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COMMUTATIVE SELF-INJECTIVE RINGS
SURJEET SINGH AND KAMLESH WASAN

1. Introduction. All rings considered here are commutative containing at
least two elements, but may not have identity. A ring R is said to be self-
injective if R as an R-module is injective. A ring R is said to be pre-self-
injective if every proper homomorphic image of R is self-injective [9]. Study
of pre-self-injective rings was initiated by Levy [10], who established a
characterization of Noetherian pre-self-injective rings with identity in terms
of other well-known types of rings. Recently Klatt and Levy [9] have char-
acterized all pre-self-injective rings with identity. In this paper we are mainly
interested in Noetherian rings. For the sake of convenience we shall call a
pre-self-injective ring an (I)-ring. A ring R will be said to be a (PMI)-ring
if for each proper prime ideal P with P? # 0, the ring R/P? is self-injective.
Clearly, an (I)-ring is a (PMI)-ring. However, Example 2 and the remark
following it show that a (PMI)-ring need not be an (I)-ring. In § 3, Theorem 2
gives a characterization of all those Noetherian rings R with identity, having
the property that for a prime ideal P, Rp is an (I)-ring. Theorem 3 generalizes
Levy's theorem to Noetherian rings without identity. In §4, we study
(PMI)-rings. Theorem 5, on (PMI)-rings, is analogous to Levy’s theorem.
Theorem 6 gives a characterization of all Noetherian (PMI)-rings.

2. Preliminaries. A commutative ring R with identity 1 # 0 is called a
special primary ring if it has a unique prime ideal P # R such that P* = (0)
for some 7 and the only ideals of R are R, P, P?, ..., P™1, (0) [1, p. 267].
In fact, a ring R with identity is a special primary ring if and only if R is a
local, principal ideal ring (PIR) with descending chain condition (DCC).
A domain J (may not have identity) is called a primary domain if (0) and J
are its only prime ideals [5, p. 263]. An ideal 4 of a ring R is said to be semi-
primary if /4 is a prime ideal. A ring R is said to satisfy the (*)-condition
if every semi-primary ideal of R is primary [4, p. 73]. By a proper prime ideal
of a ring R we understand any prime ideal different from R. Here we emphasize
that the zero ideal of a domain will be treated as a proper prime ideal. A ring R
is said to have dimension # if there exists a strictly ascending chain Py < P; <
P, < ... < P, of proper prime ideals of R, but no such chain of (» 4+ 2)-proper
prime ideals exists in R [4, p. 73]. A ring R is said to be a u-ring if R is the only
ideal of R with radical R. All other terms and terminologies are those of
Zariski and Samuel [11; 12], unless otherwise stated.
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3. (I)-rings. Levy [10] characterized Noetherian (I)-rings with identity.
The following theorem is due to Levy [10].

THEOREM 1. A Noetherian ring R with identity is an (1)-ring if and only if one
of the following cases holds:
(i) R is a Dedekind domain, or
(ii) R 2s a PIR with DCC, or
(iii) R s a local ring, whose maximal ideal M has composition length 2
and satisfies M2 = (0).

As an immediate corollary of the above theorem, we obtain the following
lemma.

LemMA 1. Let R be a local ring. If R is an (1)-ring, then one of the following
holds:
(i) If R is a domain, then R is a local, Dedekind domain and has at most two
proper prime ideals, namely (0) and the maximal ideal;
(ii) If R is not a domain, then R has exactly one proper prime ideal.

LEMMA 2. Let R be a Noetherian ring with identity such that for each proper
prime ideal P, the quotient ring Rp is an (1)-ring. If Py and P are two proper
prime ideals of R such that Py < P, then every Ps-primary ideal Qs contains
Pi, and P, is only a Pi-primary ideal.

Proof. Consider Rp,. For any ideal A of R, let A° denote its extension
in Rp,. Then P,* < P,° are two proper prime ideals of Rp,. Thus Lemma 1
yields P1° = (0). Let Q» be any P,-primary ideal of R; then Q.° is a P,
primary ideal of Rp,. Thus (0) < Q% Since there is one-to-one inclusion-
preserving correspondence between primary ideals of R contained in P, and
all primary ideals of Rp, contained in P,° given by Q < Q¢ [11, p. 225,
Corollary 2], we obtain P; < Q, and P; is only a P;-primary ideal of R.

THEOREM 2. Let R be any Noetherian ring with identity. Then for every proper
prime ideal P of R, the quotient ring Rp 1s an (1)-ring of and only if R is a direct
sum of a finite number of (I)-rings.

Proof. Let (for each proper prime ideal P) the quotient ring Rp be an
(I)-ring. Let (0) = N=1 Q; be an irredundant decomposition of (0) into
primary ideals. By Lemma 2, (0) does not have any embedded component.
Let P, =+/Q;for 1 =1 =< n. Suppose that P; + P; ¥ R for some 7 # j. We
can find a proper prime ideal P containing P; + P;. Then in Rp, P¢ P,° and
P ;¢ become three distinct prime ideals. However, this is not possible in view
of Lemma 1. Hence P; 4 P; = R whenever ¢ # j, consequently by [11, p. 177,
Theorem 31], Q; + Q, = R for 7 # j and by [11, p. 178, Theorem 32],

R~@® iZ:; —g—
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For each ¢, let R; = R/Q;. Suppose that P, = Q, for some 4. Let P be any
maximal ideal of R containing P;. Then for P = P/Q;, (R = Rp/PiRp.
By Lemma 1, Rp/P;Rp is a local, Dedekind domain. Hence (R;)s is a
Dedekind domain for each of its maximal ideals P and consequently R, is a
Dedekind domain by [2, Theorem 8]. By Theorem 1, R; is an (I)-ring.
Suppose that P; # Q;. By Lemma 2, P; is a maximal ideal of R. In this
case R; is a local ring isomorphic to Rp,/Q:Rp,. Again R; is an (I)-ring.
Hence R is a direct sum of a finite number of (I)-rings.

Conversely,let R = @ Y1 R;, where each R;is an (I)-ring. By Theorem 1,
each R; is either a Dedekind domain or a ring satisfying the DCC. However,
every ring with identity satisfying the DCC is a direct sum of a finite number
of local rings, each of which also satisfies the DCC [11, p. 205, Theorem 3]. Thus
we can suppose that each R, is either a Dedekind domain or a local ring satisfy-
ing the DCC. Let P be any proper prime ideal of R. Then there exists a positive
integer ¢ < n such that P = P, + 3 ,.; R;, where P, is a proper prime ideal
of R;. Further, Rp is isomorphic to (R;)p;. If R; is a Dedekind domain,
then (R;)p; is also a Dedekind domain and by Theorem 1, (R;)p; is an
(I)-ring. If R; is a local ring satisfying the DCC, then (R;)p, = R, is an
(I)-ring by hypothesis. Hence Rp is an (I)-ring. This completes the proof.

LeMMA 3. Any self-injective ring has identity.

Proof. Let R be a self-injective ring. The set Ry = {(a,n):a € R, n an
integer} is a ring with identity with addition and multiplication defined by:

(@a,n) + (b,m) = (a+b,n+m), (a,n): (b,m)= (ab+ ma+ nb, nm),

and R is embeddable as an ideal into R; by the mapping ¢ — (a, 0) for all
a € R. Each R-module M can be made into a unital R;-module by defining
x(a,n) = xa + nx for every x € M and (a,n) € R;. It was proved by Faith
and Utumi [3, Corollary (1.4)] that any R-module M is injective as an
R-module if and only if M satisfies Baer’s condition as an R;-module. Con-
sequently, R is injective as an R;-module and is a direct summand of R;.
Hence there exists an idempotent ¢ € Ry such that R = eR;. Then ¢ € R,
and e is the identity of R.

The following theorem, which we state without proof, is due to Gilmer
and Mott [6, Theorem 3].

THEOREM 3. Let R be a u-ring in which the set of proper prime ideals 1is
inductive. Then for all # € R, m € wR. If, in addition, the zero ideal is ¢ product
of a finite number of prime ideals, then R has identity.

Trivially, in a Noetherian ring the family of all proper prime ideals is
inductive and the zero ideal is a product of a finite number of prime ideals.
Hence we see that any Noetherian u-ring always has identity. Now we prove
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a theorem which generalizes Levy’s theorem to Noetherian rings without
identity.

THEOREM 4. Let R be a Noetherian ring without identity. Then R is an (1)-ring
if and only if R is a trivial simple ring (i.e. a simple ring whose square is zero).

Proof. Let R be an (I)-ring which is not simple. Then there exists a proper
ideal 4 of R, and R/A is self-injective. By Lemma 3, R/A4 has identity and
therefore /A4 # R. Thus R is a Noetherian u-ring, and hence R has identity.
This is a contradiction. Hence R is a simple ring. Further, R is trivial, since it
has no unity. The converse is obvious.

4. (PMI)-rings. Let us recall that a ring R is said to be a (PMI)-ring if
for each proper prime ideal P, R/P? is a self-injective ring whenever P? # (0).
The following lemma is due to Gilmer and Mott [6, Lemma 3].

LeEmMA 4. If A is an ideal of a ring R such that there is no ideul properly
between A and A?, then the only ideals between A and A™ are A, A2, . .., A"

LEMMA 5. In any ring R, if A is a nil ideal, then any idempotent modulo A in R
can be lifted to an idempotent in R.

Proof. Let ¢ = e + A be an idempotent in R = R/A. Then (e2 —¢) € A
and (e? — ¢)" = 0. By [7, Lemma 1.12], ¢" = ¢¥b for some b € R. Letf = €;
then f is an idempotent in R and fR = ¢"R. Thus fR = &R = eR. Hence
f = &, since R is a commutative ring. This proves the lemma.

LEMMA 6. Let R be a Noetherian ring and P a proper prime ideal of R such
that R/P? is a self-injective ring. Then every ideal of R with radical P is a power
of P, and is primary. Further, there is no ideal properly between P and P2.

Proof. Let Q be any ideal of R such that+/Q = P. If P = (0), then trivially
Q is primary. Suppose that P # (0). Now R/P? is self-injective and by
Lemma 3, R/P? has identity. But any Noetherian self-injective ring is a
quasi-Frobenius ring and satisfies the DCC [8, p. 77, Lemma 2]. Consequently,
P is a maximal ideal of R. Then by the lemma proved by Levy [10, p. 149]
there is no ideal properly between P and P2. Now for some n, P* C Q C P.
By Lemma 4, Q = P* for some k. This proves the first part of the lemma.
If 2 =1, then Q = P and trivially Q is primary. Let & > 1.

Let R = R/Q = R/P*. The Jacobson radical J(R) of R is P = P/P¥,
J(R) is nilpotent. Hence by Lemma 5 every idempotent modulo P in R can
be lifted to an idempotent in R. Thus we can find ¢ € R such thaté = ¢ + P*
is an idempotent in R and e is the identity modulo P. Then R = &R ®
(1 — &R, where (1 — &R ={a — ea: @ € R} is contained in J(R) and is
nilpotent. Now P = 4 ® (1 — &)R, for some maximal ideal A of R. Then

R/P2 =~ R/P*=~[eR/A%] ® [(1 — &)R/((1 — &)R)2].

https://doi.org/10.4153/CJM-1970-127-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-127-8

COMMUTATIVE SELF-INJECTIVE RINGS 1105

Since (1 — &)R/[(1 — &)R]?is nilpotent, it cannot have a non-zero idempotent.
The above isomorphism together with the fact that R/P? has identity yield
(1 — &R = (0). This implies that R = R has identity. In a ring with
identity, every ideal whose radical is a maximal ideal is primary [11, p. 153,
Corollary 1]. This implies that (0) is primary in R, and hence Q is primary
in R. The last part is now immediate.

LeMMA 7. Let R be a Noetherian (PMI)-ring and P, Py (P1 < Ps) any
two proper prime ideals of R. Then Py < Py" for every positive integer n and
Pl - mn Pg".

Proof. Since Py < Py, Py? # (0), R/P,? is self-injective. By Lemma 6,
there is no ideal properly between P, and Ps® Since R/P; is a Noetherian
domain, we have, by Krull’s theorem [11, p. 216, Theorem 12], N, (Po/P1)" =
0), i.e. Py = MNp (P + Pi1). Thus Pyt + Py < Py* + Py for every = 1.
Since Py C Py + Py C P,;, we have, by Lemma 4, Py" + P; = Py for
some #, = 1. Clearly ¢, —o0 as n —o0. Hence P; = N, Py'» = N, Py". This
proves the lemma.

The following theorem is analogous to Theorem 1.

THEOREM 5. Let R be a Noetherian ring with identity. Then R is a (PMI)-ring
if and only if it is one of the following types:
(i) R is a Dedekind domain, or
(ii) R is a PIR satisfying the DCC, or
(iii) R is a local ring such that the square of its maximal ideal 1s zero.

Proof. Let R be a (PMI)-ring. Suppose that R has a proper prime ideal P
such that P2 = (0). If P is a maximal ideal of R, then R is of type (iii).
Suppose that P is not maximal. Consider R = R/P and let P’ = P’/P be any
non-zero proper prime ideal of R. By Lemma 7, P < P’%. Thus R/P'? =~ R/P"?
implies that R/P’? is self-injective, and R is a (PMI)-domain. By Lemma 6,
R is a Noetherian domain such that for any non-zero proper prime ideal P’
there is no ideal properly between P’ and P’2. Hence by [2, Theorem 8] R is
a Dedekind domain. Consider Rp; its unique maximal ideal is P’¢, the exten-
sion of P’ in Rp, and P* < (P’'%)" for every n. By Krull's theorem, N, (P'¢)" =
(0). Thus P® = (0). Consider any x € P and let M be any maximal ideal of R.
Then P < M and in Ry, P° = (0) implies that there exists y € R\ M such
that xy = 0. Thus (0): (x) & M. Hence (0): (x) = R and x = 0. This yields
P = (0). Hence R itself is a Dedekind domain and is of type (i).

Now suppose that R has no proper prime ideal P with P? = (0). Then for
every proper prime ideal P, R/P? is self-injective and as seen in Lemma 6,
P is maximal. Thus by [2, Theorem 1], R satisfies the DCC. Hence
R = @ Yi-1 Ry, a direct sum of a finite number of local rings R, satisfying
the DCC. For each ¢, let P; be a maximal ideal of R;. Then Q; = P; + X, R,

https://doi.org/10.4153/CJM-1970-127-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-127-8

1106 S. SINGH AND K. WASAN

is a proper prime ideal of R and R/Q;* = R,/P? is self-injective. Further,
Pf#i = (0) for some k;. By Lemmas 4 and 6, R; is a special primary ring and
thus a PIR. Hence R is a PIR and is of type (ii).

Conversely, if R is of type (i) or (ii), then by Theorem 1, R is an (I)-ring
and in particular R is a (PMI)-ring. If R is of type (iii), then the condition
defining a (PMI)-ring holds vacuously for R. Hence again R is a (PMI)-ring.
This proves the theorem.

We now establish the main theorem of this section.

THEOREM 6. Let R be a Noetherian ring. Then R is a (PMI)-ring if and only
if it is one of the following types:
(i) R has a proper prime ideal P such that P> = (0) and R/P is a primary
domain, or
(ii) R s a nilpotent ring, or
(iii) R is a Dedekind domain, or
(iv) R is a PIR satisfying the DCC.

Proof. Let R be a (PM1I)-ring. Since any field is a primary domain, we have,
by Theorem 5, R is of type (iii), (iv) or (i), whenever R has identity.
Let R be without identity. If R has no proper prime ideal, then R is nil and
hence nilpotent and is of type (ii). Suppose that R has at least one proper
prime ideal. Then the following two cases arise.

Case 1. R has a proper prime ideal P with P> = (0). Consider R = R/P.
It follows on the same lines as in the proof of Theorem 5 that R is a (PMI)-
domain. By Lemma 6, every semi-primary ideal of R is primary, i.e. R satisfies
the (*)-condition. Hence by [4, Theorem 7], R is either a primary domain
or a u-domain of dimension <1. Thus if R is a primary domain, then R is of
type (i). Let R be a u-domain. Since R is Noetherian, we see, by Theorem 3,
that R has identity. Therefore we can find an element e¢ € R such that
& = ¢ + P is the identity of R. Because of Lemma 5, we can suppose that
¢ itself is an idempotent. Now R = eR ® (1 — ¢)R, where

(1 —=¢e)R ={x — ex: x € R}

is contained in P. Now P = 4 ® (1 — e)R for some proper prime ideal 4 of
the ring eR. If P is maximal, then trivially R is of type (i). Suppose that P is
not maximal; then 4 is not maximal in eR and we can find a maximal ideal 4’
of the ring eR containing 4. Further, M = A’ @ (1 — ¢)R is a maximal ideal
of R, which is prime and satisfies M? % (0). Thus R/M? is self-injective and
it has identity. However,
R/M? = [eR/A"] @ [(1 — e)R/((1 — e)R)?]
= [eR/4") @ (1 — O)R,

since [(1 — €)R]? = (0). This yields (1 — ¢)R = (0). Thus R = eR implies
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that R has identity. This is a contradiction. Hence P is a maximal ideal of R,
and R is of type (i).

Case 11. For every proper prime ideal P, P* # (0). In this case every proper
prime ideal of R is maximal; J(R), the Jacobson radical of R, is nilpotent and
is an intersection of a finite number of proper prime ideals say Py, Py, . . ., P,.
As each P, is maximal we obtain

R ~ R

TB=® % by
Thus R/J(R) has identity. By Lemma 5, we can find an idempotent ¢ in R
such that e is the identity modulo J(R). We obtain R = eR @ 1", where T is
a nilpotent ideal and e £ 0. Then P = P’ ® T for some proper prime ideal P’

of the ring eR, and
R/P*=~eR/P? ® T/T2.

Since R/P? has identity and 7" is nilpotent, the above isomorphism yields
= (0). Hence R = eR, and R has identity. This again contradicts the
assumption that R has no identity. Hence in any case R is of type (i).
The converse follows immediately from Theorems 1 and 5.

We conclude this paper with some examples and a remark.

Example 1. Let Z be the ring of integers, p any prime number, and # any
integer greater than one. The rings pZ,, (p)/(®"), Z, and Z/(n) are rings of
types (i), (ii), (iii), and (iv), respectively, in Theorem 6.

Example 2. Let K be any field and V a finite-dimensional vector space
over K of dimension greater than two. Let R = {(a, u):a € K,u € V}.In R
define (o, u) + B,2) = (@ + B, u +v); (o, u)  B,2) = (@B, av + pu).

Under these compositions R becomes a local ring with
M={0,u):uc V}

as its maximal ideal such that M? = (0). Thus R is a (PMI)-ring. However,
the composition length of M is greater than two. Consequently, Theorem 1
shows that R is not an (I)-ring.

Remark. A simple comparison of Theorems 5 and 1 shows that any
Noetherian (PMI)-domain with identity is an (I)-ring. However the following
brief discussion points out that a non-Noetherian (PMI)-domain with identity
need not be an (I)-domain. As defined in [9], a ring R with identity is called
a valuation ring if for every pair of its elements, one divides the other. A
valuation ring R is said to be maximal if every family of pairwise solvable
congruences ¥ = %, (mod J,) (where each x, € R and each J, is an ideal of R)
has a simultaneous solution x. A valuation ring R whose every proper homo-
morphic image is maximal is called an almost maximal valuation ring
[9, p. 408]. It follows from [9, Theorem (3.5)] that a valuation domain D of
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rank one is an (I)-domain if and only if D is almost maximal. Thus consider
any rank-one valuation domain R, which is not almost maximal. R cannot
be an (I)-ring and R will not be Noetherian (since a Noetherian rank-one
valuation ring is a Dedekind domain and is an (I)-ring). But in a valuation
domain R of rank one, which is not Noetherian, the maximal ideal M is
idempotent. Thus R/M? = R/M is self-injective. This shows that R is a
(PM1I)-domain, which is not an (I)-domain.
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