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Introduction

Ever since David Ellis has shown that a Boolean algebra has a natural
structure of an autometrized space, the interest in such spaces has led several
authors to study various autometrized algebras like Brouwerian algebras [9],
Newman algebras [4], Lattice ordered groups [6], Dually residuated lattice or-
dered semigroups [7] etc. However all these spaces are lattices (with the exception
of Newman algebra which is not even a partially ordered set); and a natural
question would be whether there are semilattices with a natural structure of an
autometrized space. In the present paper we observe that the dual of an implicative
semilattice [8] is a generalization of Brouwerian algebra and it has a natural
structure of an autometrized space.

In §1 we define a semi-Brouwerian algebra and show that a semi-Brouwerian
algebra is a semilattice with O satisfying (F) (see Theorem 1) which readily shows
that a semi-Brouwerian algebra is the dual of an implicative semilattice. We also
prove that a semi-Brouwerian algebra is a Boolean ring if and only if the symmetric
difference is a group operation. In §2 we observe that a semi-Brouwerian algebra
is an autometrized space and show that the entire Brouwerian geometry of E. A.
Nordhaus and Leo Lapidus can be extended to these spaces. We also prove that
a semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric
group operation. We further prove that a semi-Brouwerian geometry (see defi-
nition 2) is a Boolean geometry if and only if semilattice betweenness coincides
with metric betweenness.

1

DEfFINITION 1. An algebra L= (L; +,—,0) with two binary operations
+, — and a nullary operation 0 is called a semi-Brouwerian algebra if and
only if 1) a+a=a, (1.2) a+b=b+a, 1.3) a—a=0, (14) (a—b)
+b=a+b, (1.5 (a=b)—c =a—(c+Db) for all a,b,c in L.
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We now show that these axioms are independent.

ExampLE 1. Let S be any non-empty set with more than one element and
let 0 be an element of S. Definea+ b =0anda — b = Oforall a,bin S. Then
S satisfies all the axioms except (1.1).

ExaMPLE 2. Let S be any set with more than one element and let OeS.
Definea+ b = band a — b = Ofor all a,b in S. Then S satisfies all the axioms
except (1.2).

EXAMPLE 3. Let (S, +) be the two element join semilattice {0, 1} and define
1—-0=1,0-0=0—-1=0,1-1=1o0nS. Clearly S satisfies all the axioms
except (1.3).

EXAMPLE 4. Let (S, +) be the two element join semilattice {0, 1} and define
a—b =0 for all a,b in S. Obviously S satisfies all the axioms except (1.4).
Axiom (1.4) does not hold in S for 1-0)4+0=0+0=0#1=1+0.

ExaMPLE 5. Consider S = {0,a,b}. Define a+b=b+a=b, a+0=
O+a=a, b+0=0+b=b, at+a=a, b+b=>b 0+0=0 and
a—-a=b—-b=0-0=0-a=0—-b=0,a—0=a,b—-0=b,a—b =a,
b—a = b on S. Obviously S satisfies all the axioms except (1.5). Axiom (1.5)
does not hold in S for (a—b)—a=a—-a=0#a=a—-b=a—(a+b).

ReMArk 1. Example 2 shows that associativity of + may be valid even with-
out commutativity. However it is not known whether any significant results can
be obtained by replacing commutativity in the definition 1 by associativity.

THEOREM 1. Let L= (L; +, —,0) be a semi-Brouwerian algebra. If we
writea £ b to meana+ b = b, then (L, £) is a semilattice with 0 as the least
element satisfying (F)a — b < cifandonlyifa < ¢+ b. Conversely if (L, +,0)
is a semilattice with O and — is a binary operation in L-with (F), then (L, +,—,0)
is a semi-Brouwerian algebra.

Obviously (L, £ ) is reflexive and antisymmetric; and to prove this theorem
we need the following four lemmas in which we assume that Lis a semi-Brouwerian
algebra and a,b,¢, -, eL.

LemMa 1. (i) 04+ a=a, (i) 0—a =0 and (iili) a—(b+ a) = 0.

PrOOF. (i): (a—a)+a = a+ a (by (1.4)) so that 0+ a = a (by (1.3) and
1.1).

(i) O—a)=(@—a)—ay(3)=a—(a+a)(by (1.5) = a—a=0,

(iii) a—(b+a) = (a—a) — b (by (1.5)) = 0 — b = 0 (by (ii) above).

LeMMA 2. a—b =0 if and only if a £ b.
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Proor. If a—b =0thenb=0+b=(a~b)+b=a+bsothata < b.
Conversely suppose that a £ b. ThenO0=a—-(b+a)=a—(a+b) = a—b.

LemMA 3. (i) (@a+b)—b=a—b, (i) (@a+b)—(a+c) =b—(a+ o).

PrOOF. (i) [(@a+b)—b]—(a—b) = (a+b)—[(a—b)+b] (by (1.5)
=(a+b)—(a+b)(by (1.4) =0and (a—b)—[(a+b)—b] = a—{[(a+b)
—b]+b} (by (1.5) = a—[(a+b)+b] (by (14) = (a—b) — (a + b) (by
1.5)) = (a=b)—(b+a) (by (1.2)) = [(a—b)—a]—-b =[a—(a+b)]-b
=[a—(b+a)]—b =0—b= 0so that by Lemma 2 we have (¢ + b) — b
= a-—b.

(a+b)—(@a+c)]—[b—(a+c)]=(@+b)—{[b—(a+c)]+(a+c)}
(by (1.5) = (a+b)—[b+(a+c)] (by (1.4) = (a+b)—[(a+c)+b] (by
(1.2)) = [(a+b)—b]—(a+c) (by 1.5)) = (a —b)—(a+c) (by (i) above)
[(a—b)—a]—c (by (1.2) and (1.5)) = [a — (a + b)] — ¢ =0 — ¢ = (by (iii) of
Lemma 1) =0and [b—(a + ¢)]-[(a + b) ~(a+ ¢)] = b — {[(a + b)— (a + ¢)]
+(a+c)} (by (1.5))=b—[(a+ b)+(a+ )] (by (1.4)=b—[(a + ¢) + (a +b)]
by 1.2)) =[b—(a+Db)] — (a+¢) (by (1.5) = 0—(a+c) =0 so that by
Lemma 2 we have (a+b)—(a+c¢) = b —(a +¢).

LEMMA 4. a+(b+c)=(a+b)+c.

PrROOF. [a+ (b+ )] —-[(a+ D) +c] = {[a+(b+c)]—(a+b)}—c (by
(1.2)and (1.5) =[(b + ¢) — (@ + b)] — c(by (i) of Lemma3) =[¢c — (b + a)] — ¢
(by (1.2) and (ii) of Lemma 3) = ¢ —[c + (b + a)] (by (1.5)) = O so that by
Lemma 2 we have a+(b+c)s(a+b)+c.Now (@a+b)+c=c+(b+a)
S{c+bh)+a=Mhb+c)+a=a+(b+c) so that a+(b+c) = (a+ b)+c.

PROOF OF THEOREM 1. Lemma 1.(i) and Lemma 4 readily imply that (L, <)
is a semilattice with O as the least element. Now for all a,b,cin L, a < ¢+ b <>
a—(c+b)=0«(@—b)—c = 0<>a—b = ¢. For the proof of the converse
see Nemitz [8].

REMARK 2. If a semi-Brouwerian algebra is a lattice, then it is a Brou-
werian algebra.

For an example of a semi-Brouwerian algebra which is not a lattice see page
139 in [8].

Throughout this article L denotes a semi-Brouwerian algebra. The following
theorem is an immediate consequence of Theorem 1 (see Nemitz [8]).

THEOREM 2. For all a,b,c in L the following are valid.
21 a=a-0.
22) a-b=a.
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23) Ifa<b,thena—cZLb—-—candc—b=<c—a.

(24) a=bif and only if a—b = 0.

25 (a—b)—b=a-—-b.

26) (a+b)y—c=(@—c)+((b—-2o).

(2.7) If Lis a lattice with greatest lower bound N, then L is distributive and
a—(bnc)=(@—>b)+(a—0c).

THEOREM 3. Let (L; +, <, —) be a system in which (L, +, £) is a semi-
lattice with 0, + denotes the least upper bound with respect to < and (L, -)
is a binary algebra. Then the following statements are equivalent.

l.a—b<cifand only if aZc+b.

2.()) (a=b)+b=a+b,(ii)a—a = 0 and (iii) (a—b)— ¢ = a—(c + b).

3.())(a—=b)+b=a+ b,(ii)a—(a + b) = 0and (iii)(a~b)—c = a—(c+D).

4. ()(a-b)+b=a+b,(iD)@+b)—c=(@-c)+(b-0), (i) a—a=0
and (iv) (@a—b)+a=a.

Proor. That 1 implies 2 follows from Theorem 1.

Assume 2. From 2(ii) and 2(iii) we have 0 —a = 0 so that by 2(ii)
O0=(a—a)—b=a—(b+a)=a—(a+ b). Hence 2 implies 3.

Assume 3. From 3(ii) and 3(iii) we have a—a=0—-a =0 and by
3@ (@-b)+a=[(a-b)—a]l]+a=[a—(a+b)]+a =0+a = a. From
3(i) and 3(ii) it is clear that a £ b if and only if a — b = 0. We also observe
that a < b implies a—c£b—c. If a<b, then a+b ="~ so that
a+b+c=b+c and hence a—~(b+c)=a—(a+b+c)=0 (by 3(ii)).
Now(a—c)—(b—¢)=a—[(b—c)+c](by3(ii)) = a—(b+c)(by3({) =0
so that a—¢c < b—c. [(a+b)—c] — [(a=¢c) + (b—¢)] = (a+Db) -
[a—c)+(b—c) +¢] (by 3(ii)) = (a+b)—[(a—c)+b+c] (by 3(i)) =
(@a+b)—[(a-c)+c+b] = (a+b)—(a+c+b) (by 3(1)) =0 (by 3(ii)) so
that (a+b)—cZL(a—c)+(b—c). Also a<a+b and b=Za+b imply
(a—c)+(b—c) £ (a+b)—c so that (a+b)—c=(a—c)+(b—c). Thus 3
implies 4.

Assume 4 and let a £ c+b. From 4(ii) a £ b implies a—c < b —¢;
hence a—b £ (c+b)—b = (¢c—b)+(b—b) = ¢ — b < ¢ by 4(iii) a_rrl!d 4(iv).
Ifa-b<cthena<a+b=(a-b)+b=c+b. Hence 4 implies 1.

We shall write a * b = (a—b) + (b—a) for a,be Land call a * b the sym-
metric difference of a and b. It is known that in a Brouwerian algebra (with 1)
the symmetric difference is a group operation if and only if it is a Boolean algebra
and we show now that the same is true even in the case of a semi-Brouwerian
algebra. Put ab = (a+ b) - (a*b).

LEMMA 5. ab =a —(a*b) = b —(a*bh).
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Proor. First observe that ab = ba. Now by (2.6) and (1.3) we have
a—(a*b) = [a+(a*b)]—(a*b) = [a+(a—b) + (b—a)]—(a*b) =
(a+ b)—(a*b) (and hence by symmetry) = b—(a*b).

THEOREM 4. If a —(b—a) = a for all a,b in L, then Lis a Boolean ring.

To prove this theorem we require the next three lemmas in which we assume
a—(b—a)=a for all a,b in L.

LEMMA 6. a(bc) = (ab)c for all a,b,c in L.

PRrOOF. By hypothesis a — (a—b) = [a — (b—a)] —(a—b) = a — [(a—b) +
(b—a)] (by (1.5)) = a — (a*b) so that by the above lemma ab = a -~ (a—b) =
b —(b—a) (by symmetry). Now (ab)c = ab—(ab—c) = [b—-(b—a)] —
{[b—(b-a)]—c}=[b—-—(b-a]—{b~—[c+(b-a)]}(by1.5) = [b-(b—a)]
—{b=-[(b—a)y+c]} = [b—(b—a)] — [(b—o)—(b—a)] (by (L5) =
b—{[(b—c)—(b—a)] + (b—a)} (by (1.5)) = b—[(b—c)+ (b—a)] (by (1.4))
= b—[(b—a)+(b—c)] = (chb)a = a(bc).

LEMMA 7. ab is the greatest lower bound of a and b in L.

Proor. Firstly if ab = a then by Lemma 5, b — (a*b) = a so that a £ b
and if a < b and a—(b—a)=a then ab=a—-(a-b)=a—-0=a. Ob-
viously ab is a lower bound of a and b by Lemma 5 and (2.2); and now let ¢ be
a lower bound of @ and b. Then ta = t and tb = t so that t(ab) = (ta)b =th = 1.
Therefore t < ab so that ab is the greatest lower bound of a and b in L.

LEmMMA 8. L is a relatively complemented distributive lattice.

Proor. From lemmas 6 and 7 it follows that L is a lattice with greatest lower
bound of a and b as ab so that by (2.7) it follows that L is a distributive lattice.
Now let aeLand 0 < x < a. Put y = a—x. Clearly by 2.2,0 < y £ a.Further
y+x=(@-x)+x=a+x=a.Alsoxy=y—(x*»)=y—[(x—p)+(y—x)]
=y—[0=)+Cx=N]=-G=-N]--x)=y—-@-x =y—[(a-x)
—x] = y~(a—x) = 0. Thus [0,a] is complemented for every ae L so that L
is relatively complemented.

PrROOF oF THEOREM 4. From lemmas 6, 7 and 8 it follows that L is a relatively
complemented distributive lattice with O and hence L has the structure of a Boolean
ring.

Now the following theorem shows that if * is a group operation in L, then
L has the structure of a Boolean ring.

THEOREM 5. In L the following statements are equivalent.
(1) * is a group operation.
(2) * is associative.
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(3) * is cancellative.

(4) a —(b—a) = a for all a,b in L.

(5) (L,*, ) is a Boolean ring.

6) (L, *) is a loop.

(7) ab is the greatest lower bound of a and b in L.
8) a+ bc =(a+b)(a+c) for all a,b,c in L.
(9) a - bc = (a—b)+ (a—c) for all a,b,c in L.
(10) x £ y implies a x < ay for all a in L.

Proor. The order of demonstration is (1) = (2), (3) and (6); (2) = (1);
3)=@; @ =) (5 =) and (7); (6) = (3); (7) = (4), (8), (9 and (10);
8) = (4); (9) = (); (10) = (D).

Now (1) = (2), (3) and (6); (4) = (5); (5) = (1); (6) = (3); (7) = (8), (9)
and (10) are all obvious.

Assume (2). Since a*a =0 and a ¥*0 = 0*a = a for every a in L it fol-
lows that * is a group operation. Hence (2) = (1).

Assume (3). Then a * (b—a) = [a —(b—a)] + [(b—a) — a] = [a—(b—a)]
+(bh—a)=a+(b—a)=a+band[a—(b—a)]*(b—a)=(b—a)*[a—(b—a)]
= (b—a)+a =a+ b so that a — (b—a) = a. Hence (3) = (4).

Assume (5). Let aXb be the greatest lower bound of @ and b in L. Then
since (5) implies (1) we have ab = a—(a*b) = a*[aX(a*b)] (since in a
Boolean ring (B, +,-)a—b = a + ab) =a*[(aXa)*(aXb)] = a*[a*(a X b)]
= (a*a)*(aXb) =aXb. Hence (5) = (D).

Assume (7). Let a,be L. Then a=(a + b)a = a—[a*(a + b)] = a—[(a + b)
—a] = a—(b—a) so that (7) = (4).

Assume (8). Nowa=a+ab = (a+a)(a+b)=a(a+b) = a—(b—a)
so that (8) = (4).

Assume (9). Let a, b € L. We already know that ab is a lower bound of a and b.
Let ¢ be a lower bound of @ and b. Then 0 = (t—a) + (t—b) = t — ab so that
t £ ab. Hence (9) = (7).

Assume (10). Let a,be L and let ¢t be a lower bound of aand b. Now t < a
and t < b implies t = t2 < tb < ab so that t < ab. Hence (10) = (7).

2

it is well known that a relatively complemented distributive lattice with 0
is an autometrized space. We refer to this space as Boolean geometry (see [9]).

THEOREM 6. The symmetric difference in a semi-Brouwerian algebra is
a metric operation.

PrOOF. Obviously a*a = 0 and suppose a*b = 0; then a— b = 0 and
b—a =0 so that a = b by (2.4). Now let (a*b) + (b*c) = t. Then each of
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a—b,b—a, b—cand c—bis <tsothata=<t+b, b=t+a, bZt+c
andc < t+ b.Hencea < t+candc £ t+asothata*c =(a—c)+(c—a) L t.

COROLLARY 1. Every semi-Brouwerian algebra is an autometrized space
(see definition 1 in [S]).

DEFINITION 2. A semi-Brouwerian algebra autometrized via the symmetric
difference is called a semi-Brouwerian geometry.

In the rest of this article L denotes a semi-Brouwerian geometry. We will
regard a triple of elements a, b, ¢ as the vertices of a triangle denoted by A(a, b, ¢)
and call a*b, b*c, ¢*a the sides of this triangle.

THEOREM 7. L is a Boolean geometry if and only if it is free of isosceles
triangles.

PROOF. The necessity is obvious. Conversely suppose that a*b = a*¢ and
b # c; then it follows that a, b, ¢ are all distinct and hence A(a, b, ¢) is an isosceles
triangle. Hence if L is free of isosceles triangles, then * is cancellative and there-
fore (by Theorem 5) L is a Boolean geometry.

The proofs of the following Theorems 8 to 14 are the same as for Brouwerian
geometry (see [9]).

THEOREM 8. In L the relation (a, b, c)T is equivalent to each of the relations
(i) a+b=b+c=ct+a=a+b+ec.

(ii) a—-b=ZLc,b-—a=sc,c—ash.

(iii) a*b£c<La+b.
vyb—a=c—a,a—b=c—ba—c=b-c.

COROLLARY 2. For a,be L we have (a,b,a * b)T.
THEOREM 9. L is a chain if and only if all triangles are isosceles.

THEOREM 10. In L each side of a first distance triangle is under the opposite
vertex.

THEOREM 11. In L every second distance triangle has fixity.

THEOREM 12. L is a Boolean geometry if and only if every first distance
triangle has fixity.
THEOREM 13. L contains no equilateral triangles.

THEOREM 14. L contains no equilateral n-circuit for n-odd.

Nordhaus and Lapidus [9] proved that a Brouwerian algebra with 1 is a
Boolean algebra if and only if it admits a metric group operation. However we
now show that even an improved result with much less hypothesis is valid.

THEOREM 15. A semi-Brouwerian algebra is a Boolean ring if and only
if it admits a metric group operation.
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To prove this theorem we need the following two lemmas.

LEMMA 9. Let 0 be a metric group operation in a semi-Brouwerian algebra
L. Then for all a,b in L, ab < a+b.

PrOOF. Since 000 = 0 the zero element of the group is zero. Thus
adb=<(@00)+06b)=a+b.

LemMA 10. For any a,beL, (a+b)*{a—[a—(b—a)]} =a+b.

Proor. First we observe that (a + b) — a = (a + b) — [a — (b—a)] for all
a,beL. Since a—(b—a) < a we have (a+b)—a = (a+b)—[a—(b—a)].
Also (a+ b)~[a—(b—a)] £ b—a = (a+ b)—a since (b—a) + [a — (b—a)]
=a+(b—a)=a+b. Thus (a+b)—a = (a+ b)—[a—(b—a)]. Now put-
ting s=a—(b—a) and t=(a+b)—(a—s) we have t+(a—s) = (a+b)
+(a—s)y=a+b so that a+b=t+(a—s) £ t+[(a+b)—5s] £ a+b.
Hence a+ b =t + [(a + b) — s] = t +{(a + b) — a] (by the observation made
above) =t+ {[t+(@a—s)]—a}=t+(t—-a)=t=(a+b)*{a—[a~(b—-a)]}.

PrOOF OF THEOREM 15. Suppose that 0 is a metric group operation in a
semi-Brouwerian algebra L, and ¢,d e L. Then ¢=¢c 00 = (c8d) + (d00) = (c8d)
+d so that ¢ —d < ¢0d; and similarly d — ¢ < ¢0d so that ¢*d < cf0d.
Now leta,be Land puta+b=x.By Lemma 10 wehave x = x*{a—[a—(b—a]}
< x0{a—[a—(b—a)]} and on applying Lemma 9 we get x0{a—[a—(b—a)]}
=x =x00 so that a — [a — (b—a)] = 0. Hence a = a — (b—a) so that by
Theorem 5, Lis a Boolean ring. The converse is clear.

THEOREM 16. The subgeometry (see definition 2.7 in [9]) generated by
two elements of L contains atmost nine elements.

Proor. The same proof (with the same notation) as in Theorem 2.13 of [9]
shows that (a, b, c)T and (a,d, ¢)T so that by (iv) of Theorem 8 it follows that
c=(a—b) + (b—a) = (c—b) + (c—a) £ (c—d) + (c—a) (since d £ b) =
(a—d)+(d—a)=a*d < c;hence ¢ = a *d. The rest of the proof is the same
asin [9].

COROLLARY 3. The subgeometry generated by any two comparable ele-
ments of L contains atmost six elements.

ProOOF. See [9].
Theorems 3.5 and 3.6 of [9] are valid even if L is a semilattice.

REMARK 3. The concept of semilattice betweenness (and symmetry) are
as in [9] where ab is interpreted as (a + b) —(a*b).

THEOREM 17. (a, b, c)L implies ac £ b £ a + c.
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PROOE. If ab+ bc = b = (a+ b)(b+c¢), then b = ab+ bc £ a+ ¢c; also
a—{lla—0)=b] + [(c-a)—b]} = a~{la-(b+)]+[c—(a+D)]} =
@+b)—{l[a—(b+)]+[c—(@+b)]} = (@a+b)—-{[(a+b)—(b+)]+
[(b+c)—(@+Db)]} =@+b)—[(a+b)*(b+c)] =(a+b(b+c) =bso
that a £ b+ [(a—c)—b]l+[(c—a)—b] < b+(a—c)+(c—a)=b+(a*c)
and hence ac =a—(a*c) £ b.

THeOREM 18. L is a Boolean geometry if and only if ac£b<a+c
implies (a, b, c)L.

ProoF. The necessity follows from the fact that in a distributive lattice
(L,+,*) ac£b<a+c if and only if (a,b,c)L. Conversely suppose that
ac £ b £ a+ ¢ implies (a,b,c)L. For a,beL, ab £ b £ a + b and hence by
hypothesis we have (a,b,b)L so that b =(a+ b)(b+b)=(a+b)b = b—
[(a + b) — b] = b — (a—b). Therefore by Theorem 5, L is a Boolean geometry.

THEOREM 19. If (a—b) + ab=a for all a, b in L, then (i) L is symmetric and
(ii) semilattice betweenness implies metric betweenness (see definition 3.2 in [9]).

PROOF. (i) since a = (a—b)+ab we have a—ab = [(a—b)+ ab] —
ab<a—bz<a—absothata—b =a—ab.Hence(a + b)*ab = (a+b)—ab
= (a—ab)+(b—ab) = (a—b)+(b—a) = a*b. (ii) Assuming (a, b, c)L we
have by Theorem 17,ac £ b S a+c.Nowac < bimpliessa —b<a—ac=a-c
andc~b=<c—ac=c—a.Alsob < a+cimpliesh—c £aandb—a =< ¢ so
that b—c=(b—c)—c<a-—c and b—a=(b—a)—a £ c—a. Now we have a — b
<a-c,b—afc—-a,c—b=c—aand b—c £ a—c so that a*b £ a*c and
b*c £ a*c. Thus (a*b)+ (b*c) = a*c < (a*b)+ (b*c) so that (a,b,c)M.

THEOREM 20. L is a Boolean geometry if and only if semilattice between-
ness coincides with metric betweenness.

PrOOF. Suppose L is a Boolean geometry. Then by Theorem 19 semilattice
betweenness implies metric betweenness and a straightforward verification shows
that metric betweenness implies semilattice betweenness. Conversely, suppose
that semilattice betweenness coincides with metric betweenness. In view of
Theorem 5 it is enough to show that * is cancellative. Now let a, b, c € L with
a*b = a*c. Then it follows that (a, b,c)M and (a, c, b)M from which we have
(a,b,c)L and (a,c,b)L. Hence ab+bc=Db and ac+cb=c so that
ab=a—(a*bh) =a—(a*c) = ac. Therefore b = ab + bc = ac + bc = ¢.

THEOREM 21. L is a Boolean geometry if and only if metric betweenness
has transitivity t, (see definition 3.3 in [9]).

PrOOF. The necessity is obvious. Conversely suppose that the metric be-
tweenness in L has transitivity ¢,. Let a,b,ce L with a*b = a*c. It follows
that (a, b, c)M and (a, c, b)M so that by transitivity ¢, we have (¢, b, c)M . There-
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fore b*c = (c*b)+(b*c) = c*c = 0 so that b = ¢ and by Theorem 5, L is
a Boolean geometry.

THEOREM 22. A semi-Brouwerian geometry is a Boolean geometry if and

only if it has congruence order three relative to the class of L-metrized spaces.
(see definition 1.7 in [S]).

Proor. The necessity follows from Theorem 14 in [5]. We need only show
that a semi-Brouwerian geometry L with congruence order three is a Boolean
geometry. Now by supposing a — [a — (b—a)] # O we arrive at a contradiction
just in the same way as in [9], where a — [a — (b—a)] is in the place of x-—}x
and a + b is in the place of 1. Therefore L is a Boolean geometry.

THEOREM 23. A semi-Brouwerian geometry is a Boolean geometry if and
only if its group of motions is simply transitive (see definitions 1.4 and 1.5

in [5].

Proor. The necessity is obvious. The converse follows from Theorem 13
of [5] and Theorem 5 part (4) of the present paper.

In conclusion I thank the referee for his valuable comments. I also thank
Professor Dr. N. V. Subrahmanyam for his valuable guidance throughout the
preparation of this revised paper.
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