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Introduction

Ever since David Ellis has shown that a Boolean algebra has a natural
structure of an autometrized space, the interest in such spaces has led several
authors to study various autometrized algebras like Brouwerian algebras [9],
Newman algebras [4], Lattice ordered groups [6], Dually residuated lattice or-
dered semigroups [7] etc. However all these spaces are lattices (with the exception
of Newman algebra which is not even a partially ordered set); and a natural
question would be whether there are semilattices with a natural structure of an
autometrized space. In the present paper we observe that the dual of an implicative
semilattice [8] is a generalization of Brouwerian algebra and it has a natural
structure of an autometrized space.

In §1 we define a semi-Brouwerian algebra and show that a semi-Brouwerian
algebra is a semilattice with 0 satisfying (F) (see Theorem 1) which readily shows
that a semi-Brouwerian algebra is the dual of an implicative semilattice. We also
prove that a semi-Brouwerian algebra is a Boolean ring if and only if the symmetric
difference is a group operation. In §2 we observe that a semi-Brouwerian algebra
is an autometrized space and show that the entire Brouwerian geometry of E. A.
Nordhaus and Leo Lapidus can be extended to these spaces. We also prove that
a semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric
group operation. We further prove that a semi-Brouwerian geometry (see defi-
nition 2) is a Boolean geometry if and only if semilattice betweenness coincides
with metric betweenness.

1

DEFINITION 1. An algebra L = (L ;+ , — ,0) with two binary operations
+ , — and a nullary operation 0 is called a semi-Brouwerian algebra if and
only if (1.1) a + a = a, (1.2) a + b = b + a, (1.3) a - a = 0, (1.4) (a-b)
+ b = a + b, (1.5) (a-b) - c = a - (c + b) for all a,b,c in L.
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We now show that these axioms are independent.

EXAMPLE 1. Let S be any non-empty set with more than one element and
let 0 be an element of S. Define a + b = 0 and a - b = 0 for all a, b in S. Then
S satisfies all the axioms except (1.1).

EXAMPLE 2. Let S be any set with more than one element and let OeS.
Define a + b = b and a — b = 0 for all a, b in S. Then S satisfies all the axioms
except (1.2).

EXAMPLE 3. Let (S, + ) be the two element join semilattice {0,1} and define
1 - 0 = 1, 0 - 0 = 0 - 1 = 0 , 1 - 1 = l o n S . Clearly S satisfies all the axioms
except (1.3).

EXAMPLE 4. Let (S, + ) be the two element join semilattice {0,1} and define
a — b = 0 for all a,b in S. Obviously S satisfies all the axioms except (1.4).
Axiom (1.4) does not hold in S for ( 1 - 0 ) + 0 = 0 + 0 = 0 ^ 1 = 1 + 0 .

EXAMPLE 5. Consider S = {0,a, b]. Define a + b = b + a = b, a + 0 =
0 + a = a, b + 0 = 0 + b = b, a + a = a, b + b = b, 0 + 0 = 0 a n d

a-a = b-b = 0-0 = 0-a = 0-b = 0,a-0 = a,b-0=b, a-b = a,

b - a = b on S. Obviously S satisfies all the axioms except (1.5). Axiom (1.5)
does not hold in S for (a — b) — a = a — a = 0 # a = a — b = a — (a + b).

REMARK 1. Example 2 shows that associativity of + may be valid even with-
out commutativity. However it is not known whether any significant results can
be obtained by replacing commutativity in the definition 1 by associativity.

THEOREM 1. Let L= (L; + , —, 0) be a semi-Brouwerian algebra. If we
write a ^ b to mean a + b = b, then (L, _:) is a semilattice with 0 as the least
element satisfying (F) a — b _ c if and only if a _ c + b. Conversely if(L, +,0)
is a semilattice with 0 and — is a binary operation in L-with (F), then (L, + , — ,0)
is a semi-Brouwerian algebra.

Obviously (L, _ ) is reflexive and antisymmetric; and to prove this theorem
we need the following four lemmas in which we assume that Lis a semi-Brouwerian
algebra and a,b,c,---,eL.

LEMMA 1. (i) 0 + a = a, (ii) 0 - a = 0 and (iii) a - (b + a) = 0.

PROOF, (i): (a - a) + a = a + a (by (1.4)) so that 0 + a = a (by (1.3) and
(1.1)).

(ii) (0 - a) = (a - a) - a (by (1.3)) = a - (a + a) (by (1.5)) = a - a = 0,
(iii) a-(b + a) = (a-a)-b (by (1.5)) = 0 - b = 0 (by (ii) above).

LEMMA 2. a - b = 0 if and only if a = b.

https://doi.org/10.1017/S1446788700022874 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022874


[3] Semi-Brouwerian algebras 295

PROOF. If a - ft = 0 then b = O + b = (a-b) + b = a + b so that a ^ ft.
Conversely suppose that a ^ b. Then 0 = a — (b + a) = a — (a + b) = a — b.

LEMMA 3. (i) (a + b)-b = a - b , (ii) (a + ft) - (a + c) = b - (a + c).

PROOF, (i) [(a + ft) - b~\ - (a - b) = (a + b) - [(a - ft) + ft] (by (1.5))

= (a + b) - (a + b) (by (1.4)) = 0 and (a-b) - [(a + ft) - ft] = a - {[(a + b)
- ft] + ft} (by (1.5)) = a - [(a + b) + ft] (by (1.4)) = (a-ft) - (a + b) (by
1.5)) = (a-b) - (ft + a) (by (1.2)) = [(a-ft) - a] - ft = [a - (a + ft)] - ft
= [a - (ft + a)] - ft = 0 - ft = 0 so that by Lemma 2 we have (a + ft) - ft
= a-b.

(ii) [(fl + ft) - (a + c)] - [ft - (a + c)] = (a + ft) - {[ft- (a + c)] + (a + c)}
(by (1.5)) = (a + ft) - [ft + (a + c)] (by (1.4)) = (a + ft) - [(a + c) + ft] (by
(1.2)) = [(a + ft) - ft] - (a + c) (by 1.5)) = (a - 6) - (a + c) (by (i) above)
[(a - ft) - a ] - c (by (1.2) and (1.5)) = [a - (a + ft)] - c = 0 - c = (by (iii) of
Lemma 1) = 0 and [ft-(a + c)] - [(a + ft) - (a + c)] = ft - {[(a + ft) - (a + c)]
+ (a + c)} (by (1.5)) = ft-[(a + ft) + {a + c)] (by (1.4)) = t - [ ( a + c) + (a +ft)]
(by (1.2)) = [ft - (a + ft)] - (a + c) (by (1.5)) = 0 - (a + c) = 0 so that by
Lemma 2 we have (a + ft) — (a + c) = ft — (a + c).

LEMMA 4. a + (ft + c) = (a + ft) + c.

PROOF, [a + (ft + c)] - [(a + ft) + c] = {[a + (ft + c)] - (a + ft)} - c (by

(1.2) and (1.5)) = [(ft + c) - (a + ft)] - c (by (ii) of Lemma 3) = [c - (ft + a)] - c
(by (1.2) and (ii) of Lemma 3) = c - [c + (ft + a)] (by (1.5)) = 0 so that by
Lemma 2 we have a + (ft + c) ^ (a + ft) + c. Now (a + ft) + c = c + (ft + a)
^ (c + ft) + a = (ft + c) + a = a + (ft + c) so that a + (ft + c) = (a + ft) + c.

PROOF OF THEOREM 1. Lemma l.(i) and Lemma 4 readily imply that (L, ;£)
is a semilattice with 0 as the least element. Now for all a, ft, c in L, a ^ c + ft o
a — (c + ft) = 0 o (a — ft) — c = 0 *> a — ft ̂  c. For the proof of the converse
see Nemitz [8].

REMARK 2. / / a semi-Brouwerian algebra is a lattice, then it is a Brou-
werian algebra.

For an example of a semi-Brouwerian algebra which is not a lattice see page
139 in [8].

Throughout this article L denotes a semi-Brouwerian algebra. The following
theorem is an immediate consequence of Theorem 1 (see Nemitz [8]).

THEOREM 2. For all a,b,c in L the following are valid.

(2.1) a = a-0.

(2.2) a-b g a.
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(2.3) / / a g b, then a — c ^ b — c and c — b £[ c — a.

(2.4) a ^ b if and o n l y if a - b = 0 .

(2.5) (a-b)-b = a-b.

(2.6) (a + 6) - c = (a - c) + (b - c).

(2.7) / / L is a lattice with greatest lower bound n , then L is distributive and
a -(bnc) = (a-b) + (a-c).

THEOREM 3. Let (L; + , ^ , —) be a system in which (L, +, g ) is a semi-
lattice with 0, + denotes the least upper bound with respect to ^ and (L, —)
is a binary algebra. Then the following statements are equivalent.

1. a — b ^ c if and only if a S c + b.
2. (i) (a-b) + b = a + b, (ii) a-a = 0 anrf (iii) (a -b) - c = a-(c + b).
3. (i)(a-b) + b = a + b,(ii)a-(a + b) = 0 and (iii) (a -b) -c = a-(c + b).
4.(i) (a-b) + b = a + b, (ii) (a + b)-c = (a-c) + (b-c), (iii) a-a = 0

and (iv) (a — b) + a = a.

PROOF. That 1 implies 2 follows from Theorem 1.
Assume 2. From 2(ii) and 2(iii) we have 0 — a = 0 so that by 2(ii)

0 = (a — a) — b = a — (b + a) = a — (a + b). Hence 2 implies 3.
Assume 3. From 3(ii) and 3(iii) we have a — a = 0 — a = 0 and by

3 (i) (a - b) + a = [(a - b) - a] + a = [a - (a + b)] + a = 0 + a = a. From
3 (i) and 3 (ii) it is clear that a ^ b if and only if a — b = 0. We also observe
that a %.b implies a — c :g b — c. If a ^ b, then a + b = b so that
a + b + c = b + c and hence a - (b + c) = a - (a + b + c) = 0 (by 3 (ii)).
Now (a-c) - (b-c) = a - [(b-c) + c] (by 3(iii)) = a - (b + c) (by 3(i)) = 0
so that a-c ^ b - c . [(a + b) - c] - [(a-c) + (b-c)] = (a + b) -
[(a-c) + (fc-c) + c] (by 3(iii)) = (a + i) - [(a-c) + fc + c] (by 3(i)) =
(a + b) - [(a-c) + c + b] = (a + b) - (a + c + b) (by 3(i)) = 0 (by 3(ii)) so
that (a + b) — c ^ (a — c) + (b — c). Also a ^ a + b and b ^ a + b imply
( a - c ) + ( b - c ) ^ (a + b) - c so that (a + b) - c = (a-c) + (b-c). Thus 3
implies 4.

Assume 4 and let a ^ c + b. From 4(ii) a ^ b implies a — c ^ b — c;
hence a-b^(c + b)-b = (c-b) + (b-b) = c - b ^ c by 4(iii) and 4(iv).
If a — b g c then a ^ a + b = (a — b) + b ^ c + b. Hence 4 implies 1.

We shall write a* b = (a — b) + (b — a) for a,beL and call a * b the sym-
metric difference of a and b. It is known that in a Brouwerian algebra (with 1)
the symmetric difference is a group operation if and only if it is a Boolean algebra
and we show now that the same is true even in the case of a semi-Brouwerian
algebra. Put ab = (a + b) - (a*b).

LEMMA 5. ab = a — (a*b) = b — (a*b).
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PROOF. First observe that ab = ba. Now by (2.6) and (1.3) we have

a-(a*b) = [a + (a*ft)]-(a*ft) = \_a + (a-b) + (ft-a)] - (a*b) =
(a + ft) - (a * ft) (and hence by symmetry) = ft - (a * ft).

THEOREM 4. / / a — (ft — a) = a for all a, ft in L, then L is a Boolean ring.

To prove this theorem we require the next three lemmas in which we assume
a — (ft — a) = a for all a, ft in L.

LEMMA 6. a(ftc) = (ab)c for all a, ft, c in L.

PROOF. By hypothesis a - (a-ft) = [a - (ft-a)] - (a-ft) = a - [(a-ft) +
(ft — a)] (by (1.5)) = a — (a * ft) so that by the above lemma ab = a — (a — ft) =
ft-(ft-a) (by symmetry). Now {ab)c = ab-(ab-c) = [f t -(f t -a)] -
{[ft - (ft-a)] - c] = [ft - (ft-a)] - {ft - [c + (ft-a)]} (by (1.5)) = [ft-(ft-a)]
-{f t - [ ( f t -a ) + c]} = [f t-(f t -a)] - [(fc-c)-(ft-a)] (by (1.5)) =
ft - {[(ft-c) - (ft-a)] + (ft-a)} (by (1.5)) = ft - [(ft-c) + (ft-a)] (by (1.4))
= ft - [(ft-a) + (ft-c)] = (cb)a = a(bc).

LEMMA 7. aft is the greatest lower bound of a and ft in L.

PROOF. Firstly if ab = a then by Lemma 5, ft — (a*ft) = a so that a ^ ft
and if a ^ ft and a — (ft — a) = a then ab = a — (a — b) = a — 0 = a. Ob-
viously aft is a lower bound of a and ft by Lemma 5 and (2.2); and now let ( be
a lower bound of a and ft. Then ta = t and fft = < so that t{ab) = (ta)ft = tb = t.
Therefore t ^ aft so that aft is the greatest lower bound of a and ft in L.

LEMMA 8. L is a relatively complemented distributive lattice.

PROOF. From lemmas 6 and 7 it follows that L is a lattice with greatest lower
bound of a and ft as aft so that by (2.7) it follows that L is a distributive lattice.
Now let a e L a n d O ^ x g a . Put y = a-x. Clearly by 2.2,0 ^ y ^ a.Further
y + x — (a — x) + x = a + x = a. Also xy = y — (x * y) = y — [(x — y) + (y — x)]
= y ~ [(y-x) + (x-y)~\ = [y - (x-y)} - {y-x) = y - (y-x) = y - [(a-x)
— x] = y — (a— x) = 0 . Thus [ 0 , a ] is complemented for every aeL so that L

is relatively complemented.

PROOF OF THEOREM 4. From lemmas 6,7 and 8 it follows that L i s a relatively

complemented distributive lattice with 0 and hence L has the structure of a Boolean

ring.

Now the following theorem shows that if * is a group operation in L, then

L has the structure of a Boolean ring.

THEOREM 5. In L the following statements are equivalent.
(1) * is a group operation.
(2) * is associative.
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(3) * is cancellative.
(4) a — (b — a) = a for all a,b in L.

(5) (L, *, •) is a Boolean ring.

(6) (L, *) is a loop.
(7) ab is the greatest lower bound of a and b in L.
(8) a + be = (a + b)(a + c) for all a, b,c in L.
(9) a-be = (a-b) + (a-c) for all a, b, c in L.
(10) x ^ y implies a x ;§ ay for all a in L.

PROOF. The order of demonstration is (1) => (2), (3) and (6); (2) => (1);
(3) => (4); (4) => (5); (5) => (1) and (7); (6) => (3); (7) => (4), (8), (9) and (10);
(8) => (4); (9) => (7); (10) => (7).

Now (1) => (2), (3) and (6); (4) => (5); (5) => (1); (6) => (3); (7) => (8), (9)
and (10) are all obvious.

Assume (2). Since a * a = 0 and a * 0 = 0 * a = a for every a in L it fol-
lows that * is a group operation. Hence (2) => (1).

Assume (3). Then a * (b-a) = [a - (b-a)] + [(b-a) - a] = [a-(fc-a)]
+ (b-a) = a + (b-a) = a + band [a - (b-a)] * (b-a) = (b-a)* [a-(b-a)]
= (b-a) + a = a + b so that a - (b-a) = a. Hence (3) => (4).

Assume (5). Let aXb be the greatest lower bound of a and b in L. Then
since (5) implies (1) we have ab = a — (a*b) = a*[aX(a*bj\ (since in a
Boolean ring (B, +, -)a - b = a + ab) = a*[(aXa)*(aXb)~\ = a*[a*(aXb)~\

= (a*a)*(aXb) = aXb. Hence (5) => (7).
Assume (7). Let a,beL. Then a = (a + b)a = a-[a*(a + b)] = a-[(a + b)

-a] = a -(b-a) so that (7) => (4).
Assume (8). Now a = a + ab = (a + a) (a + b) = a(a + b) = a — (b — a)

so that (8) => (4).
Assume (9). Let a, be L. We already know that ab is a lower bound of a and b.

Let t be a lower bound of a and b . Then 0 = (t — a) + (t—b) = t — ab so that
t g d i . Hence (9) =*> (7).

Assume (10). Let a, beL and let t be a lower bound of a and b . Now t ^ a
and t <; b implies t = f2 g fb ^ ab so that t ^ ab. Hence (10) => (7).

It is well known that a relatively complemented distributive lattice with 0
is an autometrized space. We refer to this space as Boolean geometry (see [9]).

THEOREM 6. The symmetric difference in a semi-Brouwerian algebra is
a metric operation.

PROOF. Obviously a*a = 0 and suppose a*b = 0; then a — b = 0 and

b - a = 0 so that a = b by (2.4). Now let (a * b) + (b * c) = t. Then each of
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a - b, b - a, b - c a n d c-b is ^ t so t h a t a ^ l + b , fc^( + a , frSif + c

a n d c ^ t + b. H e n c e a ^ t + c a n d c ^ < + a s o t h a t a*c = ( a — c) + ( c — a ) ^ f.

COROLLARY 1. Every semi-Brouwerian algebra is an autometrized space
(see definition 1 in [5]).

DEFINITION 2. 4̂ semi-Brouwerian algebra autometrized via the symmetric
difference is called a semi-Brouwerian geometry.

In the rest of this article L denotes a semi-Brouwerian geometry. We will
regard a triple of elements a, b, c as the vertices of a triangle denoted by A(a, b, c)
and call a * b, b*c, c*a the sides of this triangle.

THEOREM 7. L is a Boolean geometry if and only if it is free of isosceles
triangles.

PROOF. The necessity is obvious. Conversely suppose that a*b — a*c and
b ¥= c; then it follows that a, b, c are all distinct and hence A(a, b, c) is an isosceles
triangle. Hence if L is free of isosceles triangles, then * is cancellative and there-
fore (by Theorem 5) L is a Boolean geometry.

The proofs of the following Theorems 8 to 14 are the same as for Brouwerian
geometry (see [9]).

THEOREM 8. In L the relation (a,b,c)Tis equivalent to each of the relations
(i) a + b = b + c = c + a = a + b + c.
(ii) a — b ^ c, b — a ^ c, c — a ^ b.
(iii) a*b ^ c ^ a + b.
(iv) b — a = c — a, a — b = c — b, a — c = b — c.

COROLLARY 2. For a,beLwe have (a,b,a * b)T.

THEOREM 9. L is a chain if and only if all triangles are isosceles.

THEOREM 10. In L each side of a first distance triangle is under the opposite
vertex.

THEOREM 11. In L every second distance triangle has fixity.

THEOREM 12. L is a Boolean geometry if and only if every first distance
triangle has fixity.

THEOREM 13. L contains no equilateral triangles.

THEOREM 14. L contains no equilateral n-circuit for n-odd.

Nordhaus and Lapidus [9] proved that a Brouwerian algebra with 1 is a
Boolean algebra if and only if it admits a metric group operation. However we
now show that even an improved result with much less hypothesis is valid.

THEOREM 15. A semi-Brouwerian algebra is a Boolean ring if and only
if it admits a metric group operation.

https://doi.org/10.1017/S1446788700022874 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022874


300 P. V. Ramana Murty [8]

To prove this theorem we need the following two lemmas.

LEMMA 9. Let 8 be a metric group operation in a semi-Brouwerian algebra
L. Then for all a,b in L, a6b g a + b.

PROOF. Since 0 0 0 = 0 the zero element of the group is zero. Thus

LEMMA 10. For any a,beL, (a + b) * {a - [a - (ft-a)]} = a + b.

PROOF. First we observe that (a + ft) - a = {a + b) - [a - (ft-a)] for all
a,beL. Since a — (b-a) ^ a we have (a + b) — a ^ (a + b) — \_a — (b — a)] .
Also (a + b) - [a - ( f t - a ) ] ^ b - a = (a + b)-a since (b-a) + [a - ( f t - a ) ]

= a + (b-a) = a + b. Thus (a + b) - a - (a + b) - [a - {b-a)] . Now put-
ting s = a — (b — d) and t = (a + b) — (a — s) we have t + (a — s) = (a + b)
+ (a-s) = a + b so that a + b = t + (a-s) <; t + [(a + b) - s] <; a + b.
Hence a + b — t + [(a + b) — s] = t +-[(a + b) — a] (by the observation made
above) = f + {[f + (a-s)] - a} = t + (t-a) = t = (a + b)*{a-[a - (fc-a)]}.

PROOF OF THEOREM 15. Suppose that 9 is a metric group operation in a
semi-Brouwerian algebra L, and c,deL. Then c = c00 ^ (cQd) + (dOO) = (cOd)
+ d so that c — d :§ c0d; and similarly d — c ^ cdd so that c*d _ c0d.
Now let a, be Land put a + b = x. By Lemma 10 we have x = x* {a — [a — (b — a]}
^ x0{a — [a — (ft — a)]} and on applying Lemma 9 we get x0{a — [a — (ft — a)]}
= x = x 6 0 so that a — [a — (ft — a)] = 0. Hence a = a — (ft — a) so that by
Theorem 5, L is a Boolean ring. The converse is clear.

THEOREM 16. The subgeometry (see definition 2.7 in [9]) generated by
two elements of L contains atmost nine elements.

PROOF. The same proof (with the same notation) as in Theorem 2.13 of [9]
shows that (a, ft, c)T and (a, d,c)T so that by (iv) of Theorem 8 it follows that
c = (a-ft) + (ft-a) = (c-b) + (c-a) ^ (c-d) + (c-a) (since d ^ ft) =
(a — d) + (d—a) = a * d ^ c; hence c = a * d. The rest of the proof is the same
as in [9].

COROLLARY 3. The subgeometry generated by any two comparable ele-
ments of L contains atmost six elements.

PROOF. See [9].

Theorems 3.5 and 3.6 of [9] are valid even if L is a semilattice.

REMARK 3. The concept of semilattice betweenness (and symmetry) are
as in [9] where ab is interpreted as (a + ft) — (a * ft).

THEOREM 17. (a,b,c)L implies ac g ft g a + c.
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PROOF. If ab + be = b = (a + ft)(ft + c), then b = ab + be g a + c; also

a - { [ ( f l - c ) - b ] + [(c-a)-ft]} = a - { [ a - ( f t + c)] + [ C - (a + ft)]}:g
(a + b) - {[a - (ft + c)] + [c-(a + ft)]} = (a + 6) - {[(a + ft) - (ft + c)] +
[(ft + c) - (a + ft)]} = (a + ft) - [(a + b) * (ft + c)] = (a + 6) (6 + c) = b so
that a <; b + [(a-c) - ft] + [(c-a) -ft] g ft + ( a - c) + (c - a) = ft + (a *c)
and hence ac = a — (a * c) ^ ft.

THEOREM 18. L is a Boolean geometry if and only if ac ^ b ^ a + c
implies (a,b,c)L.

PROOF. The necessity follows from the fact that in a distributive lattice
(L, + , •) ac ^ b g a + c if and only if (a,b,c)L. Conversely suppose that
ac ^ b ^ a + c implies (a, b, c)L. For a,beL, aft ;£ ft ^ a + ft and hence by
hypothesis we have (a, b, b)L so that b = (a + b) (b + b) = (a + b)b = b —
[(a + b) — b~\ = b — (a — b). Therefore by Theorem 5, L is a Boolean geometry.

THEOREM 19. If (a — b) + ab = afor all a, b in L, then (i) L is symmetric and
(ii) semilattice betweenness implies metric betweenness (see definition 3.2 in [9]).

PROOF, (i) since a = (a — b) + ab we have a — ab = \_(a — b) + ab] —
ab ^ a — b g a — ab so that a — b = a — ab. Hence (a + b) * ab = (a + b) — ab
— (a — ab) + (b — ab) = (a — b) + (b — a) = a*b. (ii) Assuming (a,b,c)L we
have by Theorem 17, ac ^ b ^ a + c. Now ac g b implies a — b ̂  a — ac = a — c
and c — b ^ c — ac = c — a. Also b ^ a + c implies b — c ^ a and fc — a 5| c so
that b — c = (b — c) — c ^ a —c and b — a = (b — a) — a ^ c - a . N o w we have a — b
^ a — c,b — a ^ c — a, c — ft ̂  c — a and ft — c ^ a — c so that a * ft ̂  a* c and
ft*c g a * c . Thus (a*ft) + (ft*c) g a*c g (a*ft) + (ft*c) so that (a,b,c)M.

THEOREM 20. L is a Boolean geometry if and only if semilattice between-
ness coincides with metric betweenness.

PROOF. Suppose L is a Boolean geometry. Then by Theorem 19 semilattice
betweenness implies metric betweenness and a straightforward verification shows
that metric betweenness implies semilattice betweenness. Conversely, suppose
that semilattice betweenness coincides with metric betweenness. In view of
Theorem 5 it is enough to show that * is cancellative. Now let a,b,ceL with
a * ft = a * c. Then it follows that (a, ft, c)M and (a, c, b)M from which we have
(a, ft, c)L and (a, c, b)L. Hence aft + be = b and ac + cb = c so that
aft = a - (a*ft) = a - (a*c) = ac. Therefore ft = aft + be = ac + be = c.

THEOREM 21. L is a Boolean geometry if and only if metric betweenness
has transitivity tt (see definition 3.3 in [9]).

PROOF. The necessity is obvious. Conversely suppose that the metric be-
tweenness in L has transitivity t1. Let a, ft, c E L with a * ft = a * c. It follows
that (a, ft, c)M and (a, c, b)M so that by transitivity tl we have (c, ft, c)M. There-
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fore b*c = (c*b) + (b*c) = c*c = 0 so that b = c and by Theorem 5, L is
a Boolean geometry.

THEOREM 22. A semi-Brouwerian geometry is a Boolean geometry if and
only if it has congruence order three relative to the class of L-metrized spaces,
(see definition 1.7 in [5]).

PROOF. The necessity follows from Theorem 14 in [5]. We need only show
that a semi-Brouwerian geometry L with congruence order three is a Boolean
geometry. Now by supposing a — [a — (b — a)] # 0 we arrive at a contradiction
just in the same way as in [9], where a — [a — (b — a)] is in the place of x-~\x
and a + b is in the place of 1. Therefore L is a Boolean geometry.

THEOREM 23. A semi-Brouwerian geometry is a Boolean geometry if and
only if its group of motions is simply transitive (see definitions 1.4 and 1.5
in [5]).

PROOF. The necessity is obvious. The converse follows from Theorem 13
of [5] and Theorem 5 part (4) of the present paper.

In conclusion I thank the referee for his valuable comments. I also thank
Professor Dr. N. V. Subrahmanyam for his valuable guidance throughout the
preparation of this revised paper.
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