results no longer have to be mapped back from curvilinear coordinates in order
to plot them. It should be noted, however, that both the thickness and the velocity are
the curvilinear ones, which are implicitly assumed to lie normal and tangential to the
local topography. As a result, in order to reconstruct the free-surface position it is still
important to project the thickness using the equations

Xsurface = X − h sin(θ − ζ (X)), (7.21)
Zsurface = b(X)+ h cos(θ − ζ (X)). (7.22)

These are in fact the same formulae as (4.3) and (4.4), which were used in § 4
to project the free surface at the take-off point back into Cartesian coordinates. It
is therefore possible to have the improved accuracy of the terrain-following model,
(7.13)–(7.15), while still using a simple Cartesian coordinate system.

8. Conclusion
In this paper small-scale experiments have been used to show that the flow of a

dry granular material over variable topography may exhibit two very different types
of behaviour depending on the initial conditions. On an initially empty chute, the
avalanche accelerates as it leaves the hopper and may reach fast enough velocities to
take-off as it flows over a smooth bump, forming a detached airborne ‘jet’ (figure 1
and supplementary movie 1). In contrast, placing a sufficient mass of static, erodible
particles slightly upstream of the obstacle reduces the energy of the impacting flow,
generating a sharp decrease in velocity and associated increase in flow thickness, or
‘shock’ that propagates upstream until it reaches a steady-state position (figure 2 and
movie 2). Once a shock is created, its equilibrium position does not depend on the
amount of material placed in front of the obstacle and is stable to perturbations in the
base flow (see supplementary movie 3).

A depth-averaged terrain-following avalanche model (Savage & Hutter 1991; Gray
et al. 1999) that is formulated in slope fitted curvilinear coordinates is used to model
these two types of behaviour. Based on experimental measurements of the upstream
accelerating region, which is present in both the jet and shock regimes, a friction
coefficient has been introduced in the equations that takes both basal and wall friction
into account. The theory is then used to calculate the take-off position, corresponding
to the point in the flow where the normal traction at the base of the avalanche
vanishes. The trajectory of the jet is then calculated by assuming that the particles
follow a series of ballistic trajectories. The mean particle path is found to be in good
agreement with experiments, and the vertical spreading of the jet is largely accounted
for by including wall friction effects (figure 9), although details of the shear profile
through the depth of the avalanche may also be required for more accurate modelling.
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For the steady-state shock regime, material accelerates and thins as it leaves the
hopper, and the shock represents a transition from supercritical (Fr> 1) to subcritical
(Fr < 1) flow. Downslope of the bump, the flow accelerates to become supercritical
once more, and consequently passes through a critical point, where Fr = 1. At this
point the denominator of the ODE (3.17), which governs the free-surface height, is
equal to zero. The critical point therefore plays a vital role in determining the position
of the steady-state shock, since smooth solutions that pass through it are only possible
if the numerator of the ODE (3.17) is also zero. The mass and momentum jump
conditions, (5.1) and (5.2), can then be used to find a unique stable position for the
shock that connects the smooth solution out of the hopper with the smooth solution
through the critical point, as sketched in figure 10 and shown in figure 11. Despite the
simplicity of the theory, figure 12 shows that it is able to match the mean position of
the experimentally measured shock location for a wide range of inclination angles θ
using the previously determined friction coefficients. The largest discrepancy between
the solution and the experiment occurs close to the shock, which is smoothed out
in experiments rather than being a discontinuity. This is due to high shear in this
region, so that the nonlinear granular viscous effects (GDR-MiDi 2004; Jop, Forterre
& Pouliquen 2006; Gray & Edwards 2014; Baker et al. 2016) become important.
Smaller discrepancies may also be due to the flow dilating as it accelerates down the
slope and then rapidly compressing as it flows over the bump (Faug et al. 2015).

Full time-dependent numerical simulations using a high resolution shock-capturing
method are shown in figures 14 and 15 as well as in a supplementary online
movie. These snapshots and animations highlight why this is such a sensitive and
interesting problem. In particular, the formation of an erosive shock (second and
third snapshots in figure 14) as the avalanche propagates over the erodible layer
is of great importance. It mobilises the static grains into a thick slowly moving
layer, while dissipating significant amounts of energy from the oncoming flow. As a
result, the thin high-speed flow out of the hopper collides with the rear of the slowly
moving thick layer and forms a second shock, that initially moves downstream, before
reversing and propagating upslope to its steady-state location. The existence of the
erosive shock is therefore critical in allowing the avalanche to self-trigger into the
steady-shock state.

The depth-averaged terrain-following theory formulated in curvilinear coordinates
is compared to a standard avalanche model (Savage & Hutter 1989; Gray et al.
2003; Gray & Edwards 2014). This uses an aligned Cartesian coordinate system
and the topography only enters the equations through the source term, through
gradients in topography height. This is a much less sophisticated treatment of the
topography than the terrain-following theory, which includes local changes in the
slope inclination and centrifugal effects. The standard theory is unable to predict
the take-off point of the jet, which falls out naturally in the terrain-following model.
In addition, the steady-state shock position is much more accurately captured using
topography-following coordinates. Whilst it is possible to choose friction parameters
so that the standard theory matches the experiments for a given inclination angle,
accurate fitting cannot be obtained across the whole slope angle range (figure 17 ) and
the parameter values required to fit at a specified slope angle do not correspond to
those calculated using PIV. This is in contrast to the terrain-following system, where
the same values measured from the accelerating regime can be used to predict the
shock position for all slope angles, as well as the jet trajectories. The local variation
in the inclination of the terrain-following coordinates together with the centrifugal
effects in the source terms therefore play an important role in achieving a more
accurate flow representation.
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Both of the regimes investigated in this paper could have important implications
for the understanding and simulation of natural flows. The formation of an airborne
jet, characterised by vanishing normal basal forces as material flows over complex
topography, could be an important design consideration for flow defences and could,
in principal, be inferred from seismic measurements (e.g. Favreau et al. 2010; Levy
et al. 2015). The fact that the shock is generated as the flow moves over an erodible
layer of particles is also significant because, in a geophysical context, such a deposit
could be left behind from a previous event. Consequently, the characteristics of an
initial flow and any subsequent flows may be drastically different, even if the source
conditions are similar. This is consistent with the work of Moretti et al. (2012), who
showed that the presence of erodible material on the slope strongly affected the
resulting dynamics.

When modelling geophysical flows it is advantageous to be able to use a Cartesian
coordinate system, so that GIS data can be used to define the topography height
above a fixed datum. In § 7.2 a coordinate transformation is therefore introduced
to convert the terrain-following model of Gray et al. (1999) from curvilinear to
Cartesian coordinates. This is particularly useful in this paper, since the topography
height b(X), the local slope angle ζ (X) and the curvature κ(X), are all defined in
Cartesian coordinates. If the Cartesian formulation of the terrain-following model is
used, then all of these variables no longer need to be converted into functions of the
curvilinear coordinate x, nor do the subsequent results need to be transformed back
to Cartesians using the transformation (3.3). It must be stressed, however, that the
coordinate system used by the terrain-following model of Gray et al. (1999) does not
change the results, i.e. it does not matter whether curvilinear or Cartesian coordinates
are used. All the results for the jet, in § 4, as well as the steady and unsteady shock,
in §§ 5 and 6, will be precisely the same when computed in Cartesian coordinates.
To demonstrate this, the steady shock has been computed independently using the
terrain-following model in Cartesian coordinates and the results are shown by the
dashed green curve in figure 17. As expected, the shock position as a function of the
chute inclination angle, is precisely the same as in curvilinear formulation (solid red
line). It is important to note that when using the terrain-following model the thickness
h and the velocity ū are still implicitly assumed to lie normal and tangential to the
local topography, and so the simple transformations (7.21) and (7.22) need to be
applied when reconstructing the free-surface profile.
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Appendix A. Calculating the gradient at the critical point
In order to solve for the steady-state free-surface profile using the terrain-following

model it is useful to define the gradient of the solution at the critical point. This can
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be done by considering the ODE (3.17), which is restated here, as

dh
dx
= h3g cos ζ (tan ζ −µ)− hµκ(h0ū0)

2 − 1
2 gh4κ sin ζ

h3g cos ζ − (h0ū0)2
. (A 1)

The critical point is the point x = x1, where the thickness h = h1 and the Froude
number is equal to unity. It has the special property that both the numerator

N = h3g cos ζ (tan ζ −µ)− hµκ(h0ū0)
2 − 1

2 gh4κ sin ζ , (A 2)

and the denominator
D= h3g cos ζ − (h0ū0)

2, (A 3)

of equation (A 1) are zero, and hence that the gradient is undefined. It can, however,
be calculated using L’Hôpital’s rule. Since the topography (3.1) is defined in Cartesian
coordinates, it is easiest to take the limit in X-coordinates, i.e.

lim
x→x1

dh
dx
= lim

X→X1

1
∆b

dh
dX
= lim

X→X1

∂N
∂X
∂D
∂X

. (A 4)

In particular, since the numerator N = N(h, ζ , κ), is a function of the thickness h,
the slope inclination ζ and the curvature κ , which are treated here as independent
variables, and the denominator D = D(h, ζ ), is just a function of the thickness and
the inclination, it follows that

dN
dX
= ∂N
∂h

dh
dX
+ ∂N
∂ζ

dζ
dX
+ ∂N
∂κ

dκ
dX
, (A 5)

dD
dX
= ∂D
∂h

dh
dX
+ ∂D
∂ζ

dζ
dX
, (A 6)

respectively. From the definitions of the numerator and the denominator, (A 2) and
(A 3), it follows that the partial derivatives are

∂N
∂h
= 3h2g cos ζ (tan ζ −µ)− h3g

µw

W
cos ζ −µκ(h2

0ū0)
2

−hκ(h0ū0)
2µw

W
− 2gh3κ sin ζ , (A 7)

∂N
∂ζ
=−h3g sin ζ (tan ζ −µ)+ h3g cos ζ (1+ tan ζ 2)− 1

2 gh4κ cos ζ , (A 8)

∂N
∂κ
=−hµ(h0ū0)

2 − 1
2 gh4 sin ζ , (A 9)

∂D
∂h
= 3h2g cos ζ , (A 10)

∂D
∂ζ
=−gh3 sin ζ . (A 11)

Similarly, dζ/dX and dκ/dX can be calculated for the prescribed topography (3.1).
Evaluating these functions together with the coefficients (A 8)–(A 11) at X = X1 and
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with h= h1 and substituting them into (A 4) yields a quadratic equation for dh/dX at
X=X1, which can be solved for the gradient at the critical point. This is the gradient
required when solving the terrain-following model in Cartesian coordinates, as in § 7.2.
To convert the gradient to curvilinear coordinates used in § 5 one needs to divide by
the normalisation factor ∆b, i.e. dh/dx= (1/∆b) dh/dX.

REFERENCES

AKER, B. & BOKHOVE, O. 2008 Hydraulic flow through a channel contraction: multiple steady states.
Phys. Fluids 20, 056601.

AMES RESEARCH & STAFF 1953 Equations, tables and charts for compressible flow. NACA Tech.
Rep. 1135.

ANDREOTTI, B., CLAUDIN, P., DEVAUCHELLE, O., DURÁN, O. & FOURRIÈRE, A. 2012 Bedforms
in a turbulent stream: ripples, chevrons and antidunes. J. Fluid Mech. 690, 94–128.

BAINES, P. G. & WHITEHEAD, J. A. 2003 On multiple states in single-layer flows. Phys. Fluids
15 (2), 298–307.

BAKER, J. L., BARKER, T. & GRAY, J. M. N. T. 2016 A two-dimensional depth-averaged µ(I)-
rheology for dense granular avalanches. J. Fluid Mech. 787, 367–395.

BOUCHUT, F., MANGENEY-CASTELNAU, A., PERTHAME, B. & VILOTTE, J. P. 2003 A new model
of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Acad.
Sci. Paris 336, 531–536.

BOUCHUT, F. & WESTDICKENBERG, M. 2004 Gravity driven shallow water models for arbitrary
topography. Commun. Math. Sci. 2, 359–389.

BRANNEY, M. J. & KOKELAAR, B. P. 1992 A reappraisal of ignimbrite emplacement: progressive
aggradation and changes from particulate to non-particulate flow during emplacement of high-
grade ignimbrite. Bull. Volcanol. 54, 504–520.

BRODSKY, E. E., EVGENII GORDEEV, E. & KANAMORI, H. 2003 Landslide basal friction as measured
by seismic waves. Geophys. Res. Lett. 30 (1–5), 2236.

BRODU, N., RICHARD, P. & DELANNAY, R. 2013 Shallow granular flows down flat frictional channels:
steady flows and longitudinal vortices. Phys. Rev. E 87 (2), 191–210.

CHADWICK, P. 1976 Continuum mechanics. In Concise Theory and Problems. George Allen &
Unwin (republished Dover 1999).

CHANSON, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of
experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191–210.

CHANUT, B., FAUG, T. & NAAIM, M. 2010 Time-varying force from dense granular avalanches on
a wall. Phys. Rev. E 82, 041302.

CUI, X. & GRAY, J. M. N. T. 2013 Gravity-driven granular free-surface flow around a circular
cylinder. J. Fluid Mech. 720, 314–337.

CUI, X., GRAY, J. M. N. T. & JOHANNESSON, T. 2007 Deflecting dams and the formation of
oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. 112, F04012.

DEFINA, A. & SUSIN, F. M. 2003 Stability of a stationary hydraulic jump in an upward sloping
channel. Phys. Fluids 15 (12), 3883–3885.

DELANNAY, R., VALANCE, A., MANGENEY, A., ROCHE, O. & RICHARD, P. 2017 Granular and
particle-laden flows: from laboratory experiments to field observations. J. Phys. D 50, 053001.

DOYLE, E. E., HOGG, A. J. & MADER, H. 2011 A two-layer to modelling the transformation of
dilute pyroclastic currents into dense pyroclastic flows. Proc. R. Soc. Lond. A 467 (2129),
1348–1371.

EDWARDS, A. N. & GRAY, J. M. N. T. 2015 Erosion-deposition waves in shallow granular free-
surface flows. J. Fluid Mech. 762, 35–67.

FARIN, M., MANGENEY, A. & ROCHE, O. 2014 Fundamental changes of granular flow dynamics,
deposition, and erosion processes at high slope angles: insights from laboratory experiments.
J. Geophys. Res.-Earth Surf. 119, 504–532.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.41


Multiple solutions for granular flow over a bump 115

FAUG, T. 2015 Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls
down inclines. Phys. Rev. E 92, 062310.

FAUG, T., BEGUIN, R. & CHANUT, B. 2009 Mean steady granular force on a wall overflowed by
free-surface gravity-driven dense flows. Phys. Rev. E 80, 021305.

FAUG, T., CHILDS, P., WYBURN, E. & EINAV, I. 2015 Standing jumps in shallow granular flows
down smooth inclines. Phys. Fluids 27, 073304.

FAVREAU, P., MANGENEY, A., LUCAS, A., CROSTA, G. & BOUCHUT, F. 2010 Numerical modeling
of landquakes. Geophys. Res. Lett. 37, L15305.

FOURRIERE, A., CLAUDIN, P. & ANDREOTTI, B. 2010 Bedforms in a turbulent stream: formation
of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid
Mech. 649, 287–328.

GDR-MIDI 2004 On dense granular flows. Eur. Phys. J. E 14, 341–365.
GRAY, J. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech.

441, 1–29.
GRAY, J. M. N. T. & CUI, X. 2007 Weak, strong and detached oblique shocks in gravity driven

granular free-surface flows. J. Fluid Mech. 579, 113–136.
GRAY, J. M. N. T. & EDWARDS, A. N. 2014 A depth-averaged µ(I)-rheology for shallow granular

free-surface flows. J. Fluid Mech. 755, 503–534.
GRAY, J. M. N. T., TAI, Y. C. & NOELLE, S. 2003 Shock waves, dead-zones and particle-free

regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181.
GRAY, J. M. N. T., WIELAND, M. & HUTTER, K. 1999 Gravity-driven free surface flow of granular

avalanches over complex basal topography. Proc. R. Soc. Lond. A 455, 1841–1874.
GREVE, R. & HUTTER, K. 1993 Motion of a granular avalanche in a convex and concave curved

chute: experiments and theoretical predictions. Phil. Trans. R. Soc. Lond. A 342, 573–600.
GRIGORIAN, S. S., EGLIT, M. E. & IAKIMOV, I. L. 1967 New state and solution of the problem

of the motion of snow avalance. Snow Avalanches Glaciers. Tr. Vysokogornogo Geofizich Inst.
12, 104–113.

HAKONARDOTTIR, K. M. & HOGG, A. J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids
17, 0077101.

HAKONARDOTTIR, K. M., HOGG, A. J., BATEY, J. & WOODS, A. W. 2003 Flying avalanches.
Geophys. Res. Lett. 30, 2191.

IPPEN, A. T. 1949 Mechanics of supercritical flow. ASCE 116, 268–295.
IVERSON, R. M. & DENLINGER, R. P. 2001 Flow of variably fluidized granular masses across

three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106 (B1), 553–566.
JOHANNESSON, T., GAUER, P., ISSLER, P. & LIED, K. 2009 The design of avalanche protection

dams: recent practical and theoretical developments. Tech. Rep. 112, EUR 23339. European
Commission.

JOHNSON, C. G., KOKELAAR, B. P., IVERSON, R. M., LOGAN, M., LAHUSEN, R. G. & GRAY,
J. M. N. T. 2012 Grain-size segregation and levee formation in geophysical mass flows.
J. Geophys. Res. 117, F01032.

JOP, P., FORTERRE, Y. & POULIQUEN, O. 2006 A constitutive relation for dense granular flows.
Nature 44, 727–730.

KURGANOV, A. & TADMOR, E. 2000 New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282.

LANEY, C. B. 1998 Computational Gas Dynamics. Cambridge University Press.
LAWRENCE, G. A. 1987 Steady flow over an obstacle. J. Hydraul. Engng 113 (8), 981–991.
LAX, P. D. 1957 Hyperbolic systems of conservation laws 2. Commun. Pure Appl. Maths 10 (4),

537–566.
LEVY, C., MANGENEY, A., BONILLA, F., HIBERT, C., CALDER, E. & SMITH, P. 2015 Friction

weakening in granular flows deduced from seismic records at the Soufrière hills volcano,
Montserrat. J. Geophys. Res. 120 (11), 7536–7557.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.41


116 S. Viroulet and others

MANGENEY, A., BOUCHUT, F., THOMAS, N., VILOTTE, J. P. & BRISTEAU, M. O. 2007 Numerical
modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys.
Res. 112, F02017.

MANGENEY, A., ROCHE, O., HUNGR, O., MAGNOLD, N., FACCANONI, G. & LUCAS, A. 2010
Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.

MANGENEY-CASTELNAU, A., VILOTTE, J. P., BRISTEAU, M. O., PERTHAME, B., BOUCHUT, F.,
SIMEONI, C. & YERNENI, S. 2003 Numerical modeling of avalanches based on Saint-Venant
equations using a kinetic scheme. J. Geophys. Res. 108, 2527.

MORETTI, L., MANGENEY, A., CAPDEVILLE, Y., STUTZMAN, E., HUGGEL, C., SCHNEIDER, D. &
BOUCHUT, F. 2012 Numerical modeling of the Mount Steller landslide flow history and of
the generated long period seismic waves. Geophys. Res. Lett. 39, L16402.

OCKENDON, J., HOWISON, S., LACEY, A. & MOVCHAN, A. 2004 Applied Partial Differential
Equations. Oxford University Press (revised edition).

POULIQUEN, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11
(3), 542–548.

POULIQUEN, O. & FORTERRE, Y. 2002 Friction law for dense granular flows: application to the
motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151.

ROUSE, H. 1938 Fluid Mechanics for Hydraulic Engineers. McGraw-Hill.
SAVAGE, S. B. & HUTTER, K. 1989 The motion of a finite mass of granular material down a rough

incline. J. Fluid Mech. 199, 177–215.
SAVAGE, S. B. & HUTTER, K. 1991 The dynamics of avalanches of granular materials from initiation

to run-out. I. Analysis. Acta Mechanica 86, 201–223.
SHAPIRO, A. H. 1977 Steady flow in collapsible tubes. Trans. ASME J. Biomech. Engng 99 (3),

126–147.
STOKER, J. J. 1949 The breaking of waves in shallow water. Ann. N.Y. Acad. Sci. 51, 345–572.
TABERLET, N., RICHARD, P., VALANCE, A., LOSERT, J.-M., JENKINS, J. T. & DELANNAY, R. 2003

Superstable granular heap in a thin channel. Phys. Rev. Lett. 91 (26), 264301.
TAI, Y. C., WANG, Y. Q., GRAY, J. M. N. T. & HUTTER, K. 1999 Methods of similitude in

granular avalanche flows. In Advances in Cold-Region Thermal Engineering and Sciences:
Technological, Environmental and Climatological Impact (ed. K. Hutter, Y. Q. Wang & H.
Beer), Lecture Notes in Physics, vol. 533, pp. 415–428. Springer.

THIELICKE, W. & STAMHUIS, E. 2014 PIVlab – toward user-friendly, affordable and accurate digital
particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30.

WEIYAN, T. 1992 Shallow Water Hydrodynamics. Elsevier.
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. John Wiley.
WIEDERSEINER, S., ANDREINI, N., EPELY-CHAUVIN, G., MOSER, G., MONNEREAU, M., GRAY, J.

M. N. T. & ANCEY, C. 2011 Experimental investigation into segregating granular flows down
chutes. Phys. Fluids 23, 013301.

WIELAND, M., GRAY, J. M. N. T. & HUTTER, K. 1999 Channelised free surface flow of cohesionless
granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100.

WIERSCHEM, A. & AKSEL, N. 2004 Hydraulic jumps and standing waves in gravity-driven flows of
viscous liquids in wavy open channels. Phys. Fluids. 16 (11), 3868–3877.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.41

	Multiple solutions for granular flow over a smooth two-dimensional bump
	Introduction
	Small-scale experiments
	Depth-averaged terrain-following avalanche theory
	Steady solution
	Basal and wall friction

	Formation of a jet downstream of the obstacle
	Formation of a steady shock upstream of the obstacle
	Time and spatially dependent numerical simulations
	Comparison between standard and terrain-following approaches
	The standard depth-averaged avalanche model
	Coordinate transformation of the terrain-following model
	The steady-shock solution for the terrain-following model in Cartesian coordinates

	Conclusion
	Acknowledgements
	Appendix A. Calculating the gradient at the critical point
	References




