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COMMUTATIVE SELF-INJECTIVE RINGS 

SURJEET SINGH AND KAMLESH WASAN 

1. Introduction. All rings considered here are commutative containing at 
least two elements, but may not have identity. A ring P is said to be self-
injective if P as an P-module is injective. A ring R is said to be pre-self-
injective if every proper homomorphic image of R is self-injective [9]. Study 
of pre-self-injective rings was initiated by Levy [10], who established a 
characterization of Noetherian pre-self-injective rings with identity in terms 
of other well-known types of rings. Recently Klatt and Levy [9] have char­
acterized all pre-self-injective rings with identity. In this paper we are mainly 
interested in Noetherian rings. For the sake of convenience we shall call a 
pre-self-injective ring an (I)-ring. A ring R will be said to be a (PMI)-ring 
if for each proper prime ideal P with P 2 ^ 0, the ring R/P2 is self-injective. 
Clearly, an (I)-ring is a (PMI)-ring. However, Example 2 and the remark 
following it show that a (PMI)-ring need not be an (I)-ring. In § 3, Theorem 2 
gives a characterization of all those Noetherian rings R with identity, having 
the property that for a prime ideal P , RP is an (I)-ring. Theorem 3 generalizes 
Levy's theorem to Noetherian rings without identity. In § 4, we study 
(PMI)-rings. Theorem 5, on (PMI)-rings, is analogous to Levy's theorem. 
Theorem 6 gives a characterization of all Noetherian (PMI)-rings. 

2. Preliminaries. A commutative ring R with identity 1 ^ 0 is called a 
special primary ring if it has a unique prime ideal P ^ R such that Pn = (0) 
for some n and the only ideals of R are P , P', P 2 , . . . , Pn~\ (0) [1, p. 267]. 
In fact, a ring R with identity is a special primary ring if and only if R is a 
local, principal ideal ring (PIR) with descending chain condition (DCC). 
A domain J (may not have identity) is called a primary domain if (0) and J 
are its only prime ideals [5, p. 263]. An ideal A of a ring R is said to be semi-
primary if \/A is a prime ideal. A ring R is said to satisfy the (*)-condition 
if every semi-primary ideal of R is primary [4, p. 73]. By a proper prime ideal 
of a ring R we understand any prime ideal different from P . Here we emphasize 
that the zero ideal of a domain will be treated as a proper prime ideal. A ring R 
is said to have dimension n if there exists a strictly ascending chain P c < P\ < 
P 2 < . . . < Pn of proper prime ideals of P , but no such chain of {n + 2)-proper 
prime ideals exists in R [4, p. 73]. A ring P is said to be a u-ring if P is the only 
ideal of P with radical P . All other terms and terminologies are those of 
Zariski and Samuel [11; 12], unless otherwise stated. 
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3. (I)-rings. Levy [10] characterized Noetherian (I)-rings with identity. 
The following theorem is due to Levy [10]. 

THEOREM 1. A Noetherian ring R with identity is an (I)-ring if and only if one 
of the following cases holds: 

(i) R is a Dedekind domain, or 
(ii) R is a PIR with DCC, or 

(iii) R is a local ring, whose maximal ideal M has composition length 2 
and satisfies M2 = (0). 

As an immediate corollary of the above theorem, we obtain the following 
lemma. 

LEMMA 1. Let R be a local ring. If R is an (l)-ring, then one of the following 
holds: 

(i) If R is a domain, then R is a local, Dedekind domain and has at most two 
proper prime ideals, namely (0) and the maximal ideal; 

(ii) If R is not a domain, then R has exactly one proper prime ideal. 

LEMMA 2. Let R be a Noetherian ring with identity such that for each proper 
prime ideal P, the quotient ring RP is an (I)-ring. If Pi and Pi are two proper 
prime ideals of R such that P\ < P2, then every P2-primary ideal Q2 contains 
Pi, and P\ is only a P±-primary ideal. 

Proof. Consider Rp2. For any ideal A of R, let Ae denote its extension 
in Rp2. Then P\e < P2

e are two proper prime ideals of Rp2. Thus Lemma 1 
yields P\e = (0). Let Q2 be any P2-pnmary ideal of R; then Q2

e is a P2
e-

primary ideal of RP<1. Thus (0) < Q2
e. Since there is one-to-one inclusion-

preserving correspondence between primary ideals of R contained in P2 and 
all primary ideals of Rp2 contained in P2

e given by Q <-> Qe [11, p. 225, 
Corollary 2], we obtain Pi < Q2 and Pi is only a Pi-primary ideal of R. 

THEOREM 2. Let R be any Noetherian ring with identity. Then for every proper 
prime ideal P of R, the quotient ring RP is an (l)-ring if and only if R is a direct 
sum of a finite number of (I)-rings. 

Proof. Let (for each proper prime ideal P) the quotient ring RP be an 
(I)-ring. Let (0) = Pll=i Qi be an irredundant decomposition of (0) into 
primary ideals. By Lemma 2, (0) does not have any embedded component. 
Let Pt = \/Qi for 1 ^ i ^ n. Suppose that Pi + Pj 9* R for some i ^ j . We 
can find a proper prime ideal P containing Pt + Pj. Then in RP, Pe, Pt

e, and 
Pje become three distinct prime ideals. However, this is not possible in view 
of Lemma 1. Hence Pi + Pj = R whenever i ^ j , consequently by [11, p. 177, 
Theorem 31], Qt + Qj = R for i ^ j and by [11, p. 178, Theorem 32], 

n r> 
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For each i, let Rt = R/Qt. Suppose that P t = Qt for some i. Let P be any 
maximal ideal of R containing P t. Then for P = P/Qu (Ri)p = Rp/P\Rp-
By Lemma 1, RP/PiRP is a local, Dedekind domain. Hence (RÎ)P is a 
Dedekind domain for each of its maximal ideals P and consequently Rt is a 
Dedekind domain by [2, Theorem 8]. By Theorem 1, Rt is an (I)-ring. 
Suppose that Pt ^ Qt. By Lemma 2, P* is a maximal ideal of R. In this 
case i^i is a local ring isomorphic to RpJQiRp.. Again Rt is an (I)-ring. 
Hence R is a direct sum of a finite number of (I)-rings. 

Conversely, let R = 0 ^2n
i=iRu where each i?< is an (I)-ring. By Theorem 1, 

each Rt is either a Dedekind domain or a ring satisfying the DCC. However, 
every ring with identity satisfying the DCC is a direct sum of a finite number 
of local rings, each of which also satisfies the DCC [11, p. 205, Theorem 3]. Thus 
we can suppose that each Ri is either a Dedekind domain or a local ring satisfy­
ing the DCC. Let P be any proper prime ideal of R. Then there exists a positive 
integer i S n such that P = Pt + Y,j^t Rji where Pt is a proper prime ideal 
of Rt. Further, RP is isomorphic to (Ri)Pi. If Ri is a Dedekind domain, 
then (Ri)pi is also a Dedekind domain and by Theorem 1, (Ri)Pi is an 
(I)-ring. If Ri is a local ring satisfying the DCC, then (Ri)Pi = Rt is an 
(I)-ring by hypothesis. Hence RP is an (I)-ring. This completes the proof. 

LEMMA 3. Any selj-injective ring has identity. 

Proof. Let R be a self-injective ring. The set R\ = {(a, n): a (E R, n an 
integer} is a ring with identity with addition and multiplication defined by: 

(a, n) + (b, m) = {a + &, n + m), (a, w) • (6, m) = (ab + ma + nb, nm), 

and i? is embeddable as an ideal into R\ by the mapping a —> (a, 0) for all 
a £ R> Each i^-module ikf can be made into a unital i^i-module by defining 
x(a, n) = xa + ^x for every x Ç ikf and (a, n) Ç i?i. It was proved by Faith 
and Utumi [3, Corollary (1.4)] that any i^-module M is injective as an 
i^-module if and only if M satisfies Baer's condition as an i^i-module. Con­
sequently, R is injective as an i?i-module and is a direct summand of R\. 
Hence there exists an idempotent e 6 Ri such that R = eRi. Then e Ç R, 
and e is the identity of R. 

The following theorem, which we state without proof, is due to Gilmer 
and Mott [6, Theorem 3]. 

THEOREM 3. Let R be a u-ring in which the set of proper prime ideals is 
inductive. Then for all -K G R, TT G irR. If, in addition, the zero ideal is a product 
of a finite number of prime ideals, then R has identity. 

Trivially, in a Noetherian ring the family of all proper prime ideals is 
inductive and the zero ideal is a product of a finite number of prime ideals. 
Hence we see that any Noetherian u-ring always has identity. Now we prove 
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a theorem which generalizes Levy's theorem to Noetherian rings without 
identity. 

THEOREM 4. Let Rhea Noetherian ring without identity. Then R is an (l)-ring 
if and only if R is a trivial simple ring {i.e. a simple ring whose square is zero). 

Proof. Let R be an (I)-ring which is not simple. Then there exists a proper 
ideal A of R, and R/A is self-injective. By Lemma 3, R/A has identity and 
therefore y/A ^ R. Thus R is a Noetherian u-ring, and hence R has identity. 
This is a contradiction. Hence R is a simple ring. Further, R is trivial, since it 
has no unity. The converse is obvious. 

4. (PMI)-rings. Let us recall that a ring R is said to be a (PMI)-ring if 
for each proper prime ideal P , R/P2 is a self-injective ring whenever P2 ^ (0). 
The following lemma is due to Gilmer and Mott [6, Lemma 3]. 

LEMMA 4. / / A is an ideal of a ring R such that there is no ideal properly 
between A and A2, then the only ideals between A and An are A, A", . . . , A . 

LEMMA 5. In any ring R, if A is a nil ideal, then any idempotent modulo A in R 
can be lifted to an idempotent in R. 

Proof. Let e = e + A be an idempotent in R = R/A. Then (e2 — e) £ A 
and (e2 - e)n = 0. By [7, Lemma 1.12], en = e2nb for some b £ R. L e t / = enb\ 
then / is an idempotent in R and fR = enR. Thus fR = enR = eR. Hence 
f = ë, since R is a commutative ring. This proves the lemma. 

LEMMA 6. Let R be a Noetherian ring and P a proper prime ideal of R such 
that R/P2 is a self-injective ring. Then every ideal of R with radical P is a power 
of P, and is primary. Further, there is no ideal properly between P and P2. 

Proof. Let Q be any ideal of R such t ha tVQ = P.H P = (0), then trivially 
Q is primary. Suppose that P 9e (0). Now R/P2 is self-injective and by 
Lemma 3, R/P2 has identity. But any Noetherian self-injective ring is a 
quasi-Frobenius ring and satisfies the DCC [8, p. 77, Lemma 2]. Consequently, 
P is a maximal ideal of R. Then by the lemma proved by Levy [10, p. 149] 
there is no ideal properly between P and P2. Now for some n, Pn C Q C P-
By Lemma 4, Q = Pk for some k. This proves the first part of the lemma. 
If k = 1, then Q — P and trivially Q is primary. Let k > 1. 

Let R = R/Q = R/PK The Jacobson radical J(R) of R is P = P_/Pk; 
J(R) is nilpotent. Hence by Lemma 5 every idempotent modulo P in R can 
be lifted to an idempotent in R. Thus we can find e £ R such that e = e + Pk 

is an idempotent in R and e is the identity modulo P. Then R = êR © 
(1 — e)R, where (1 — e)R = {a — êâ: â G R} is contained in J(R) and is 
nilpotent. Now P = Â © (1 — e)R, for some maximal ideal Â of eR. Then 

R/P2 ^ R/P2 ^ [ëR/Â2] © [(1 - ê)R/((l - ë)R)2]. 
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Since (1 — e)R/[(l — e)R]2 is nilpotent, it cannot have a non-zero idempotent. 
The above isomorphism together with the fact that R/P2 has identity yield 
(1 — ë)R = (0). This implies that R = eR has identity. In a ring with 
identity, every ideal whose radical is a maximal ideal is primary [11, p. 153, 
Corollary 1]. This implies that (Ô) is primary in R, and hence Q is primary 
in R. The last part is now immediate. 

LEMMA 7. Let R be a Noetherian (P M I)-ring and P i , P2 (Pi < P2) any 
two proper prime ideals of R. Then Pi < P2 for every positive integer n and 
Pi = nn i v . 

Proof. Since Pi < P2j P22 5* (0), R/P22 is self-injective. By Lemma 6, 
there is no ideal properly between P2 and P22. Since R/Pi is a Noetherian 
domain, we have, by Krull's theorem [11, p. 216, Theorem 12], Dn (P2/P1Y = 
(Ô), i.e. P i = O» ( iY + Pi)- Thus P2

n+1 + Pi < P2
n + P i for every n ^ 1. 

Since P2
n C P2

W + P i C P2, we have, by Lemma 4, P2
n + Px = P2

l- for 
some tn }z 1. Clearly tn—>co a sw-^oo . Hence P x = On P2tn = Pin ̂ 2W. This 
proves the lemma. 

The following theorem is analogous to Theorem 1. 

THEOREM 5. Let Rhea Noetherian ring with identity. Then R is a (PMI)-ring 
if and only if it is one of the following types: 

(i) R is a Dedekind domain, or 
(ii) R is a PIR satisfying the DCC, or 

(iii) R is a local ring such that the square of its maximal ideal is zero. 

Proof. Let R be a (PMI)-ring. Suppose that R has a proper prime ideal P 
such that P 2 = (0). If P is a maximal ideal of P , then R is of type (iii). 
Suppose that P is not maximal. Consider R = R/P and let P' = P''/P be any 
non-zero proper prime ideal of R. By Lemma 7, P < P'2. Thus R/P'2 ^ R/Pf2 

implies that R/P'2 is self-injective, and R is a (PMI)-domain. By Lemma 6, 
R is a Noetherian domain such that for any non-zero proper prime ideal P' 
there is no ideal properly between P' and P'2. Hence by [2, Theorem 8] R is 
a Dedekind domain. Consider PP>; its unique maximal ideal is Pfe, the exten­
sion of P' in P P , and P e < (P'e)n for every n. By Krull's theorem, C\n(P

,e)n = 
(0). Thus Pe = (0). Consider any x Ç P and let M be any maximal ideal of R. 
Then P < M and in RM, Pe = (0) implies that there exists y G R\M such 
that xy = 0. Thus (0): (x) <£ M. Hence (0): (a) = R and x = 0. This yields 
P = (0). Hence R itself is a Dedekind domain and is of type (i). 

Now suppose that R has no proper prime ideal P with P 2 = (0). Then for 
every proper prime ideal P , R/P2 is self-injective and as seen in Lemma 6, 
P is maximal. Thus by [2, Theorem 1], R satisfies the DCC. Hence 
R = 0 YLnt=i Ru a direct sum of a finite number of local rings Rt satisfying 
the DCC. For each i, let P^ be a maximal ideal of Rt. Then Qt = Pt + Y^j^t Rj 
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is a proper prime ideal of R and R/Q2 = Ri/P2 is self-injective. Further, 
Piki = (0) for some kt. By Lemmas 4 and 6, Rt is a special primary ring and 
thus a PIR. Hence R is a PIR and is of type (ii). 

Conversely, if R is of type (i) or (ii), then by Theorem 1, R is an (I)-ring 
and in particular R is a (PMI)-ring. If R is of type (iii), then the condition 
defining a (PMI)-ring holds vacuously for R. Hence again R is a (PMI)-ring. 
This proves the theorem. 

We now establish the main theorem of this section. 

THEOREM 6. Let Rbe a Noetherian ring. Then R is a (P M I)-ring if and only 
if it is one of the following types: 

(i) R has a proper prime ideal P such that P2 = (0) and R/P is a primary 
domain, or 

(ii) R is a nilpotent ring, or 
(iii) R is a Dedekind domain, or 
(iv) R is a PIR satisfying the DCC. 

Proof. Let R be a (PMI)-ring. Since any field is a primary domain, we have, 
by Theorem 5, R is of type (iii), (iv) or (i), whenever R has identity. 
Let R be without identity. If R has no proper prime ideal, then R is nil and 
hence nilpotent and is of type (ii). Suppose that R has at least one proper 
prime ideal. Then the following two cases arise. 

Case I. R has a proper prime ideal P with P2 = (0). Consider R = R/P. 
It follows on the same lines as in the proof of Theorem 5 that R is a (P1VII)-
domain. By Lemma 6, every semi-primary ideal of R is primary, i.e. R satisfies 
the (*)-condition. Hence by [4, Theorem 7], R is either a primary domain 
or a u-domain of dimension ^ 1. Thus if R is a primary domain, then R is of 
type (i). Let R be a u-domain. Since R is Noetherian, we see, by Theorem 3, 
that R has identity. Therefore we can find an element e £ R such that 
ë = e + P is the identity of R. Because of Lemma 5, we can suppose that 
e itself is an idempotent. Now R = eR © (1 — e)R, where 

(1 — e)R = {x — ex: x £ R} 

is contained in P. Now P = A © (1 — e)R for some proper prime ideal A of 
the ring eR. If P is maximal, then trivially R is of type (i). Suppose that P is 
not maximal; then A is not maximal in eR and we can find a maximal ideal A' 
of the ring eR containing A. Further, M = A' © (1 — e)R is a maximal ideal 
of R, which is prime and satisfies M2 7e (0). Thus R/M2 is self-injective and 
it has identity. However, 

R/M2 ^ [eR/A'*] © [(1 - e)R/((l - e)R)2] 

^ [eR/A'*] © (1 - e)R, 

since [(1 - e)R]2 = (0). This yields (1 - e)R = (0). Thus R = eR implies 
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that R has identity. This is a contradiction. Hence P is a maximal ideal of R, 
and R is of type (i). 

Case II. For every proper prime ideal P, P2 ^ (0). In this case every proper 
prime ideal of R is maximal; J(R), the Jacobson radical of P , is nilpotent and 
is an intersection of a finite number of proper prime ideals say Pi , P2 , . • • , Pn* 
As each Pt is maximal we obtain 

J(R)~W H Pi' 

Thus R/J(R) has identity. By Lemma 5, we can find an idempotent e in R 
such that e is the identity modulo J(R). We obtain R = eR © T, where T is 
a nilpotent ideal and e 7e- 0. Then P — P' 0 T for some proper prime ideal P' 
of the ring eR, and 

P / P 2 ^ eR/P'2 ® T/T2. 

Since P / P 2 has identity and T is nilpotent, the above isomorphism yields 
T = (0). Hence R = eR, and R has identity. This again contradicts the 
assumption that R has no identity. Hence in any case R is of type (i). 

The converse follows immediately from Theorems 1 and 5. 

We conclude this paper with some examples and a remark. 

Example 1. Let Z be the ring of integers, p any prime number, and n any 
integer greater than one. The rings pZ(P), (p)/'(pn), Z, and Z/(n) are rings of 
types (i), (ii), (iii), and (iv), respectively, in Theorem 6. 

Example 2. Let K be any field and V a finite-dimensional vector space 
over K of dimension greater than two. Let R = {(a, u): a £ K, u Ç V}. In R 
define (a, u) + (0, v) = (a + /3, w + v) ; (a, w) • (0, z>) = (a/3, av + /3w)» 
Under these compositions R becomes a local ring with 

M = { ( 0 , « ) : M G 7} 

as its maximal ideal such that M2 = (0). Thus R is a (PMI)-ring. However, 
the composition length of M is greater than two. Consequently, Theorem 1 
shows that R is not an (I)-ring. 

Remark. A simple comparison of Theorems 5 and 1 shows that any 
Noetherian (PMI)-domain with identity is an (I)-ring. However the following 
brief discussion points out that a non-Noetherian (P M I)-domain with identity 
need not be an (I)-domain. As defined in [9], a ring R with identity is called 
a valuation ring if for every pair of its elements, one divides the other. A 
valuation ring R is said to be maximal if every family of pairwise solvable 
congruences x = xa (mod Ja) (where each xa G R and each Ja is an ideal of R) 
has a simultaneous solution x. A valuation ring R whose every proper homo-
morphic image is maximal is called an almost maximal valuation ring 
[9, p. 408]. It follows from [9, Theorem (3.5)] that a valuation domain D of 
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rank one is an (I)-domain if and only if D is almost maximal. Thus consider 
any rank-one valuation domain R, which is not almost maximal. R cannot 
be an (I)-ring and R will not be Noetherian (since a Noetherian rank-one 
valuation ring is a Dedekind domain and is an (I)-ring). But in a valuation 
domain R of rank one, which is not Noetherian, the maximal ideal M is 
idempotent. Thus R/M2 = R/M is self-injective. This shows that R is a 
(PMI)-domain, which is not an (I)-domain. 
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for suggesting Theorem 6 and for various other suggestions. 
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