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Orbital Integrals on p-Adic Lie Algebras
Rebecca A. Herb

Abstract. Let G be a connected reductive p-adic group and let g be its Lie algebra. Let O be any G-orbit in g.
Then the orbital integral µO corresponding to O is an invariant distribution on g, and Harish-Chandra proved
that its Fourier transform µ̂O is a locally constant function on the set g′ of regular semisimple elements of
g. If h is a Cartan subalgebra of g, and ω is a compact subset of h ∩ g′, we give a formula for µ̂O(tH) for
H ∈ ω and t ∈ F× sufficiently large. In the case that O is a regular semisimple orbit, the formula is already
known by work of Waldspurger. In the case that O is a nilpotent orbit, the behavior of µ̂O at infinity is
already known because of its homogeneity properties. The general case combines aspects of these two extreme
cases. The formula for µ̂O at infinity can be used to formulate a “theory of the constant term” for the space
of distributions spanned by the Fourier transforms of orbital integrals. It can also be used to show that the
Fourier transforms of orbital integrals are “linearly independent at infinity.”

1 Introduction

Let F be a p-adic field of characteristic zero. Let G be the set of F-rational points of a
connected reductive group defined over F, and let g be its Lie algebra. For X ∈ g, let
O = OX denote the G-orbit of X, and let µO denote the orbital integral corresponding to
O, so that

(1.1) µO( f ) =
∫

G/GX

f (x · X) dx∗, f ∈ C∞c (g).

Here GX denotes the centralizer of X in G and dx∗ is an invariant measure on G/GX . Let
B denote a symmetric, nondegenerate, G-invariant bilinear form on g, and fix an additive
character ψ of F. Then we have the Fourier transform

(1.2) f̂ (X) =
∫

g

f (Y )ψ
(
B(X,Y )

)
dY, f ∈ C∞c (g).

The distribution µ̂O( f ) = µO( f̂ ), f ∈ C∞c (g), is the Fourier transform of the orbital
integral. Harish-Chandra [2] proved that it is a locally constant function on g ′, the set of
regular semisimple elements of g.

For X ∈ g, let ηg(X) denote the coefficient of t l in the polynomial det(t − ad X), where t
is an indeterminate and l is the rank of g. Then g ′ = {X ∈ g : ηg(X) 6= 0}. For any G-orbit
O in g, we normalize µ̂O by defining

(1.3) Φ(g,O,X) = |ηg(X)|1/2µ̂O(X), X ∈ g ′.
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Orbital Integrals 1193

Harish-Chandra [2] proved that the normalized Fourier transform Φ(g,O) is locally
bounded on g.

Let h be a Cartan subalgebra of g. Since there is a unique semisimple orbit O0 ⊂ cl(O),
h ∩ cl(O) = h ∩ O0 is a finite set, possibly empty. For Y ∈ h ∩ cl(O), let gY denote the
centralizer of Y in g and let GY denote the centralizer of Y in G. Then gY is reductive, and
there is a unique nilpotent GY -orbit of gY , which we denote by ξY (O), such that Y +ξY (O) ⊂
O. Note that Y + ξY (O) is also a GY -orbit in gY . Let Φ

(
gY , ξY (O)

)
and Φ

(
gY ,Y + ξY (O)

)
denote the normalized Fourier transforms of the orbital integrals on gY corresponding to
the GY -orbits ξY (O) and Y + ξY (O) respectively. They are functions on g ′Y , and hence on
h ′ ⊂ g ′Y . Further, since Y is central in gY , it is easy to see that for all X ∈ g ′Y ,

(1.4) Φ
(

gY ,Y + ξY (O),X
)

= ψ
(
B(Y,X)

)
Φ
(

gY , ξY (O),X
)
.

The main result of this paper is the following theorem.

Theorem 1.1 Let O be any G-orbit in g and let h be a Cartan subalgebra of g. Then given
any compact subset ω of h ′, there is C > 0 so that for all H ∈ ω and t ∈ F× such that |t| ≥ C,

Φ(g,O, tH) =
∑

Y∈h∩cl(O)

Φ
(

gY ,Y + ξY (O), tH
)
cY (tH).

Here for each Y ∈ h ∩ cl(O), cY : h ′ → C is a locally constant function (independent of ω)
satisfying

(i) |cY (H)| is non-zero and independent of H ∈ h ′;
(ii) cY (t2H) = cY (H) for all t ∈ F×, H ∈ h ′.

Remark 1.1 The functions Φ(g,O) and Φ
(

gY ,Y + ξY (O)
)

are only determined up to
constants which depend on the choices of invariant measures on the orbits O and ξY (O),
Y ∈ h ∩ cl(O). In Section 2 we will normalize these measures consistently. When we do
this, the functions cY in Theorem 1.1 are independent of O. That is, given Y ∈ h, we use
the same function cY in the expansion of Φ(g,O) for any orbit O such that Y ∈ cl(O).

Suppose that O is a regular semisimple orbit. Then it is closed, so that cl(O) = O.
Further, for all Y ∈ h ∩ O, gY = h is abelian, so that Φ

(
gY , ξY (O)

)
≡ 1. Thus in this case,

the equation in Theorem 1.1 reduces to

(1.5) Φ(g,O, tH) =
∑

Y∈h∩O

ψ
(
B(Y, tH)

)
cY (tH), H ∈ ω, |t| ≥ C.

This result was proven by Waldspurger in [10].
Suppose on the other hand that O is a nilpotent orbit. Then for any Cartan subalgebra

h, h ∩ cl(O) = {0}, and for Y = 0, gY = g and ξY (O) = O. Thus in this case, the equation
in Theorem 1.1 reduces to

(1.6) Φ(g,O, tH) = Φ(g,O, tH)c0(tH), H ∈ ω, |t| ≥ C.
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Of course c0(H) ≡ 1 and the theorem gives no information. However, it follows from
the homogeneity property of nilpotent orbital integrals (see Section 3.1 of [2]), that for all
X ∈ g ′ and t ∈ F×,

(1.7) Φ(g,O, t2X) = |t|d0(O)Φ(g,O,X)

where

(1.8) d0(O) = dim g− dim O− rank g = dim gX0 − rank g

Here gX0 denotes the centralizer in g of a representative X0 ∈ O. Thus the dependence of
Φ(g,O, t2H) on t is already known in this case.

In the general case, let Y ∈ h∩cl(O). Then it follows from (1.7) applied to gY and ξY (O)
that

(1.9) Φ
(

gY , ξY (O), t2X
)

= |t|d0(O)Φ
(

gY , ξY (O),X
)
, X ∈ g ′Y , t ∈ F×.

Here d0(O) is again defined using (1.8) since if Z ∈ ξY (O), then X0 = Y + Z ∈ O and
gX0 = (gY )Z , rank g = rank gY . Thus in general, for H ∈ ω and |t2| ≥ C , we can write

(1.10) Φ(g,O, t2H) = |t|d0(O)
∑

Y∈h∩cl(O)

ψ
(
B(Y, t2H)

)
Φ
(

gY , ξY (O),H
)
cY (H).

This shows the dependence on t of Φ(g,O, t2H) precisely for large t .
Let K be any compact open subgroup of G and let X ∈ g. Define

(1.11) TK (X,H) =
∫

G/GX

∫
K
ψ
(
B(k ·H, x · X)

)
dk dx∗, H ∈ g ′,

where dx∗ is an invariant measure on G/GX and dk is normalized Haar measure on K.
Then it follows from Lemma 7.1 of [2] in the regular semisimple case and Theorem 3 of [3]
for the general case, that the above integral converges. Further, if O = OX , and dx∗ is the
invariant measure on G/GX used to define µO in (1.1), then

(1.12) µ̂O(H) = TK (X,H), H ∈ g ′.

To prove Theorem 1.1 we show that if X ∈ g and ω is a compact subset of h ′, then we can
evaluate TK (X, t2H), H ∈ ω, t ∈ F×, if K is small enough and t is large enough.

The expansion at infinity of Φ(g,O) given in Theorem 1.1 can be used to develop a
“theory of the constant term” as follows. Since in the Lie algebra we can go to infinity in
any direction, we have “constant terms” corresponding to each Cartan subalgebra instead
of constant terms corresponding to split components of Cartan subgroups as in the group
case.

Let h be a Cartan subalgebra of g. For any integer d ≥ 0, we let C(h, d) denote the set of
all measureable functions f : h→ C which are locally constant on h ′ and satisfy

(1.13) f (t2H) = |t|d f (H), t ∈ F×, H ∈ h ′.
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Let A(h) denote the set of all measureable functions f : h→ C of the form

(1.14) f (H) =
∑
Y,d

ψ
(
B(Y,H)

)
fY,d(H), H ∈ h,

where Y runs over a finite set of elements in h, d runs over a finite set of non-negative
integers, and fY,d ∈ C(h, d) for all Y, d.

Let fi : h→ C, i = 1, 2, be measureable functions which are locally constant on h ′. Then
we say f1 ∼h f2 if given any compact subset ω of h ′ there is C > 0 so that f1(tH) = f2(tH)
for all H ∈ ω and t ∈ F× such that |t| ≥ C . We prove in Proposition 6.3 that functions
in A(h) are uniquely determined by their behavior at infinity. That is, if f ∈ A(h) with
f ∼h 0, then f = 0.

Let Y ∈ h ∩ cl(O), and for H ∈ h ′, define

Φ(g, h,O,Y,H) = Φ
(

gY , ξY (O),H
)
cY (H);(1.15)

Φ(g, h,O,H) =
∑

Y∈h∩cl(O)

ψ
(
B(Y,H)

)
Φ(g, h,O,Y,H).(1.16)

It follows from property (ii) of the functions cY (H) in Theorem 1.1 and (1.9) that for all
Y ∈ h ∩ cl(O), Φ(g, h,O,Y ) ∈ C

(
h, d0(O)

)
. Thus Φ(g, h,O) ∈ A(h).

Using this notation we can restate Theorem 1.1 as follows.

Theorem 1.2 Let O be an orbit in g and let h be a Cartan subalgebra of g. Then

Φ(g,O) ∼h Φ(g, h,O).

Further, Φ(g, h,O) is the unique element of A(h) with this property.

Let T(g) denote the set of all G-invariant distributions T on g which are finite linear
combinations of normalized Fourier transforms of orbital integrals. Thus every T ∈ T(g)
can be written as

(1.17) T =
∑
O

cT(O)Φ(g,O) = |ηg|1/2
∑
O

cT(O)µ̂O,

where O runs over the set of G-orbits in g, cT(O) ∈ C for all orbits O, and cT(O) = 0 for all
but finitely many orbits O. If h is a Cartan subalgebra of g, we define

(1.18) Φ(T, h) =
∑
O

cT(O)Φ(g, h,O).

As an immediate consequence of Theorem 1.2 we have the following.

Theorem 1.3 Let T ∈ T(g) and let h be a Cartan subalgebra of g. Then Φ(T, h) ∈ A(h),
and is the unique element of A(h). such that

T ∼h Φ(T, h).
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Let f ∈ A(h), and as in (1.14) write

f (H) =
∑

Y

∑
d

ψ
(
B(Y,H)

)
fY,d(H), H ∈ h.

We prove in Proposition 6.3 that this expansion is unique. Thus we can define

(1.19) X( f ) = {Y ∈ h : fY,d 6= 0 for some d ≥ 0}.

For T ∈ T(g) and h a Cartan subalgebra of g, we write

(1.20) X(T, h) = X
(
Φ(T, h)

)
.

We think of the set X(T, h) as the “exponents” of T along h.
Let S(T) denote the set of all semisimple elements Y ∈ g such that Y ∈ cl(O) for some

orbit O such that cT(O) 6= 0.

Theorem 1.4 Let T ∈ T(g). Then

S(T) =
⋃

h

X(T, h).

Remark 1.2 Let T ∈ T(g) and let h be a Cartan subalgebra of g. Then it follows from
Theorem 1.4 that X(T, h) ⊂ S(T) ∩ h. However, it is not necessarily true that S(T) ∩ h ⊂
X(T, h). For example, let g = sl(2, F), where F is a p-adic field such that−1 is not a square.
Let Z be a non-zero nilpotent element of g, and let O± denote the G-orbit of ±Z. Then
O+ 6= O−, and it is easy to see from (1.11) and (1.12) that we can normalize measures so
that for all X ∈ g ′,

(1.21) Φ(g,O+,−X) = Φ(g,O−,X).

Let T = Φ(g,O+) − Φ(g,O−). Then it follows from (1.21) that T(−X) = −T(X) for all
X ∈ g ′. Let h be a split Cartan subalgebra of g, and let H ∈ h ′. Then T(−H) = T(H) since
T is a class function on g ′, and −H is G-conjugate to H. Thus Φ(T, h,H) = T(H) = 0 for
all H ∈ h ′, and so X(T, h) = ∅. But S(T) ∩ h = {0}.

Corollary 1.5 Let T ∈ T(g) such that T ∼h 0 for every Cartan subalgebra h of g. Then
T = 0.

Corollary 1.5 can also be stated as follows. Let T =
∑

O cO(T)Φ(g,O) ∈ T(g) as in
(1.17), and suppose T ∼h 0 for all Cartan subalgebras h of g. Then cO(T) = 0 for all
orbits O of g. That is the Fourier transforms of orbital integrals over arbitrary orbits of g

are “linearly independent at infinity.” This contrasts to the situation in a neighborhood of
the identity. It follows from Theorem 5.11 of [2] that for every T ∈ T(g) there is a neigh-
borhood V of the identity in g such that the restriction of T to V is a linear combination of
the Φ(g,O) where O runs over the finite set of nilpotent orbits of g.
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The Fourier transforms of orbital integrals play an important role in p-adic representa-
tion theory. As mentioned above, Theorem 1.1 generalizes a result of Waldspurger [10] for
regular semisimple orbits. Waldspurger needed to control the behavior at infinity of the
functions µ̂O for his work on local trace formulas for p-adic Lie algebras.

In addition, the Fourier transforms of orbital integrals are related to character formulas
for representations of G. Roughly, what frequently happens is that we have an orbit O of g

and a representation π of G, with character Θπ , such that

Θπ(exp X) = cπµ̂O(X)

for regular X in some neighborhood of 0 in g and some non-zero constant cπ . Murnaghan
[6], [7], [8], [9] has found many cases of formulas of this type when π is supercuspidal
and O is a regular elliptic orbit. Although this formula is for small X ∈ g ′, by twisting
with characters it is possible to relate character formulas on G to values of µ̂O(X) for large
elements X ∈ g ′.

For small values of X ∈ g ′, the local expansion in terms of nilpotent orbits holds for
µ̂O(X). The region of validity for the local expansion has been studied by Waldspurger
[11] and is related to work of Moy and Prasad [4], [5] in the group case. DeBacker [1] has
shown that for regular elliptic orbits in the Lie algebra of GLl(F), l prime and F sufficiently
tame, the local expansion and the expansion at infinity give the entire formula for µ̂O up
to a single shell.

In Section 2 of this paper we normalize invariant measures in a consistent way and state
Theorems 2.1 and 2.2. These are stronger versions of Theorem 1.1 which have some unifor-
mity as the orbit O varies. In Section 3 we prove Theorem 2.1. The proof of Theorem 2.2 is
given in Section 4 and Section 5. The proofs of Theorems 1.2, 1.3, 1.4 are given in Section 6.
I’d like to thank Allen Moy for asking questions that got me started on this problem, and
also thank Tom Hales and Julee Kim for useful discussions.

2 Expanded Versions of Theorem 1.1

In this section we state stronger versions of Theorem 1.1 which have some uniformity as
the orbit O varies.

We first look at the special case of orbits O and Cartan subalgebras h such that h∩cl(O) =
∅. If ω is a subset of g, we let ωG = {x ·X : x ∈ G,X ∈ ω}. Let J(ω) denote the space of all
G-invariant distributions T on g such that the support of T is contained in cl(ωG). When
ω is compact, Harish-Chandra proved in [2] that T̂ is a locally constant function on g ′ for
all T ∈ J(ω).

Theorem 2.1 Let h be a Cartan subalgebra of g and suppose that ω is a compact subset of
g such that h ∩ cl(ωG) = ∅. Then given any compact subset ω1 of h ′ there is C > 0 so that
T̂(tH) = 0 for all H ∈ ω1, t ∈ F× such that |t| ≥ C, and every T ∈ J(ω).

Suppose that O is an orbit of g and h is a Cartan subalgebra of g with h ∩ cl(O) = ∅.
Let X ∈ O. Then for ω = {X}, cl(ωG) = cl(O), and µO ∈ J(ω). Thus Theorem 1.1 in this
case follows from Theorem 2.1. The proof of Theorem 2.1 is given in Section 3.

We now look at the general case. If Y is any semisimple element of g, then m = gY is a
reductive subalgebra of g with rank m = rank g.
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Fix a reductive subalgebra m of g with rank m = rank g, and define

(2.1) g(m) = {Y ∈ g : Y is semisimple and gY = m}.

Note that g(m) is contained in the center of m, and hence in every Cartan subalgebra of m.
Define ηg as in (1.3), and for Y ∈ g(m), define

(2.2) ηg/m(Y ) = det ad Y |g/m.

Then ηg/m(Y ) 6= 0 for Y ∈ g(m).
Let NM denote the set of nilpotent elements in m and let ΞM denote the set of nilpotent

M-orbits in m. Fix a G-invariant measure dy∗ on G/M and an M-invariant measure νξ on
ξ for each ξ ∈ ΞM . For each Z ∈ ξ, we can define an M-invariant measure dm∗ on M/MZ

so that dm∗ corresponds to νξ via m 7→ m · Z. Let K be a compact open subgroup of G and
let dk be normalized Haar measure on K. Then for Y ∈ g(m), Z ∈ NM , H ∈ g ′, we define

TK (Y,Z,H) =
∫

G/M

∫
M/MZ

∫
K
ψ
(

B
(
k ·H, ym · (Y + Z)

))
dk dm∗ dy∗,(2.3)

ΦK (Y,Z,H) = |ηg/m(Y )| 1
2 |ηg(H)| 1

2 TK (Y,Z,H).(2.4)

Fix Y ∈ g(m) and Z ∈ NM , and let X = Y + Z. This is the Jordan decomposition
of X, so that GX = MZ and G/GX = G/M ·M/MZ . Now dx∗ = dm∗dy∗ is an invariant
measure on G/GX , so that TK (Y,Z,H) = TK (X,H), where TK (X,H) is defined as in (1.11).
Now by (1.3) and (1.12), we can normalize the invariant measure on O = OX so that
ΦK (Y,Z,H) = Φ(g,O,H), H ∈ g ′. Since ΦK (Y,Z,H) is independent of K, and depends
only on the M-orbit ξ of Z, we also write Φ(Y, ξ,H) = ΦK (Y,Z,H), Z ∈ ξ, Y ∈ g(m),
H ∈ g ′. When m = h is a Cartan subalgebra of g, then g(m) = h ′ and the function Φ
above was studied by Harish-Chandra in Section 7 of [2].

Recall that for each ξ ∈ ΞM we have fixed an invariant measure νξ . Use this normaliza-
tion of the invariant measure to define the orbital integral µM

ξ corresponding to ξ. Let ηm

be the function on m defined as in (1.3). Now for H ∈ m ′ we define

(2.5) Φ(m,Y + ξ,H) = |ηm(H)| 1
2ψ
(
B(Y,H)

)
µ̂M
ξ (H) = |ηm(H)| 1

2 µ̂M
Y +ξ(H).

Let h be a Cartan subalgebra of g, and let N(h,m) = {y ∈ G : y−1h ⊂ m}. Then
for all y ∈ N(h,m), m ∈ M, we have ym ∈ N(h,m). Define W (h,m) = N(h,m)/M. If
f : m→ C is an M-invariant function on m, we write f (w−1H) = f (y−1 ·H), H ∈ m, for
w = yM ∈W (h,m). Let m ′ ′ = m ∩ g ′.

Theorem 2.2 Let ω1 be a compact subset of h ′ and let ω2 be a compact subset of g(m). Then
there is C > 0 such that for all H ∈ ω1, Y ∈ ω2, ξ ∈ ΞM , and |t| ≥ C,

Φ(Y, ξ, tH) =
∑

w∈W (h,m)

Φ(m,Y + ξ, tw−1H)c(m,Y, tw−1H).

Here c(m) : g(m)×m ′ ′ → C is a locally constant function on g(m)×m ′ ′ satisfying
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(i) |c(m,Y,H)| is non-zero and independent of (Y,H) ∈ g(m)×m ′ ′;
(ii) c(m,Y, t2H) = c(m,Y,H) for all t ∈ F×, (Y,H) ∈ g(m)×m ′ ′;
(iii) c(m, tY,H) = c(m,Y, tH) for all t ∈ F×, (Y,H) ∈ g(m)×m ′ ′;
(iv) c(m,Y,m ·H) = c(m,Y,H) for all m ∈ M, (Y,H) ∈ g(m)×m ′ ′.

Let O be an orbit and h a Cartan subalgebra of g. Pick a semisimple element Y ∈ cl(O),
and let m = gY . Then we can normalize the invariant measure on O so that in the notation
above,

Φ(g,O,H) = Φ
(
Y, ξY (O),H

)
, H ∈ g ′.

For w = yM ∈ W (h,m) we write wY = y · Y . By Lemma 5.1, w 7→ wY is a bijection
between W (h,m) and h∩cl(O). For w ∈W (h,m), we can normalize the invariant measure
on the orbit wY + ξwY (O) of gwY so that

Φ(m,Y + ξ,w−1H) = Φ
(

gwY ,wY + ξwY (O),H
)
, H ∈ h ′.

Finally, we can define

cwY (H) = c(m,Y,w−1H), H ∈ h ′.

Thus Theorem 2.2 gives Theorem 1.1 as a special case when ω2 = {Y}.

3 Proof of Theorem 2.1

Let R denote the ring of integers of F, P the maximal ideal in R, and $ a uniformizing
parameter so that P = $R. Let | · | denote the absolute value on F such that |$| = q−1

where q = [R/P]. We assume that the characterψ of F used to define the Fourier transform
in (1.2) has conductor R.

There is n ≥ 1 so that g and G are subsets of Mn(F). We have the usual norm ‖ · ‖ on
g ⊂ Mn(F) given by

(3.1) ‖X‖ = max
i, j
|Xi j |, X = [Xi j] ∈ Mn(F).

Let B denote the symmetric, nondegenerate, bilinear form on g given by

(3.2) B(X,Y ) = tr XY, X,Y ∈ g ⊂ Mn(F).

In this section we prove Theorem 2.1. If K is a compact open subgroup of G and dk is
normalized Haar measure on K, we define

(3.3) φK (X,Y ) =
∫

K
ψ
(
B(k · X,Y )

)
dk, X,Y ∈ g.

Lemma 3.1 Suppose that g is semisimple. Let K be a compact open subgroup of G and let
ωi , i = 1, 2, be compact subsets of g such that [k · X1,X2] 6= 0 for all Xi ∈ ωi , k ∈ K. Then
there is C > 0 so that φK (tX1,X2) = 0 for all Xi ∈ ωi , t ∈ F×, |t| ≥ C.

https://doi.org/10.4153/CJM-2000-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-050-x


1200 R. A. Herb

Proof By Corollary 7.3 of [2] the map k → B(k · X1,X2) is submersive at k for all k ∈ K,
Xi ∈ ωi , i = 1, 2. Thus there are compact open neighborhoods ω ′i of ωi in g, i = 1, 2,
such that the map (X1,X2, k) →

(
X1,X2,B(k · X1,X2)

)
of ω ′1 × ω ′2 × K into ω ′1 × ω ′2 × F

is everywhere submersive. Now as in the proof of Lemma 7.1 of [2] there is C > 0 so that
φK (tX1,X2) = 0 for all Xi ∈ ω ′i , i = 1, 2, and t ∈ F× such that |t| ≥ C .

Lemma 3.2 Let ω be a compact subset of g such that h ∩ cl(ωG) = ∅, let ω1 be a com-
pact subset of h ′, and let K be a compact open subgroup of G. Then there is C > 0 so that
φK (tH,X) = 0 for all H ∈ ω1, |t| ≥ C, X ∈ cl(ωG).

Proof Assume first that g is semisimple. Let ω be a compact subset of g such that h ∩
cl(ωG) = ∅. Then 0 6∈ cl(ωG). Thus there is ε > 0 so that ‖X‖ ≥ ε for all X ∈ cl(ωG).
For X 6= 0 ∈ g, define the integer ν(X) by ‖X‖ = q−ν(X). Then ‖X‖ = |$ν(X)|. Let
S = {X ∈ g : ‖X‖ = 1}. Then for all X 6= 0 ∈ g, $−ν(X)X ∈ S. Let S0 denote the closure
in S of

{$−ν(X)X : X ∈ cl(ωG)}.

It is a compact set. Now cl(ωG) is a closed, G-invariant set. Further, since ω is compact, the
eigenvalues of ad X, X ∈ cl(ωG) are bounded. Thus as in Lemma 7.4 of [2], every element
of S0 is either nilpotent or is of the form $−ν(X)X for some X ∈ cl(ωG).

Let X ′ ∈ S0, H ∈ ω1, and suppose that [k ·H,X ′] = 0 for some k ∈ K. Then k−1X ′ ∈ h,
so that X ′ is semisimple, and hence of the form X ′ = $−ν(X)X for some X ∈ cl(ωG). But
then k−1X ∈ h ∩ cl(ωG). This contradicts the assumption that h ∩ cl(ωG) = ∅. Thus
[k ·H,X ′] 6= 0 for all k ∈ K, H ∈ ω1, X ′ ∈ S0, and so by Lemma 3.1 there is C ′ > 0 so that
φK (tH,X ′) = 0 for all H ∈ ω1, X ′ ∈ S0, t ∈ F such that |t| ≥ C ′.

Let t ∈ F, |t| ≥ C = ε−1C ′, and H ∈ ω1. Then for all X ∈ cl(ωG), X ′ = $−ν(X)X ∈ S0

and |t$ν(X)| ≥ Cε = C ′, so that φK (tH,X) = φK (t$ν(X)H,X ′) = 0.
Now we drop the assumption that g is semisimple. Let g be reductive and write g = z+gs

where z is the center of g and gs is the derived subalgebra. Given any X ∈ g, we write
X = X0 + Xs where X0 ∈ z and Xs ∈ gs. Let p : g → gs denote the projection p(X) = Xs,
X ∈ g. Then h = z + hs where hs = p(h) is a Cartan subalgebra of gs, and h ′ = z + h ′s . Let
Z denote the connected subgroup of G corresponding to z and let Gs = G/Z.

Letω1 be a compact subset of h ′ and let ω be a compact subset of g such that h∩cl(ωG) =
∅. Then p(ω1) is a compact subset of h ′s and ωs = p(ω) is a compact subset of gs. It is easy
to check that p

(
cl(ωG)

)
⊂ cl(ωGs

s ). Suppose that Ys ∈ hs∩cl(ωGs
s ). Then there are Xn,s ∈ ωs,

xn ∈ G, such that xn · Xn,s → Ys. Let n ≥ 1. Since Xn,s ∈ ωs = p(ω), there is Xn,0 ∈ z

such that Xn = Xn,0 + Xn,s ∈ ω. Further, since {Xn} is a sequence in the compact set ω,
there is a convergent subsequence. Thus by passing to a subsequence we can assume that
Xn → X ∈ ω. Thus Xn,0 → X0 ∈ z. Now xn · Xn = Xn,0 + xn · Xn,s → X0 + Ys ∈ z + hs = h.
Thus X0 + Ys ∈ h ∩ cl(ωG). This contradiction shows that hs ∩ cl(ωGs

s ) = ∅.
Suppose that K is a compact open subgroup of G. Then Ks = K/(Z ∩ K) is a compact

open subgroup of Gs. Since gs ⊥ z with respect to B, for X,Y ∈ g,

φK (X,Y ) = ψ
(
B(X0,Y0)

) ∫
Ks

ψ
(
B(k · Xs,Ys)

)
dk = ψ

(
B(X0,Y0)

)
φKs (Xs,Ys).
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Now by the semisimple case above, there is C > 0 so that φKs (tHs,Xs) = 0 for all Hs ∈
p(ω1), Xs ∈ cl(ωGs

s ), |t| ≥ C . Thus for H ∈ ω1, X ∈ cl(ωG), |t| ≥ C ,

φK (tH,X) = ψ
(
B(tH0,X0)

)
φKs (tHs,Xs) = 0.

Proof of Theorem 2.1 Let ω be a compact subset of g such that h ∩ cl(ωG) = ∅, let ω1 be
a compact subset of h ′, and let K be a compact open subgroup of G. Then by Lemma 3.2
there is C > 0 so that φK (tH,X) = 0 for all H ∈ ω1, |t| ≥ C , X ∈ cl(ωG). Fix H ∈ ω1,
|t| ≥ C . As in [3], there is φ ∈ C∞c (g) such that φ(X) = φK (tH,X) for all X ∈ cl(ωG). Let
T ∈ J(ω). Then by Theorem 3 of [3], T̂(tH) = T(φ) = 0 since φ(X) = φK (tH,X) = 0 for
all X in the support of T.

4 Evaluation of an Integral

In this section we begin the proof of Theorem 2.2. Fix a reductive subalgebra m of g with
rank m = rank g. In this section we evaluate integrals of the form

φK (tH,Y ) =
∫

K
ψ
(
tB(k ·H,Y )

)
dk, Y ∈ g(m), H ∈ m ′ ′, t ∈ F×,

for K sufficiently small and |t| sufficiently large. This calculation is similar to those in Sec-
tion VIII of [10], but in our case Y may not be regular. The main result is Proposition 4.6.
In the next section we will use this result to prove Theorem 2.2.

We first need to define new norms on g which depend on m. Since m is reductive, the
restriction of B to m is non-degenerate, and g = m⊕m⊥ where m⊥ = {X ∈ g : B(X,Y ) =
0 ∀Y ∈ m}. For X ∈ g, write X = X0 + X1 where X0 ∈ m, X1 ∈ m⊥. Then we define

(4.1) ‖X‖ ′ = max{‖X0‖, ‖X1‖},

where ‖ · ‖ is the norm on g defined in (3.1). Then ‖X‖ ≤ ‖X‖ ′, X ∈ g.
For X ∈ g, we also define

(4.2) ‖X‖ ′ ′ = sup
Z∈g,‖Z‖ ′≤1

|B(Z,X)|.

This is also a norm on g. Let X,Z ∈ g with ‖Z‖ ′ ≤ 1. Then

|B(X,Z)| ≤ ‖X‖ ‖Z‖ ≤ ‖X‖ ‖Z‖ ′ ≤ ‖X‖.

Thus

(4.3) ‖X‖ ′ ′ ≤ ‖X‖ ≤ ‖X‖ ′, X ∈ g.

Since ‖ · ‖ ′ and ‖ · ‖ ′ ′ are equivalent norms on g there is a constant 0 < C0 ≤ 1 so that

(4.4) C0‖X‖ ′ ≤ ‖X‖ ′ ′ ≤ ‖X‖ ′, X ∈ g.

For any integer c ≥ 0, define

kc = {X ∈ g : ‖X‖ ′ ≤ q−c}.

It is a lattice in g. The following lemma is elementary.
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Lemma 4.1 There is an integer c0 > 0 so that q−c0 ≤ |2|, and for any k ≥ 2,∣∣∣ 1

k!

∣∣∣q−c0(k−2) ≤ |2|−1.

Further, for any c ≥ c0, exp: kc → G is well-defined, and for Z ∈ kc, X ∈ g, exp Z · X =
X + [Z,X] + W where W =

∑
k≥2(1/k!)(ad Z)kX satisfies ‖W‖ ≤ q−2c|2|−1‖X‖.

Remark 4.1 We can choose c0 so that∣∣∣ 1

k!

∣∣∣q−c0(k−2) ≤ 1

for k ≥ 3. When k = 2, for any c0 we have |1/k!| = |2|−1.

For any c ≥ c0, let Kc = exp(kc). It is a compact open subgroup of G contained in
GL(n,R). For c ≥ c0, write

φc(X,Y ) = φKc (X,Y ) =
∫

Kc

ψ
(
B(k · X,Y )

)
dk, X,Y ∈ g.

Proposition 4.2 Suppose that c ≥ c0. Let X,Y ∈ g such that ‖X‖ ‖Y‖ ≤ |2|, and t ∈ F×

such that |t| ≥ qc. Then

φc(t
2X,Y ) =

∫
Kc(X,Y,t)

ψ
(
t2B(k · X,Y )

)
dk,

where Kc(X,Y, t) = {k ∈ Kc : ‖[X, k−1 · Y ]‖ ′ ′ ≤ |t|−1}.

Proof Write |t| = qr, and let k ∈ Kc, Z ∈ kr. Then using Lemma 4.1 we can write B(k exp Z·
X,Y ) = B(exp Z · X, k−1 · Y ) =

B(X, k−1 · Y ) + B([Z,X], k−1 · Y ) + B(W, k−1 · Y )

where ‖W‖ ≤ |2|−1q−2r‖X‖. But

|B
(
W, k−1 · Y )

)
| ≤ ‖W‖ ‖k−1Y‖ ≤ |2|−1q−2r‖X‖ ‖Y‖ ≤ q−2r,

since by assumption ‖X‖ ‖Y‖ ≤ |2|. Thus ψ
(
t2B(W, k−1 · Y )

)
= 1 since |t| = qr and

we have assumed that ψ has conductor R. Now since B(X, k−1 · Y ) = B(k · X,Y ) and
B([Z,X], k−1 · Y ) = B(Z, [X, k−1 · Y ]), we have

ψ
(
t2B(k exp Z · X,Y )

)
= ψ

(
t2B(k · X,Y )

)
ψ
(
t2B(Z, [X, k−1 · Y ])

)
.

Since r ≥ c, we have Kr ⊂ Kc, so that we can write Kc as a finite union Kc =
⋃

i kiKr.
Thus there is a normalization of Haar measure dZ on kr so that

φc(t
2X,Y ) =

∫
Kc

ψ
(
t2B(k · X,Y )

)
dk =

∑
i

∫
kr

ψ
(
t2B(ki exp Z · X,Y )

)
dZ

=
∑

i

ψ
(
t2B(ki · X,Y )

) ∫
kr

ψ
(
t2B(Z, [X, k−1

i Ẏ ])
)

dZ.
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But for each i, Z 7→ ψ
(
t2B(Z, [X, k−1

i Ẏ ])
)

is a unitary character of the additive group kr,
and is trivial if and only if ‖[X, k−1

i Ẏ ]‖ ′ ′ ≤ q−r, so that ki ∈ Kc(X,Y, t).
We have shown that for each coset kiKr of Kc,∫

ki Kr

ψ
(
t2B(k · X,Y )

)
dk = 0⇔ ki ∈ Kc(X,Y, t).

Since the left hand side of the equation is independent of the coset representative ki for
kiKr, we must have kik ∈ Kc(X,Y, t) if and only if ki ∈ Kc(X,Y, t) for all k ∈ Kr, and so the
union of the cosets kiKr with ki ∈ Kc(X,Y, t) is equal to Kc(X,Y, t).

For any linear transformation T : m⊥ → m⊥, we write

‖T‖ = sup
Z∈m⊥,Z 6=0

‖T(Z)‖/‖Z‖.

Let X ∈ m. Since [m,m⊥] ⊂ m⊥, the restriction of ad X to m⊥ is a linear transformation
TX : m⊥ → m⊥. Let mreg denote the set of all H ∈ m such that H is semisimple and TH is
invertible. Note that g(m) ⊂ mreg and m ′ ′ = m ∩ g ′ ⊂ mreg .

For any integer s > 0, we let

mreg
s = {H ∈ mreg : ‖H‖ ≤ |2|1/2, ‖T−1

H ‖ ≤ qs};

g(m)s = g(m) ∩mreg
s .

Then for all H ∈ m
reg
s , Z1 ∈ m⊥,

(4.5) q−s‖Z1‖ ≤ ‖ ad HZ1‖ ≤ |2|1/2‖Z1‖.

Define C0 as in (4.4).

Lemma 4.3 Let H ∈ m
reg
s , Y ∈ g(m)s.

(i) For all Z = Z0 + Z1, Z0 ∈ m, Z1 ∈ m⊥,

‖Z1‖ ≤ q2sC−1
0 ‖ ad H ad Y Z‖ ′ ′.

(ii) Suppose c is large enough that q−c < q−2sC0. Then for all Z ∈ kc,

‖[H, exp(−Z) · Y ]‖ ′ ′ = ‖ ad H ad Y Z‖ ′ ′.

Proof Let Z = Z0 + Z1, Z0 ∈ m, Z1 ∈ m⊥. Then since Y ∈ g(m), ad Y Z = ad Y Z1 ∈ m⊥.
Further, since H,Y ∈ m

reg
s , using (4.5)

‖ ad H ad Y Z‖ ′ = ‖ ad H ad Y Z1‖ ≥ q−2s‖Z1‖.

Thus by (4.4)

‖Z1‖ ≤ q2s‖ ad H ad Y Z‖ ′ ≤ q2sC−1
0 ‖ ad H ad Y Z‖ ′ ′.
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Now let k = exp Z, Z = Z0 + Z1 ∈ kc. Then since [H,Y ] = 0 and
[
H, [−Z,Y ]

]
=

ad H ad Y Z, we have [H, k−1 · Y ] = ad H ad Y Z + V where

V =
∑
k≥2

1

k!
[H, (− ad Z)kY ] =

∑
k≥2

1

k!

[
H, (− ad Z)k−1[Y,Z]

]
.

Let X ∈ g, ‖X‖ ′ ≤ 1. Using Lemma 4.1, for each k ≥ 2,∣∣∣B(X,
1

k!

[
H, (− ad Z)k−1[Y,Z]

])∣∣∣ ≤ ∣∣∣ 1

k!

∣∣∣‖X‖ ‖H‖ ‖Z‖k−2‖Z‖ · ‖[Y,Z]‖ ≤ q−c‖Z1‖

since
‖H‖ ‖[Y,Z]‖ = ‖H‖ ‖[Y,Z1]‖ ≤ ‖H‖ ‖Y‖ ‖Z1‖ ≤ |2|−1‖Z1‖.

But by the above,

q−c‖Z1‖ ≤ q−cq2sC−1
0 ‖ ad H ad Y Z‖ ′ ′ < ‖ ad H ad Y Z‖ ′ ′

when q−c < q−2sC0. Thus for such c we have |B(X,V )| < ‖ ad H ad Y Z‖ ′ ′. Thus

‖[H, k−1 · Y ]‖ ′ ′ = sup
X∈g,‖X‖ ′≤1

|B(X, [H, k−1 · Y ])|

= sup
X∈g,‖X‖ ′≤1

|B(X, ad H ad Y Z) + B(X,V )| = ‖ ad H ad Y Z‖ ′ ′.

Let d(m⊥) denote the dimension of m⊥. Normalize Haar measure dZ1 on m⊥ so that
{Z1 ∈ m⊥ : ‖Z1‖ ≤ 1} has volume one. Let V (KcM/M) denote the volume of KcM/M
with respect to the invariant measure dy∗ on G/M normalized as in (2.3).

Lemma 4.4 There is VM > 0 so that if q−c < q−4s−c0C2
0 and |t| ≥ q2s+cC−1

0 , then for all
H ∈ m

reg
s , Y ∈ g(m)s, V (KcM/M)φc(t2H,Y ) =

VM |t|−d(m⊥)ψ
(
t2B(H,Y )

) ∫
m⊥(H,Y )

ψ
(
1/2B(Z1, ad H ad Y Z1)

)
dZ1.

Here
m⊥(H,Y ) = {Z1 ∈ m⊥ : ‖ ad H ad Y Z1‖ ′ ′ ≤ 1}.

Proof Fix c > 0 such that q−c < q−4s−c0C2
0 . For H ∈ m

reg
s , Y ∈ g(m)s, define kc(H,Y, t) =

{Z ∈ kc : ‖ ad H ad Y Z‖ ′ ′ ≤ |t|−1}. Using Lemmas 4.2, 4.3, since c ≥ c0 and q−c <
q−2sC0, for all t ∈ F× such that |t| ≥ qc, we have

φc(t
2H,Y ) =

∫
kc(H,Y,t)

ψ
(
t2B(exp Z ·H,Y )

)
dZ,

where dZ is the Haar measure on g for which kc has volume one.
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Let Z ∈ kc(H,Y, t). Then

B(exp Z ·H,Y ) = B(H,Y ) + B([Z,H],Y ) + 1/2B
(
(ad Z)2H,Y

)
+ b

where

b =
∑
k≥3

1

k!
B
(
(ad Z)kH,Y

)
.

But B([Z,H],Y ) = B(Z, [H,Y ]) = 0 and B
(
(ad Z)2H,Y

)
= B(Z, ad H ad Y Z). Fix k ≥ 3.

Then ∣∣∣∣ 1

k!
B
(
(ad Z)kH,Y

)∣∣∣∣ =
∣∣∣∣ 1

k!
B
(
(ad Z)k−1H, [Y,Z]

)∣∣∣∣.
Write Z = Z0 + Z1 where Z0 ∈ m, Z1 ∈ m⊥. Then

‖Z‖ ′ = max{‖Z0‖, ‖Z1‖},

so that ‖Z0‖ ≤ q−c and ‖Z1‖ ≤ q−c. Now [Y,Z] = [Y,Z1] ∈ m⊥, and

(ad Z)k−1H =
∑

ad Zε1 ad Zε2 · · · ad Zεk−1 H

where the sum is over multi-indices ε = {εi}k−1
i=1 , εi ∈ {0, 1}, 1 ≤ i ≤ k − 1. If εi = 0,

1 ≤ i ≤ k− 1, then this term is (ad Z0)k−1H ∈ m, and

B
(
(ad Z0)k−1H, [Y,Z1]

)
= 0

since [Y,Z1] ∈ m⊥. Thus∣∣∣∣ 1

k!
B
(
(ad Z)k−1H, [Y,Z]

)∣∣∣∣ ≤ max
ε

∣∣∣ 1

k!

∣∣∣ |B(ad Zε1 · · · ad Zεk−1 H, [Y,Z1])|,

where the sum is over multi-indices ε = {εi}k−1
i=1 for which at least one εi = 1. For each

such ε, using Lemma 4.1 we have∣∣∣ 1

k!

∣∣∣ |B(ad Zε1 · · · ad Zεk−1 H, [Y,Z1])| ≤
∣∣∣ 1

k!

∣∣∣q−c(k−2)‖H‖ ‖Y‖ ‖Z1‖2 ≤ q−(c−c0)(k−2)‖Z1‖2.

But by Lemma 4.3, for k ≥ 3,

q−(c−c0)(k−2)‖Z1‖2 ≤ q−(c−c0)q4sC−2
0 (‖ ad H ad Y Z‖ ′ ′)2 ≤ |t|−2

for Z ∈ kc(H,Y, t) since q−c ≤ q−4s−c0C2
0 . Thus |b| ≤ |t|−2 so that ψ(t2b) = 1 and

φc(t
2H,Y ) = ψ

(
t2B(H,Y )

) ∫
kc(H,Y,t)

ψ
(
t2B(Z, ad H ad Y Z)

)
dZ.

Write Z = Z0 + Z1, Z0 ∈ m, Z1 ∈ m⊥, and let mc = m ∩ kc, m⊥c = m⊥ ∩ kc. Let dZ0

denote the Haar measure on m for which mc has volume one. Now

‖Z‖ ′ = max{‖Z0‖, ‖Z1‖}, ‖ ad H ad Y Z‖ ′ ′ = ‖ ad H ad Y Z1‖ ′ ′,
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since ad Y Z = ad Y Z1. Thus kc = mc ⊕ m⊥c , dZ = qcd(m⊥) dZ0 dZ1, and kc(H,Y, t) =
mc ⊕ k1

c (H,Y, t) where k1
c (H,Y, t) = kc(H,Y, t) ∩m⊥. Further,

B
(
Z0 + Z1, ad H ad Y (Z0 + Z1)

)
= B(Z0 + Z1, ad H ad Y Z1) = B(Z1, ad H ad Y Z1).

Thus using the change of variables W1 = tZ1, we have∫
kc(H,Y,t)

ψ
(
t21/2B(Z, ad H ad Y Z)

)
dZ

= qcd(m⊥)

∫
mc

dZ0

∫
k1
c (H,Y,t)

ψ
(
t21/2B(Z1, ad H ad Y Z1)

)
dZ1

= |t|−d(m⊥)qcd(m⊥)

∫
ψ
(
1/2B(W1, ad H ad YW1)

)
dW1,

where the last integral is over {W1 ∈ m⊥(H,Y ) : ‖W1‖ ≤ q−c|t|}. But recall from
Lemma 4.3, that

‖W1‖ ≤ q2sC−1
0 ‖ ad H ad YW1‖ ′ ′.

Thus for |t| ≥ q2s+cC−1
0 and W1 ∈ m⊥(H,Y ), we automatically have

‖W1‖ ≤ q2sC−1
0 ≤ q−c|t|.

Finally, VM = V (KcM/M)qcd(m⊥) is independent of c.

For H ∈ mreg , define ηg/m(H) = det ad H|m⊥ = det TH . Note that for Y ∈ g(m), this
agrees with our definition in (2.2). Let

(4.6) Λ(m) = {(Y,H) ∈ mreg ×mreg : ‖Y‖ ‖H‖ ≤ |2|}.

Note that for Y,H ∈ mreg , t ∈ F×, (tY,H) ∈ Λ(m) if and only if (Y, tH) ∈ Λ(m). Further,
for all s > 0, m

reg
s ×m

reg
s ⊂ Λ(m). For (Y,H) ∈ Λ(m), define

(4.7) c(m,Y,H) = VM |ηg/m(H)|1/2|ηg/m(Y )|1/2

∫
m⊥(H,Y )

ψ
(
1/2B(Z, ad H ad Y Z)

)
dZ.

Lemma 4.5 (i) c(m,Y,H) is locally constant for (Y,H) ∈ Λ(m);

(ii) c(m, tY,H) = c(m,Y, tH) for all Y,H ∈ h, t ∈ F×, such that (tY,H) ∈ Λ(m);
(iii) |c(m,Y,H)| is non-zero and independent of (Y,H) ∈ Λ(m);
(iv) c(m,Y, t2H) = c(m,Y,H) for all Y,H ∈ mreg , t ∈ F×, such that (Y,H) ∈ Λ(m) and

(Y, t2H) ∈ Λ(m).

Proof Parts (i) and (ii) are obvious from the definition. Let Z ∈ m⊥. Then

‖Z‖ ′ ′ = sup
X∈g,‖X‖ ′≤1

|B(Z,X)| = sup
W∈m⊥,‖W‖≤1

|B(Z,W )|
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since if X = W + W ′, W ∈ m⊥, W ′ ∈ m, then ‖X‖ ′ = max{‖W‖, ‖W ′‖}, and B(Z,X) =
B(Z,W ).

Fix (Y,H) ∈ Λ(m), and for Z,W ∈ m⊥, define q(Z,W ) = B(Z, ad H ad YW ) =
B(Z,THTY W ). Since THTY is a nonsingular, self-adjoint linear transformation on m⊥, q is
a non-degenerate symmetric bilinear form on m⊥. Let L = m⊥(H,Y ). It is a lattice in m⊥.
Define L̃ = {W ∈ m⊥ : |q(W,Z)| ≤ 1 ∀Z ∈ L}. Then

L̃ = {W ∈ m⊥ : |B(W, ad H ad Y Z)| ≤ 1 ∀Z ∈ m⊥ with ‖ ad H ad Y Z‖ ′ ′ ≤ 1}

= {W ∈ m⊥ : |B(W,Z)| ≤ 1 ∀Z ∈ m⊥ with ‖Z‖ ′ ′ ≤ 1}

is independent of (Y,H) ∈ Λ(m).
Suppose that W ∈ L̃. Then ‖ ad H ad YW‖ ′ ′ =

sup
X∈m⊥,‖X‖≤1

|B(X, ad H ad YW )| = sup
X∈m⊥,‖X‖≤1

|B(ad H ad Y X,W )|

≤ sup
X∈m⊥,‖X‖≤|2|

|B(X,W )|

= |2| sup
X∈m⊥,‖X‖≤1

|B(X,W )|

since for all X ∈ m⊥,

‖ ad H ad Y X‖ ≤ |2|‖X‖.

But for all X ∈ m⊥ such that ‖X‖ ≤ 1, ‖X‖ ′ ′ ≤ ‖X‖ ≤ 1 so that |B(X,W )| ≤ 1. Thus
‖ ad H ad YW‖ ′ ′ ≤ |2| so that W ∈ 2L. Thus L̃ ⊂ 2L.

Define

I(L) =
∫

L
ψ
(
1/2q(Z,Z)

)
dZ =

∫
m⊥(H,Y )

ψ
(
1/2B(Z, ad H ad Y Z)

)
dZ.

Then as in [W], |I(L)| =
(
m(L)m(L̃)

)1/2
where m(L) and m(L̃) denote the measures of

L and L̃ with respect to the Haar measure dZ on m⊥. But m(L̃) is a positive constant
independent of (Y,H) ∈ Λ(m). Further, using the change of variables Z1 = ad H ad Y Z,
we see that

m(L) =
∫
‖ ad H ad Y Z‖ ′ ′≤1

dZ = |ηg/m(H)|−1|ηg/m(Y )|−1

∫
‖Z1‖ ′ ′≤1

dZ1.

Thus

|I(L)| = |ηg/m(H)|−1/2|ηg/m(Y )|−1/2C

where C > 0 is independent of (Y,H). This proves (iii) since

|c(m,Y,H)| = VM |ηg/m(H)|1/2|ηg/m(Y )|1/2|I(L)| = VMC.
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Finally, let Y,H ∈ mreg , t ∈ F×, such that (Y,H), (Y, t2H) ∈ Λ(m). We may as well
assume that |t| ≤ 1, since if |t| > 1, we can replace H by H ′ = t2H and t by t ′ = t−1. Now
c(m,Y, t2H) =

|ηg/m(t2H)|1/2|ηg/m(Y )|1/2

∫
‖ ad t2H ad Y Z‖ ′ ′≤1

ψ
(
1/2B(Z, ad t2H ad Y Z)

)
dZ

= |ηg/m(H)|1/2|ηg/m(Y )|1/2

∫
‖ ad H ad Y Z‖ ′ ′≤|t|−1

ψ
(
1/2B(Z, ad H ad Y Z)

)
dZ

using the change of variables Z ′ = tZ, since

|ηg/m(t2H)|1/2 = |t|d(m⊥)|ηg/m(H)|1/2.

Thus for (iii) it suffices to prove that

I(Lt ) =
∫

Lt

ψ
(
1/2q(Z,Z)

)
dZ = I(L) =

∫
L
ψ
(
1/2q(Z,Z)

)
dZ

where Lt = {Z ∈ m⊥ : ‖ ad H ad Y Z‖ ′ ′ ≤ |t|−1} = t−1L. But L̃t = tL̃ ⊂ t2L ⊂ t−12L =
2Lt since |t| ≤ 1. Thus as above, we have

|I(Lt )| =
(
m(Lt )m(L̃t )

)1/2 =
(
m(t−1L)m(tL̃)

)1/2 =
(
m(L)m(L̃)

)1/2 = |I(L)|.

Further, as in [W]
I(Lt )/|I(Lt )| = I(L)/|I(L)|.

Remark 4.2 It is possible to analyse the terms c(m,Y,H) further as in Section VIII.5 of
[10].

Using Lemma 4.5 we can extend the definition of c(m) to g(m) × m ′ ′ as follows. Let
(Y,H) ∈ g(m) ×m ′ ′. Then Y,H ∈ mreg , and there is t ∈ F× such that ‖Y‖ ‖t2H‖ ≤ |2|,
so that (Y, t2H) ∈ Λ(m). Now we define

(4.8) c(m,Y,H) = c(m,Y, t2H).

By Lemma 4.5 this is independent of the choice of t .

Proposition 4.6 Let ω1 be a compact subset of m ′ ′ and let ω2 be a compact subset of g(m).
Then there is c1 > 0 with the following property. For each c ≥ c1 there is C(c) > 0 so that for
all H ∈ ω1, Y ∈ ω2, and t ∈ F× such that |t| ≥ C(c),

V (KcM/M)φc(tH,Y ) = |ηg/m(tH)|−1/2|ηg/m(Y )|−1/2ψ
(
B(tH,Y )

)
c(m,Y, tH).

Here c(m) is a locally constant function on g(m)×m ′ ′ satisfying
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(i) |c(m,Y,H)| is non-zero and independent of (Y,H) ∈ g(m)×m ′ ′;
(ii) c(m,Y, t2H) = c(m,Y,H) for all t ∈ F×, (Y,H) ∈ g(m)×m ′ ′;
(iii) c(m, tY,H) = c(m,Y, tH) for all t ∈ F×, (Y,H) ∈ g(m)×m ′ ′.

Proof The properties of the function c(m) follow immediately from Lemma 4.5 and the
definition (4.8).

Let ω ⊂ m ′ ′ be compact. We will prove that there is c1 > 0 so that for c ≥ c1 there is
C ′(c) > 0 such that for all |t| ≥ C ′(c),H ∈ ω,Y ∈ ω2,

V (KcM/M)φc(t
2H,Y ) = |ηg/m(t2H)|−1/2|ηg/m(Y )|−1/2ψ

(
B(t2H,Y )

)
c(m,Y, t2H).

This is sufficient to prove the proposition, since given ω1 ⊂ m ′ ′ compact,

ω = {t0H : H ∈ ω1, q
−1 ≤ |t0| ≤ 1}

is also a compact subset of m ′ ′. Now suppose |t| ≥ C(c) = C ′(c)2 and H ∈ ω1. Now we
can write tH = t2

1 H0 where H0 ∈ ω and |t1| ≥ C ′(c).
Let ω1 be a compact subset of m ′ ′ and ω2 be a compact subset of g(m). Since ω1 and ω2

are compact, there is r0 such that for all H ∈ ω1, Y ∈ ω2,

‖Y‖ ≤ |2|1/2qr0 , ‖H‖ ≤ |2|1/2qr0 .

Write t0 = $r0 and let ω ′1 = {t0H : H ∈ ω1}, ω ′2 = {t0Y : Y ∈ ω2}. Then for all H ′ ∈ ω ′1,
Y ′ ∈ ω ′2,

‖Y ′‖ ≤ |2|1/2, ‖H ′‖ ≤ |2|1/2.

Since ω ′1 ⊂ m ′ ′ and ω ′2 ⊂ g(m) are compact, there is s0 > 0 so that for all H ′ ∈ ω ′1,
Y ′ ∈ ω ′2,

‖T−1
H ′ ‖ ≤ qs0 , ‖T−1

Y ′ ‖ ≤ qs0 .

Thus ω ′1 ⊂ m
reg
s0 and ω ′2 ⊂ g(m)s0 .

Pick c1 > 0 big enough that q−c1 ≤ q−4s0−c0C−2
0 , and let c ≥ c1. Let H ∈ ω1, Y ∈ ω2,

t ∈ F such that |t| ≥ C(c) = qc+2s0+r0C−1
0 . Then t0H = H ′ ∈ m

reg
s0 , t0Y = Y ′ ∈ g(m)s0 , and

|tt−1
0 | = q−r0 |t| ≥ qc+2s0C−1

0 .
Now combining Lemma 4.4, the definition of c(m,Y,H), Lemma 4.5 (ii) and (iv), and

the fact that |ηg/m(t2H)|−1/2 = |t|−d(m⊥)|ηg/m(H)|−1/2, we have

V (KcM/M)φc(t
2H,Y ) = V (KcM/M)φc

(
(tt−1

0 )2H ′,Y ′
)

= |ηg/m

(
(tt−1

0 )2H ′
)
|−1/2|ηg/m(Y ′)|−1/2ψ

(
(tt−1

0 )2B(H ′,Y ′)
)

c(m,Y ′,H ′)

= |ηg/m(t−1
0 t2H)|−1/2|ηg/m(t0Y )|−1/2ψ

(
t2B(H,Y )

)
c(m, t0Y, t0H)

= |ηg/m(t2H)|−1/2|ηg/m(Y )|−1/2ψ
(
t2B(H,Y )

)
c(m,Y,H).
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5 Proof of Theorem 2.2

In this section we use Proposition 4.6 to prove Theorem 2.2.
Fix a reductive subalgebra m of g and a Cartan subalgebra h of g, and define N(h,m) =

{y ∈ G : y−1h ⊂ m}, W (h,m) = N(h,m)/M, as in Section 2. For Y ∈ g(m), define
wY = y · Y if w = yM ∈W (h,m).

Lemma 5.1 Let O be an orbit in g and Y ∈ g(m) ∩ cl(O). Then w 7→ wY gives a bijection
between W (h,m) and h ∩ cl(O).

Proof Let Y ′ ∈ h ∩ cl(O). Then there is y ∈ G such that Y ′ = y · Y . Now Y ∈ y−1h so
that y−1h ⊂ gY = m. Thus y ∈ N(h,m), and Y ′ = wY where w = yM. Conversely, if
w = yM ∈W (h,m), then y−1h is a Cartan subalgebra of m. Since Y is a central semsimple
element in m, Y ∈ y−1h so that wY = y · Y ∈ h. Finally, the mapping is one-to one since
M = GY .

The following lemma is elementary.

Lemma 5.2 Let h1, . . . , hk denote a complete set of representatives for the M-conjugacy
classes of Cartan subalgebras of m which are G-conjugate to h. For each 1 ≤ i ≤ k, let
xi ∈ G such that xihi = h. Then N(h,m) = {xinim : m ∈ M, ni ∈ NG(hi), 1 ≤ i ≤ k}, and
W (h,m) =

⋃
i xiNG(hi)/NM(hi). In particular, W (h,m) is a finite set.

For each w ∈ W (h,m), fix yw ∈ N(h,m) with w = ywM. We can assume that yw

is chosen so that y−1
w h = hi for some 1 ≤ i ≤ k. Let γ ∈ g(m) and let ωγ be a compact

neighborhood of γ in m. We can assume that ωγ is small enough that yw1 ·ωγ∩ yw2 ·ωγ = ∅

for all w1,w2 ∈ W (h,m) with w1 6= w2, since yw1γ 6= yw2γ in this case. Let Uγ be an M-
domain in m such that γ ⊂ Uγ ⊂ ωM

γ which satisfies the conditions of Corollary 2.3 of [2].
In particular, we can assume that Uγ ∩ hi ⊂ ωγ , 1 ≤ i ≤ k, Cg(X) ⊂ m for all X ∈ Uγ , and
for every compact subset Q of g there is a compact subset Ω of G such that x ·Uγ ∩Q 6= ∅

implies that x ∈ ΩM. Let ω2(γ) = Uγ ∩ g(m). Then ω2(γ) is a compact neighborhood
of γ in g(m). Since for any compact ω2 ⊂ g(m), there are finitely many γi , 1 ≤ i ≤ r, in
ω2 such that ω2 ⊂

⋃
1≤i≤r ω2(γi), it suffices to prove Theorem 2.2 when ω2 is of the form

ω2 = Uγ ∩ g(m) for some γ ∈ g(m).
Fix γ ∈ g(m) and let ω = ωγ , U = Uγ , ω2 = U ∩ g(m) as above. Define V = U G.

By Corollary 2.4 of [2], V ⊂ ωG and is a G-domain in g, that is an open and closed G-
invariant set. For any compact open subgroup K of G, define V (K) = {ky · X : k ∈
K, y ∈ N(h,m),X ∈ U}. Thus V (K) = ∅ if N(h,m) = ∅. For C > 0, we write
VC = {X ∈ V : ‖X‖ ≤ C}, VC (K) = V (K) ∩VC .

Lemma 5.3 Let y ∈ G such that y ·U ∩ h 6= ∅. Then y ∈ N(h,m). Let K be a compact
open subgroup of G, and let X = Y + Z where Y ∈ ω2 and Z ∈ NM . Then for x ∈ G,
x · X 6∈ V (K) unless x ∈ KN(h,m).

Proof Let y ∈ G and Y ∈ U such that y · Y ∈ h. Then y−1h ⊂ Cg(Y ) ⊂ m, so that
y ∈ N(h,m).
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Let X = Y + Z where Y ∈ ω2 and Z ∈ NM . Then Y is the semisimple part in the Jordan
decomposition of X. Let x ∈ G such that x ·X ∈ V (K). Then there are k ∈ K, y ∈ N(h,m)
so that y−1k−1x · X ∈ U . Write g = x−1ky. Now since U is an M-domain and g−1 · Y is
the semisimple part in the Jordan decomposition for g−1 · X ∈ U , we have g−1 · Y ∈ U .

Since the statement is trivial if N(h,m) = ∅, we may as well assume that N(h,m) 6= ∅.
Fix w0 ∈ W (h,m), and let y0 = yw0 ∈ N(h,m) be our fixed representative for w0. Since
Y ∈ ω2 ⊂ g(m), we have y0 ·Y ∈ h by Lemma 5.1. Now Y ∈ gU so that y0 ·Y ∈ h∩ y0gU .
By the first part of the lemma, this implies that there are w ∈ W (h,m), m ∈ M, such
that y0g = ywm. By assumption there is 1 ≤ i ≤ k so that y−1

w h = hi . Now y−1
w y0Y ∈

y−1
w h = hi . But since U is M-stable and m−1 y−1

w y0 ·Y ∈ U , then y−1
w y0 ·Y ∈ U ∩ hi ⊂ ω.

Thus y0 · Y ∈ y0 · ω ∩ yw · ω. By our assumption on ω, this implies that y0 = yw so that
g = y−1

0 ywm ∈ M. Thus x = kyg−1 ∈ KN(h,m)M = KN(h,m).

Lemma 5.4 Let K ⊂ GL(n,R) be a compact open subgroup of G and let ω1 be a compact
subset of h ′. Then there are C > 0, C ′ > 0 such that for all H ∈ ω1, X ∈ V ,

(i) φK (tH,X) = 0 for all |t| ≥ 1 unless X ∈ VC ′ ;
(ii) φK (tH,X) = 0 for all |t| ≥ C unless X ∈ VC ′(K).

Proof Suppose first that g is semisimple. Since V ⊂ ωG where ω is compact, the eigen-
values of ad X, X ∈ V ∩ h are bounded. Thus there is C1 > 0 so that ‖X‖ ≤ C1 for all
X ∈ h ∩V . Define S and ν(X), X 6= 0 ∈ g, as in the proof of Theorem 2.1. Let S1 denote
the closure in S of

{$−ν(X)X : X ∈ V, ‖X‖ > C1}.

It is a compact set, and as in Lemma 7.4 of [2], every element of S1 is either nilpotent or is
of the form $−ν(X)X for some X ∈ V , ‖X‖ > C1.

Let X ′ ∈ S1,H ∈ ω1, and suppose that [k ·H,X ′] = 0 for some k ∈ K. Then k−1X ′ ∈ h,
so that X ′ is semisimple, and hence of the form X ′ = $−ν(X)X for some X ∈ V , ‖X‖ > C1.
But then k−1X ∈ h∩V . But this can’t be because ‖k−1X‖ = ‖X‖ > C1. Thus [k·H,X ′] 6= 0
for all k ∈ K, H ∈ ω1, X ′ ∈ S1, and so by Lemma 3.1 there is C2 > 0 so that φK (tH,X ′) = 0
for all H ∈ ω1, X ′ ∈ S1, t ∈ F such that |t| ≥ C2. Let C ′ = max{C1,C2}, and let X ∈ V ,
‖X‖ ≥ C ′, t ∈ F, |t| ≥ 1, and H ∈ ω1. Then X ′ = $−ν(X)X ∈ S1 and |t$ν(X)| ≥ C2, so
that for all H ∈ ω1, φ(tH,X) = φ(t$ν(X)H,X ′) = 0. Thus

φ(tH,X) = 0, H ∈ ω1, |t| ≥ 1, X ∈ V, ‖X‖ > C ′.

Since VC ′ is compact, it follows from Corollary 2.3 of [2] that there is a compact subset
Ω of G so that if x ∈ G such that x ·Y ∈ VC ′ for some Y ∈ U , then x ∈ ΩM. Now there are
finitely many yi ∈ G, 1 ≤ i ≤ r, so that ΩM ⊂

⋃
1≤i≤r KyiM. Thus VC ′ ⊂

⋃
1≤i≤r VC ′(i)

where V (i) = {kyi · Y : k ∈ K,Y ∈ U}, VC ′(i) = V (i) ∩VC ′ .
Let 1 ≤ i ≤ r, and suppose that V (i) ∩ h 6= ∅. Then there is y ∈ Kyi such that

y ·U ∩ h 6= ∅. Now by Lemma 5.3, y ∈ N(h,m), so that KyiM = KyM ⊂ KN(h,m).
Thus in this case, VC ′(i) ⊂ VC ′(K) and we write Ci = 1.

Suppose that V (i) ∩ h = ∅. Then [k · H,X] 6= 0 for any k ∈ K, H ∈ ω1, X ∈ VC ′(i),
so that by Lemma 3.1 there is Ci ≥ 1 so that φ(tH,X) = 0 for all H ∈ ω1, X ∈ VC ′(i),
|t| ≥ Ci .
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Now let C = max{Ci , 1 ≤ i ≤ r}. Let H ∈ ω1, |t| ≥ C , and X ∈ V such that
X 6∈ VC ′(K). Then either ‖X‖ > C ′, or X ∈ VC ′(i) for some 1 ≤ i ≤ r such that
V (i) ∩ h = ∅. In either case, we have φK (tH,X) = 0. This completes the proof in the case
that g is semisimple.

Let g be reductive, write g = z + gs, ms = m∩ gs, and use the notation from the proof of
Lemma 3.2. Then m = z + ms, Ms = M/Z, and g(m) = z + gs(ms). Let γ ∈ g(m). We can
assume that ωγ = ω0 + ωs where ω0 is a compact neighborhood of γ0 in z and ωs = ωγs is a
compact neighborhood of γs in ms. Then we could take Uγ = ω0 + Uγs . Thus V = ω0 + Vs

where Vs = U G
γs

. Let C0 > 0 so that ‖X0‖ ≤ C0 for all X0 ∈ ω0. Then for C ′ ≥ C0,
VC ′ = ω0 + (Vs)C ′ . Let K be a compact open subgroup of G. Then Ks = K/(Z ∩ K) is a
compact open subgroup of Gs, and V (K) = ω0 + Vs(Ks).

Let ω1 ⊂ h ′ be compact, and let C,C ′ > 0 satisfy the conditions of the lemma for p(ω1),
Vs, and Ks. By making C ′ larger if necessary, we can assume that C ′ ≥ C0. Let H ∈ ω1,
t ∈ F×, X ∈ V . Then φK (tH,X) = ψ

(
B(tH0,X0)

)
φKs (tHs,Xs). Thus φK (tH,X) = 0 for

all |t| ≥ 1 unless X ∈ VC ′ , and φK (tH,X) = 0 for all |t| ≥ C unless X ∈ VC ′(K).

Let p : g→ m denote the projection corresponding to the decomposition g = m⊕m⊥.
For any ξ ∈ ΞM , let µ̂M

ξ denote the Fourier transform of the orbital integral on m corre-
sponding to ξ as in (2.5). Recall that for each w ∈W (h,m), we have fixed a representative
yw ∈ N(h,m).

Lemma 5.5 There is a compact open subgroup K0 of G so that for all H ∈ ω1, k ∈ K0,
w ∈ W (h,m), p(ky−1

w · H) ∈ m ′ and µ̂M
ξ

(
t p(ky−1

w · H)
)

= µ̂M
ξ (t y−1

w · H) for all ξ ∈ ΞM

and t ∈ F×.

Proof The set ΞM of nilpotent orbits of m is finite, W (h,m) is finite, and for each ξ ∈ ΞM ,
µ̂M
ξ is locally constant on m ′. Now since ω1 is compact, p is continuous, and for each

H ∈ ω1, w ∈ W (h,m), p(y−1
w · H) = y−1

w · H ∈ m ′, it is easy to see that we can chose
K0 small enough that for all H ∈ ω1, w ∈ W (h,m), k ∈ K0, p(ky−1

w · H) ∈ m ′ and
µ̂M
ξ

(
p(ky−1

w ·H)
)

= µ̂M
ξ (y−1

w ·H) for all ξ ∈ ΞM .

Let ξ ∈ ΞM and let t ∈ F×. It follows from the discussion in 5.1 of [2] that there is
cξ(t) > 0 so that

µ̂M
ξ (tX) = cξ(t)µ̂M

tξ (X)

for all X ∈ m ′, where tξ = {tZ : Z ∈ ξ} ∈ ΞM also. Now for H ∈ ω1, w ∈W (h,m), and
k ∈ K0,

µ̂M
ξ

(
t p(ky−1

w ·H)
)

= cξ(t)µ̂M
tξ

(
p(ky−1

w ·H)
)

= cξ(t)µ̂M
tξ (y−1

w ·H) = µ̂M
ξ (t y−1

w ·H).

Let w = yM ∈ W (h,m). Then for ξ ∈ ΞM , H ∈ h ′, µ̂M
ξ (w−1H) = µ̂M

ξ (y−1 · H) is
independent of the representative chosen since µ̂M

ξ is an M-invariant function on m ′. For
any compact open subgroup K of G, the coset KwM = KyM is also independent of the
coset representative. For Y ∈ ω2, Z ∈ NM , H ∈ h, define TK (Y,Z,H) are in (2.3). It
depends only on the orbit ξ of Z, so we also write TK (Y, ξ,H) = TK (Y,Z,H), Z ∈ ξ.
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Proposition 5.6 There is a compact open subgroup K1 of G with the following property. If
K ⊂ K1 is a compact open subgroup of G, there is C > 0 so that for all Y ∈ ω2, ξ ∈ ΞM ,
H ∈ ω1, |t| ≥ C,

TK (Y, ξ, tH) =
∑

w∈W (h,m)

µ̂M
ξ (tw−1H)V (KwM/M)φK (tH,wY ).

Here V (KwM/M) denotes the measure of KwM/M with respect to the measure dy∗ on G/M.

Proof Write W = W (h,m), and define K0 as in Lemma 5.5. By assumption, the sets yw ·ω2

are disjoint for w ∈ W . Thus we can choose a compact open subgroup K1 ⊂ GL(n,R)
which is small enough that the sets K1 yw · ω2 are disjoint for w ∈ W , and y−1

w K1 yw ⊂ K0

for all w ∈ W . Let w1,w2 ∈ W , and suppose x ∈ K1w1M ∩ K1w2M. Let Y ∈ ω2. Then
x ·Y ∈ K1 yw1ω2∩K1 yw2ω2, so that w1 = w2. Thus the cosets K1wM are disjoint for w ∈W .

Suppose K ⊂ K1. By Lemma 5.4, there is C > 0 so that for H ∈ ω1, |t| ≥ C , X ∈ V ,
φK (tH,X) = 0 unless X ∈ V (K). Fix Y ∈ ω2, ξ ∈ ΞM , H ∈ ω1, and t ∈ F×, |t| ≥ C .
Pick Z ∈ ξ. Then by Lemma 5.3, for y ∈ G, m ∈ M, ym · (Y + Z) ∈ V (K) just in case
y ∈

⋃
w∈W KywM. Let dk1 denote normalized Haar measure on K.

Then since the sets KywM, w ∈W , are disjoint,

TK (Y, ξ, tH) =
∑
w∈W

V (KwM/M)Tw(Y, ξ, tH),

where for each w ∈W ,

Tw(Y, ξ, tH) =
∫

K

∫
M/MZ

∫
K
ψ
(

tB
(
k ·H, k1 ywm · (Y + Z)

))
dk dm∗ dk1.

Fix w ∈ W . Using the change of variables k → k1k and the invariance of B, we can
eliminate the outer integral over K from Tw(Y, ξ, tH). Write Kw = y−1

w Kyw, and let dkw

denote normalized Haar measure on Kw. Then using the change of variables k→ y−1
w kyw,

k ∈ K, and the invariance of B, we have

Tw(Y, ξ, tH) =
∫

M/MZ

∫
Kw

ψ
(
tB(kw y−1

w ·H,Y + m · Z)
)

dkw dm∗.

Write KM = Kw ∩ M, and let dk1 denote normalized Haar measure on KM . Then
Tw(Y, ξ, tH) =∫

M/MZ

∫
KM

∫
Kw

ψ
(
tB(k1kw y−1

w ·H,Y + m · Z)
)

dkw dk1dm∗.

Let k1 ∈ KM , kw ∈ K, m ∈ M. Then

ψ
(
tB(k1kw y−1

w ·H,Y + m · Z)
)

= ψ
(
tB(kw y−1

w ·H,Y )
)
ψ
(

tB
(
k1 p(kw y−1

w ·H),m · Z
))
.
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Since Kw ⊂ K0, by Lemma 5.5, p(kw y−1
w · H) ∈ m ′. Now by Lemma 5.4 applied to M in

place of G, we can change the order of integration and write Tw(Y, ξ, tH) =

=
∫

Kw

ψ
(
tB(kw y−1

w ·H,Y )
) ∫

M/MZ

∫
KM

ψ
(

tB
(
k1 p(kw y−1

w ·H),m · Z)
)

dk1 dm∗ dkw.

But by Theorem 3 of [3] and Lemma 5.5, for all kw ∈ Kw,∫
M/MZ

∫
KM

ψ
(

tB
(
k1 p(kw y−1

w ·H),m · Z
))

dk1 dm∗ = µ̂M
ξ

(
t p(kw y−1

w ·H)
)

= µ̂M
ξ (t y−1

w ·H). Thus

Tw(Y, ξ, tH) = µ̂M
ξ (t y−1

w H)

∫
Kw

ψ
(
tB(kw y−1

w ·H,Y )
)

dkw

= µ̂M
ξ (tw−1H)

∫
K
ψ
(
tB(k ·H,wY )

)
dk.

We are now ready to combine the results of this section with Proposition 4.6.

Proof of Theorem 2.2 Write W = W (h,m). By Proposition 5.6, we know that there is a
compact open subgroup K1 of G with the following property. If K ⊂ K1 is a compact open
subgroup of G, there is C(K) > 0 so that for all Y ∈ ω2, ξ ∈ ΞM , H ∈ ω1, |t| ≥ C(K),

TK (Y, ξ, tH) =
∑
w∈W

µ̂M
ξ (tw−1H)V (KwM/M)φK (tH,wY ).

Fix w ∈ W , and write mw = yw · m and Mw = ywMy−1
w . Then g(mw) = {wY : Y ∈

g(m)}. We normalize invariant measure dv∗ on G/Mw so that∫
G/M

f (y · Y ) dy∗ =
∫

G/Mw

f (v · wY ) dv∗, Y ∈ g(m), f ∈ Cc(g).

Then for any compact open subgroup K, the volume of KwM/M with respect to dy∗ is
equal to the volume of KMw/Mw with respect to dv∗, so that V (KwM/M) = V (KMw/Mw),
the volume of KMw/Mw with respect to dv∗. Further, h ⊂ mw, so that ω1 ⊂ mw∩g ′ = m ′ ′w .
Now applying Proposition 4.6 to mw and yw · ω2 ⊂ g(mw) in place of m and ω2, there is
cw > 0 with the following property. For each c ≥ cw there is Cw(c) > 0 so that for all
H ∈ ω1, Y ∈ ω2, and t ∈ F× such that |t| ≥ Cw(c), V (KcwM/M)φc(tH,wY ) =

|ηg/mw
(tH)|−1/2|ηg/mw

(wY )|−1/2ψ
(
B(tH,wY )

)
c(mw,wY, tH).

But

ψ
(
B(tH,wY )

)
= ψ

(
B(t y−1

w ·H,Y )
)
, ηg/mw

(wY ) = ηg/m(Y )

ηg/mw
(tH) = ηg/m(t y−1

w H) = ηg(t y−1
w H)ηm(t y−1

w H)−1 = ηg(tH)ηm(t y−1
w H)−1.
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Now pick

c ≥ max{cw,w ∈W}, C ≥ max{C(Kc),Cw(c),w ∈W}.

Then for all H ∈ ω1, Y ∈ ω2, ξ ∈ ΞM , |t| ≥ C ,

Φ(Y, ξ, tH) = |ηg(tH)|1/2|ηg/m(Y )|1/2TKc (Y, ξ, tH)

=
∑
w∈W

|ηm(t y−1
w ·H)|1/2ψ

(
B(t y−1

w ·H,Y )
)
µ̂M
ξ (t y−1

w ·H)c(mw,wY, tH)

=
∑
w∈W

Φ(m,Y + ξ, tw−1H)c(mw,wY, tH).

In order to complete the proof of the theorem we must show that for all w ∈ W ,
c(m,Y, t y−1

w · H) = c(mw,wY, tH). To do this we will use the notation from Section 1
and results from Section 6.

Fix Y ∈ ω2, ξ0 = {0} ∈ ΞM , and for H ∈ h ′, define

f (H) =
∑

w∈W (h,m)

ψ
(
B(H,wY )

)
Φ(m, ξ0,w

−1H)c(mw,wY,H).

Then f ∈ A(h), and by the above for H ∈ ω1, |t| ≥ C , f (tH) = Φ(Y, ξ0, tH). Let y0 ∈
N(h,m) and let h0 = y−1

0 h. Since Φ(Y, ξ0) is G-invariant, Φ(Y, ξ0,H) = Φ(Y, ξ0, y−1
0 · H)

for all H ∈ h ′. Applying the above to h0, there is C ′ > 0 so that for all H ∈ ω1, |t| ≥ C ′,
Φ(Y, ξ0, y−1

0 · tH) =∑
v∈W (h0,m)

ψ
(
B(y−1

0 tH, vY )
)
Φ(m, ξ0, v

−1 y−1
0 · tH)c(mv, vY, y−1

0 · tH)

=
∑

w∈W (h,m)

ψ
(
B(tH,wY )

)
Φ(m, ξ0,w

−1tH)c(y−1
0 mw, y−1

0 · wY, y−1
0 · tH),

since N(h,m) = {y0 y : y ∈ N(h0,m)}. Define

f0(H) =
∑

w∈W (h,m)

ψ
(
B(H,wY )

)
Φ(m, ξ0,w

−1H)c(y−1
0 mw, y−1

0 · wY, y−1
0 ·H).

Then f , f0 ∈ A(h), and by the above, for H ∈ ω1, |t| ≥ max{C,C ′}, we have

f0(tH) = Φ(Y, ξ0, y−1
0 tH) = Φ(Y, ξ0, tH) = f (tH).

That is f ∼h f0.
Now by Proposition 6.3, for all w ∈W (h,m), H ∈ h ′,

Φ(m, ξ0,w
−1H)c(mw,wY,H) = Φ(m, ξ0,w

−1H)c(y−1
0 mw, y−1

0 · wY, y−1
0 ·H).
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But since ξ0 = {0}, for all H ∈ h ′, w ∈W (h,m),

Φ(m, ξ0,w
−1H) = |ηm(w−1H)|1/2 6= 0,

so that
c(mw,wY,H) = c(y−1

0 mw, y−1
0 · wY, y−1

0 ·H).

In particular, if w = y0M, then

c(mw,wY,H) = c(m,Y, y−1
0 ·H).

Thus c(m,Y, y−1
0 · H) depends only on the coset w = y0M of y0 in W (h,m), and we have

c(mw,wY,H) = c(m,Y,w−1H). This shows that the functions c(m) satisfy condition (iv)
of Theorem 2.2 and finishes the proof that for all H ∈ ω1, Y ∈ ω2, ξ ∈ ΞM , |t| ≥ C ,

Φ(Y, ξ, tH) =
∑

w∈W (h,m)

Φ(m,Y + ξ, tw−1H)c(m,Y, tw−1H).

6 Consequences of the Expansion at Infinity

In this section we will use Theorem 1.1 to prove Theorems 1.2, 1.3, 1.4 and Corollary 1.5.
The existence of the constant term in Theorems 1.2, 1.3 follows directly from Theorem 1.1
and (1.9). The first two lemmas in this section will allow us to establish the uniqueness of
the constant term in Theorems 1.2, 1.3.

Lemma 6.1 Assume that λ1, . . . , λk ∈ F are distinct, and let

f (t) =
k∑

i=1

ci(t)ψ(tλi), t ∈ F,

where the ci : F → C are measureable functions satisfying ci(t2
1t) = ci(t), t, t1 ∈ F×. Suppose

that there are δ > 0, C ≥ 0 so that |t|δ| f (t)| ≤ C for all t ∈ F. Then ci(t) = 0 for all t ∈ F×,
1 ≤ i ≤ k.

Proof Fix 1 ≤ j ≤ k and t0 ∈ F×. We must show that c j(t0) = 0. Let

f ′(t) = ψ(−λ jtt0) f (tt0) =
k∑

i=1

c ′i (t)ψ(tλ ′i )

where c ′i (t) = ci(tt0), λ ′i = t0(λi − λ j), 1 ≤ i ≤ k. Now f ′ satisfies the same conditions
as our original function f , λ ′j = 0, and c ′j(1) = c j(t0). Thus we may as well assume that
j = 1, λ1 = 0, and take t0 = 1.
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Since λi 6= 0, 2 ≤ i ≤ k, there is r0 > 0 so that |λi | > q−r0 , 2 ≤ i ≤ k. Let r ≥ r0 + 1,
and let gr denote the characteristic function of the set Ur = $−2r(1 + P) = $−2r + P−2r+1.
Then Ur ⊂ (F×)2, so that for all t ∈ Ur, ci(t) = ci(1), 1 ≤ i ≤ k. Thus∫

F
f (t)gr(t) dt =

∑
1≤i≤k

ci(1)

∫
F
ψ(tλi)gr(t) dt =

∑
1≤i≤k

ci(1)ĝr(λi).

But
ĝr(λ) = q2r−1ψ($−2rλ)Φ2r−1(λ), λ ∈ F,

where Φ2r−1 denotes the characteristic function of P2r−1. Thus ĝr(λ1) = ĝr(0) = q2r−1,
and for 2 ≤ i ≤ k, ĝr(λi) = 0 since |λi | > q−r0 ≥ q−2r+1. Thus we have∫

F
f (t)gr(t) dt = q2r−1c1(1).

But for all t ∈ Ur, |t| = q2r, so that | f (t)| ≤ Cq−2rδ . Further, Ur has measure q2r−1. Thus
for all r ≥ r0 + 1,

q2r−1|c1(1)| =
∣∣∣∫

F
f (t)gr(t) dt

∣∣∣ ≤ q2r−1Cq−2rδ.

Since δ > 0, this implies that c1(1) = 0.

Lemma 6.2 Assume that λ1, . . . , λk ∈ F are distinct and d1 > d2 > · · · > dr are real
numbers. Let

f (t) =
r∑

i=1

|t|di

k∑
j=1

ci j(t)ψ(tλ j), t ∈ F,

where the ci j : F → C are measureable functions satisfying ci j(t2
1t) = ci(t), t, t1 ∈ F×.

Suppose there is C ≥ 0 so that f (t) = 0 for all t ∈ F, |t| ≥ C. Then ci j(t) = 0 for all t ∈ F×,
1 ≤ i ≤ r, 1 ≤ j ≤ k.

Proof Suppose not. Then we may as well assume that there is 1 ≤ j ≤ k so that c1 j is not
identically zero. Let C ≥ 1 so that f (t) = 0 for all |t| ≥ C . Let δ = d1 − d2 > 0. Write
|t|−d1+δ f (t) = |t|δ f1(t) + f2(t) where

f1(t) =
k∑

j=1

c1 j(t)ψ(tλ j), f2(t) =
r∑

i=2

|t|di−d1+δ
k∑

j=1

ci j(t)ψ(tλ j).

Since each ci j takes on only finitely many values, there is C1 > 0 so that |ci j(t)| ≤ C1 for all
1 ≤ i ≤ r, 1 ≤ j ≤ k. For |t| ≤ C ,

|t|δ| f1(t)| ≤ Cδ| f1(t)| ≤ Cδ
k∑

j=1

|c1 j(t)| ≤ CδkC1.
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For |t| ≥ C , |t|δ f1(t) = − f2(t) since |t|−d1+δ f (t) = 0. Further, di − d1 + δ = di − d2 ≤ 0
for 2 ≤ i ≤ r, so that |t|di−d1+δ ≤ 1 for |t| ≥ C ≥ 1. Thus

|t|δ| f1(t)| = | f2(t)| ≤
r∑

i=2

k∑
j=1

|ci j(t)| ≤ rkC1.

Thus |t|δ| f1(t)| is bounded, so that by Lemma 6.1, c1 j(t) = 0 for all t ∈ F×, 1 ≤ j ≤ k.

Let h be a Cartan subalgebra of g, and define C(h, d), d ≥ 0, and A(h) as in (1.13),
(1.14).

Proposition 6.3 Let f ∈ A(h), and expand f as in (1.14) as

f (H) =
∑
Y,d

ψ
(
B(Y,H)

)
fY,d(H).

Then if f = 0, we have fY,d = 0 for all Y, d. Further, suppose that f ∼h 0. Then f = 0.

Proof Write

f (H) =
k∑

i=1

r∑
d=0

ψ
(
B(Yi ,H)

)
fYi ,d(H)

where the Yi , 1 ≤ i ≤ k, are distinct and fYi ,d ∈ C(h, d), 1 ≤ i ≤ k, 0 ≤ d ≤ r. Let h ′ ′

denote the set of all H ∈ h ′ such that B(Yi ,H) 6= B(Y j ,H) for 1 ≤ i 6= j ≤ k. It is a dense
open subset of h ′.

Fix H ∈ h ′ ′, and for t ∈ F, write fH(t) = f (tH),

λi = B(Yi ,H), cid(t) = |t|−d/2 fYi ,d(tH), 1 ≤ i ≤ k, 0 ≤ d ≤ r.

Then cid(t2t0) = cid(t0), t, t0 ∈ F×, and

fH(t) =
k∑

i=1

r∑
d=0

|t|d/2ψ(λit)cid(t), t ∈ F.

Suppose first that f = 0. Then fH = 0, so that by Lemma 6.2, cid(t) = 0 for all t ∈ F×,
i, d. In particular, fYi ,d(H) = cid(1) = 0 for all i, d. But since h ′ ′ is dense in h ′, this implies
that fYi ,d(H) = 0 for all i, d, and H ∈ h ′.

Now suppose that f ∼h 0, and fix H ∈ h ′ ′ as above. Then there is C > 0 so that
f (tH) = 0 for all |t| ≥ C . Thus fH(t) = f (tH) = 0 for all |t| ≥ C . Now by Lemma 6.2,
cid(t) = 0 for all i, d, t ∈ F×. Thus fYi ,d(H) = 0 for all i, d, so that f (H) = 0. But as above
this implies that f (H) = 0 for all H ∈ h ′.

The following immediate corollary of Proposition 6.3 establishes the uniqueness result
in Theorems 1.2, 1.3.
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Corollary 6.4 Let F : h→ C be a measureable function which is locally constant on h ′, and
suppose that there are f1, f2 ∈ A(h) such that F ∼h fi , i = 1, 2. Then f1 = f2.

Proof of Theorem 1.4 Let T ∈ T(g), and write T as in (1.17) as

T =
∑
O∈I

cT(O)Φ(g,O),

where I is the finite set of orbits such that cT(O) 6= 0. For any semisimple element Y of
g, let I(Y ) = {O ∈ I : Y ∈ cl(O)}. Then by definition, S(T) is the set of all semisimple
elements Y such that I(Y ) 6= ∅.

Let h be a Cartan subalgebra of g. We can assume that invariant measures on the orbits
are consistently normalized as in Section 2 so that the functions cY ,Y ∈ h, are independent
of the orbit O ∈ I(Y ). Now if Y ∈ h ∩ cl(O) for some O ∈ I, then Y ∈ S(T) ∩ h. Thus

Φ(T, h) =
∑
O∈I

cT(O)Φ(g, h,O)

=
∑
O∈I

cT(O)
∑

Y∈h∩cl(O)

ψ
(
B(Y,H)

)
cY (H)Φ

(
gY , ξY (O),H

)
=

∑
Y∈S(T)∩h

ψ
(
B(Y,H)

)
cY (H)

∑
O∈I(Y )

cT(O)Φ
(

gY , ξY (O),H
)
.

In particular, this shows that X(T, h) ⊂ S(T) ∩ h, so that
⋃

h X(T, h) ⊂ S(T).
Suppose that Y ∈ S(T), but Y 6∈

⋃
h X(T, h), and let h be a Cartan subalgebra of gY .

Then since Y ∈ S(T) ∩ h, but Y 6∈ X(T, h), by the above we have

cY (H)
∑

O∈I(Y )

cT(O)Φ
(

gY , ξY (O),H
)

= 0

for all H ∈ h ′. But by Theorem 1.1 cY (H) 6= 0 for all H ∈ h ′. Thus∑
O∈I(Y )

cT(O)Φ
(

gY , ξY (O),H
)

= 0, H ∈ h ′.

But since this is true for every Cartan subalgebra h of gY , and gY ∩ g ′ is dense in g ′Y , this
implies that ∑

O∈I(Y )

cT(O)Φ
(

gY , ξY (O),X
)

= 0

for all X ∈ g ′Y . But by [2], O → ξY (O) is an injective map from I(Y ) into the set of
nilpotent orbits in gY . Since the nilpotent orbital integrals are linearly independent by
[2], this implies that cT(O) = 0 for all O ∈ I(Y ). This contradiction shows that S(T) ⊂⋃

h X(T, h).

Proof of Corollary 1.5 Suppose that T 6= 0. Then there is an orbit O of g such that
cT(O) 6= 0. But there is a semisimple element Y of g such that Y ∈ cl(O). Now Y ∈ S(T),
so that by Theorem 1.4 there is a Cartan subalgebra h of g such that Y ∈ X(T, h). Thus
Φ(T, h) 6= 0 and so T 6∼h 0.
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