SEMI-BROUWERIAN ALGEBRAS

P. V. RAMANA MURTY

(Received 20 September 1972) Communicated by B. Mond

Introduction

Ever since David Ellis has shown that a Boolean algebra has a natural structure of an autometrized space, the interest in such spaces has led several authors to study various autometrized algebras like Brouwerian algebras [9], Newman algebras [4], Lattice ordered groups [6], Dually residuated lattice ordered semigroups [7] etc. However all these spaces are lattices (with the exception of Newman algebra which is not even a partially ordered set); and a natural question would be whether there are semilattices with a natural structure of an autometrized space. In the present paper we observe that the dual of an implicative semilattice [8] is a generalization of Brouwerian algebra and it has a natural structure of an autometrized space.

In §1 we define a semi-Brouwerian algebra and show that a semi-Brouwerian algebra is a semilattice with 0 satisfying (F) (see Theorem 1) which readily shows that a semi-Brouwerian algebra is the dual of an implicative semilattice. We also prove that a semi-Brouwerian algebra is a Boolean ring if and only if the symmetric difference is a group operation. In §2 we observe that a semi-Brouwerian algebra is an autometrized space and show that the entire Brouwerian geometry of E. A. Nordhaus and Leo Lapidus can be extended to these spaces. We also prove that a semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric group operation. We further prove that a semi-Brouwerian geometry (see definition 2) is a Boolean geometry if and only if semilattice betweenness coincides with metric betweenness.

DEFINITION 1. An algebra L = (L; +, -, 0) with two binary operations +, - and a nullary operation 0 is called a semi-Brouwerian algebra if and only if (1.1) a + a = a, (1.2) a + b = b + a, (1.3) a - a = 0, (1.4) (a-b)+ b = a + b, (1.5) (a-b) - c = a - (c + b) for all a, b, c in L.

293

We now show that these axioms are independent.

EXAMPLE 1. Let S be any non-empty set with more than one element and let 0 be an element of S. Define a + b = 0 and a - b = 0 for all a, b in S. Then S satisfies all the axioms except (1.1).

EXAMPLE 2. Let S be any set with more than one element and let $0 \in S$. Define a + b = b and a - b = 0 for all a, b in S. Then S satisfies all the axioms except (1.2).

EXAMPLE 3. Let (S, +) be the two element join semilattice $\{0, 1\}$ and define 1 - 0 = 1, 0 - 0 = 0 - 1 = 0, 1 - 1 = 1 on S. Clearly S satisfies all the axioms except (1.3).

EXAMPLE 4. Let (S, +) be the two element join semilattice $\{0, 1\}$ and define a - b = 0 for all a, b in S. Obviously S satisfies all the axioms except (1.4). Axiom (1.4) does not hold in S for $(1 - 0) + 0 = 0 + 0 = 0 \neq 1 = 1 + 0$.

EXAMPLE 5. Consider $S = \{0, a, b\}$. Define a + b = b + a = b, a + 0 = 0 + a = a, b + 0 = 0 + b = b, a + a = a, b + b = b, 0 + 0 = 0 and a - a = b - b = 0 - 0 = 0 - a = 0 - b = 0, a - 0 = a, b - 0 = b, a - b = a, b - a = b on S. Obviously S satisfies all the axioms except (1.5). Axiom (1.5) does not hold in S for $(a - b) - a = a - a = 0 \neq a = a - b = a - (a + b)$.

REMARK 1. Example 2 shows that associativity of + may be valid even without commutativity. However it is not known whether any significant results can be obtained by replacing commutativity in the definition 1 by associativity.

THEOREM 1. Let L = (L; +, -, 0) be a semi-Brouwerian algebra. If we write $a \leq b$ to mean a + b = b, then (L, \leq) is a semilattice with 0 as the least element satisfying $(F) a - b \leq c$ if and only if $a \leq c + b$. Conversely if (L, +, 0) is a semilattice with 0 and - is a binary operation in L-with (F), then (L, +, -, 0) is a semi-Brouwerian algebra.

Obviously (L, \leq) is reflexive and antisymmetric; and to prove this theorem we need the following four lemmas in which we assume that L is a semi-Brouwerian algebra and $a, b, c, \dots, \in L$.

LEMMA 1. (i) 0 + a = a, (ii) 0 - a = 0 and (iii) a - (b + a) = 0.

PROOF. (i): (a - a) + a = a + a (by (1.4)) so that 0 + a = a (by (1.3) and (1.1)).

(ii) (0-a) = (a-a) - a (by (1.3)) = a - (a+a) (by (1.5)) = a - a = 0, (iii) a - (b+a) = (a-a) - b (by (1.5)) = 0 - b = 0 (by (ii) above).

LEMMA 2. a - b = 0 if and only if $a \leq b$.

PROOF. If a - b = 0 then b = 0 + b = (a - b) + b = a + b so that $a \leq b$. Conversely suppose that $a \leq b$. Then 0 = a - (b + a) = a - (a + b) = a - b.

LEMMA 3. (i) (a + b) - b = a - b, (ii) (a + b) - (a + c) = b - (a + c).

PROOF. (i) [(a+b)-b]-(a-b) = (a+b)-[(a-b)+b] (by (1.5)) = (a+b)-(a+b) (by (1.4)) = 0 and $(a-b)-[(a+b)-b] = a - \{[(a+b)-b]+b\}$ (by (1.5)) = a - [(a+b)+b] (by (1.4)) = (a-b)-(a+b) (by 1.5)) = (a-b)-(b+a) (by (1.2)) = [(a-b)-a]-b = [a-(a+b)]-b= [a-(b+a)]-b = 0-b = 0 so that by Lemma 2 we have (a+b)-b= a-b.

(ii) $[(a + b) - (a + c)] - [b - (a + c)] = (a + b) - \{[b - (a + c)] + (a + c)\}$ (by (1.5)) = (a + b) - [b + (a + c)] (by (1.4)) = (a + b) - [(a + c) + b] (by (1.2)) = [(a + b) - b] - (a + c) (by 1.5)) = (a - b) - (a + c) (by (i) above) [(a - b) - a] - c (by (1.2) and (1.5)) = [a - (a + b)] - c = 0 - c = (by (iii) of Lemma 1) = 0 and $[b - (a + c)] - [(a + b) - (a + c)] = b - \{[(a + b) - (a + c)] + (a + c)\}$ (by (1.5)) = b - [(a + b) + (a + c)] (by (1.4)) = b - [(a + c) + (a + b)](by (1.2)) = [b - (a + b)] - (a + c) (by (1.5)) = 0 - (a + c) = 0 so that by Lemma 2 we have (a + b) - (a + c) = b - (a + c).

LEMMA 4. a + (b + c) = (a + b) + c.

PROOF. $[a + (b + c)] - [(a + b) + c] = \{[a + (b + c)] - (a + b)\} - c$ (by (1.2) and (1.5)) = [(b + c) - (a + b)] - c (by (ii) of Lemma 3) = [c - (b + a)] - c (by (1.2) and (ii) of Lemma 3) = c - [c + (b + a)] (by (1.5)) = 0 so that by Lemma 2 we have $a + (b + c) \leq (a + b) + c$. Now $(a + b) + c = c + (b + a) \leq (c + b) + a = (b + c) + a = a + (b + c)$ so that a + (b + c) = (a + b) + c.

PROOF OF THEOREM 1. Lemma 1.(i) and Lemma 4 readily imply that (L, \leq) is a semilattice with 0 as the least element. Now for all a, b, c in $L, a \leq c + b \Leftrightarrow a - (c + b) = 0 \Leftrightarrow (a - b) - c = 0 \Leftrightarrow a - b \leq c$. For the proof of the converse see Nemitz [8].

REMARK 2. If a semi-Brouwerian algebra is a lattice, then it is a Brouwerian algebra.

For an example of a semi-Brouwerian algebra which is not a lattice see page 139 in [8].

Throughout this article L denotes a semi-Brouwerian algebra. The following theorem is an immediate consequence of Theorem 1 (see Nemitz [8]).

THEOREM 2. For all a, b, c in L the following are valid.

- (2.1) a = a 0.
- $(2.2) \quad a-b \leq a.$

- (2.3) If $a \leq b$, then $a c \leq b c$ and $c b \leq c a$.
- (2.4) $a \leq b$ if and only if a b = 0.

$$(2.5) \quad (a-b) - b = a - b$$

- (2.6) (a + b) c = (a c) + (b c).
- (2.7) If L is a lattice with greatest lower bound \cap , then L is distributive and $a (b \cap c) = (a-b) + (a-c)$.

THEOREM 3. Let $(L; +, \leq, -)$ be a system in which $(L, +, \leq)$ is a semilattice with 0, + denotes the least upper bound with respect to \leq and (L, -)is a binary algebra. Then the following statements are equivalent.

1. $a - b \leq c$ if and only if $a \leq c + b$.

2. (i) (a-b) + b = a + b, (ii) a-a = 0 and (iii) (a-b)-c = a-(c+b). 3. (i) (a-b) + b = a + b, (ii) a-(a+b) = 0 and (iii) (a-b)-c = a-(c+b). 4. (i) (a-b) + b = a + b, (ii) (a+b)-c = (a-c) + (b-c), (iii) a-a = 0and (iv) (a-b) + a = a.

PROOF. That 1 implies 2 follows from Theorem 1.

Assume 2. From 2(ii) and 2(iii) we have 0 - a = 0 so that by 2(ii) 0 = (a-a) - b = a - (b+a) = a - (a+b). Hence 2 implies 3.

Assume 3. From 3(ii) and 3(iii) we have a - a = 0 - a = 0 and by 3 (i) (a-b) + a = [(a-b) - a] + a = [a - (a + b)] + a = 0 + a = a. From 3(i) and 3(ii) it is clear that $a \le b$ if and only if a - b = 0. We also observe that $a \le b$ implies $a - c \le b - c$. If $a \le b$, then a + b = b so that a + b + c = b + c and hence a - (b + c) = a - (a + b + c) = 0 (by 3(ii)). Now (a-c) - (b-c) = a - [(b-c) + c] (by 3(iii)) = a - (b + c) (by 3(i)) = 0so that $a - c \le b - c$. [(a + b) - c] - [(a-c) + (b-c)] = (a + b) - [(a-c) + (b-c) + c] (by 3(iii)) = (a + b) - [(a-c) + (b-c) + c] (by 3(iii)) = (a + b) - [(a-c) + b + c] (by 3(ii)) = (a + b) - [(a-c) + c + b] = (a + b) - (a + c + b) (by 3(i)) = 0 (by 3(ii)) so that $(a + b) - c \le (a - c) + (b - c)$. Also $a \le a + b$ and $b \le a + b$ imply $(a-c) + (b-c) \le (a + b) - c$ so that (a + b) - c = (a-c) + (b-c). Thus 3 implies 4.

Assume 4 and let $a \leq c+b$. From 4(ii) $a \leq b$ implies $a-c \leq b-c$; hence $a-b \leq (c+b)-b = (c-b)+(b-b) = c-b \leq c$ by 4(iii) and 4(iv). If $a-b \leq c$ then $a \leq a+b = (a-b)+b \leq c+b$. Hence 4 implies 1.

We shall write a * b = (a-b) + (b-a) for $a, b \in L$ and call a * b the symmetric difference of a and b. It is known that in a Brouwerian algebra (with 1) the symmetric difference is a group operation if and only if it is a Boolean algebra and we show now that the same is true even in the case of a semi-Brouwerian algebra. Put ab = (a + b) - (a * b).

LEMMA 5.
$$ab = a - (a * b) = b - (a * b)$$
.

PROOF. First observe that ab = ba. Now by (2.6) and (1.3) we have $a - (a^*b) = [a + (a^*b)] - (a^*b) = [a + (a-b) + (b-a)] - (a^*b) = (a+b) - (a^*b)$ (and hence by symmetry) $= b - (a^*b)$.

THEOREM 4. If a - (b - a) = a for all a, b in L, then L is a Boolean ring.

To prove this theorem we require the next three lemmas in which we assume a - (b-a) = a for all a, b in L.

LEMMA 6. a(bc) = (ab)c for all a, b, c in L.

PROOF. By hypothesis a - (a-b) = [a - (b-a)] - (a-b) = a - [(a-b) + (b-a)] (by (1.5)) = a - (a * b) so that by the above lemma ab = a - (a-b) = b - (b-a) (by symmetry). Now $(ab)c = ab - (ab-c) = [b - (b-a)] - \{[b - (b-a)] - c\} = [b - (b-a)] - \{b - [c + (b-a)]\}$ (by (1.5)) = $[b - (b-a)] - \{b - [(b-a) + c]\} = [b - (b-a)] - [(b-c) - (b-a)]$ (by (1.5)) = $b - \{[(b-c) - (b-a)] + (b-a)\}$ (by (1.5)) = b - [(b-c) + (b-a)] (by (1.4)) = b - [(b-a) + (b-c)] = (cb)a = a(bc).

LEMMA 7. ab is the greatest lower bound of a and b in L.

PROOF. Firstly if ab = a then by Lemma 5, b - (a * b) = a so that $a \le b$ and if $a \le b$ and a - (b-a) = a then ab = a - (a-b) = a - 0 = a. Obviously ab is a lower bound of a and b by Lemma 5 and (2.2); and now let t be a lower bound of a and b. Then ta = t and tb = t so that t(ab) = (ta)b = tb = t. Therefore $t \le ab$ so that ab is the greatest lower bound of a and b in L.

LEMMA 8. L is a relatively complemented distributive lattice.

PROOF. From lemmas 6 and 7 it follows that L is a lattice with greatest lower bound of a and b as ab so that by (2.7) it follows that L is a distributive lattice. Now let $a \in L$ and $0 \le x \le a$. Put y = a - x. Clearly by 2.2, $0 \le y \le a$. Further y + x = (a - x) + x = a + x = a. Also xy = y - (x * y) = y - [(x - y) + (y - x)]= y - [(y - x) + (x - y)] = [y - (x - y)] - (y - x) = y - [(x - x) + (y - x)]- x] = y - (a - x) = 0. Thus [0, a] is complemented for every $a \in L$ so that L is relatively complemented.

PROOF OF THEOREM 4. From lemmas 6, 7 and 8 it follows that L is a relatively complemented distributive lattice with 0 and hence L has the structure of a Boolean ring.

Now the following theorem shows that if * is a group operation in L, then L has the structure of a Boolean ring.

THEOREM 5. In L the following statements are equivalent.

(1) * is a group operation.

(2) * is associative.

(3) * is cancellative.
(4) a - (b-a) = a for all a, b in L.
(5) (L,*, ·) is a Boolean ring.
(6) (L, *) is a loop.
(7) ab is the greatest lower bound of a and b in L.
(8) a + bc = (a + b)(a + c) for all a, b, c in L.
(9) a - bc = (a-b) + (a-c) for all a, b, c in L.
(10) x ≤ y implies a x ≤ ay for all a in L.

PROOF. The order of demonstration is $(1) \Rightarrow (2)$, (3) and (6); $(2) \Rightarrow (1)$; $(3) \Rightarrow (4)$; $(4) \Rightarrow (5)$; $(5) \Rightarrow (1)$ and (7); $(6) \Rightarrow (3)$; $(7) \Rightarrow (4)$, (8), (9) and (10); $(8) \Rightarrow (4)$; $(9) \Rightarrow (7)$; $(10) \Rightarrow (7)$.

Now (1) \Rightarrow (2), (3) and (6); (4) \Rightarrow (5); (5) \Rightarrow (1); (6) \Rightarrow (3); (7) \Rightarrow (8), (9) and (10) are all obvious.

Assume (2). Since a * a = 0 and a * 0 = 0 * a = a for every a in L it follows that * is a group operation. Hence (2) \Rightarrow (1).

Assume (3). Then a * (b-a) = [a - (b-a)] + [(b-a) - a] = [a - (b-a)] + (b-a) = a + (b-a) = a + b and [a - (b-a)] * (b-a) = (b-a) * [a - (b-a)] = (b-a) + a = a + b so that a - (b-a) = a. Hence (3) \Rightarrow (4).

Assume (5). Let aXb be the greatest lower bound of a and b in L. Then since (5) implies (1) we have $ab = a - (a^*b) = a^*[aX(a^*b)]$ (since in a Boolean ring $(B, +, \cdot)a - b = a + ab) = a^*[(aXa)^*(aXb)] = a^*[a^*(aXb)]$ $= (a^*a)^*(aXb) = aXb$. Hence (5) \Rightarrow (7).

Assume (7). Let $a, b \in L$. Then $a = (a + b)a = a - [a^*(a + b)] = a - [(a + b) - a] = a - (b - a)$ so that (7) \Rightarrow (4).

Assume (8). Now a = a + ab = (a + a)(a + b) = a(a + b) = a - (b - a)so that (8) \Rightarrow (4).

Assume (9). Let $a, b \in L$. We already know that ab is a lower bound of a and b. Let t be a lower bound of a and b. Then 0 = (t-a) + (t-b) = t - ab so that $t \leq ab$. Hence (9) \Rightarrow (7).

Assume (10). Let $a, b \in L$ and let t be a lower bound of a and b. Now $t \leq a$ and $t \leq b$ implies $t = t^2 \leq tb \leq ab$ so that $t \leq ab$. Hence (10) \Rightarrow (7).

2

It is well known that a relatively complemented distributive lattice with 0 is an autometrized space. We refer to this space as Boolean geometry (see [9]).

THEOREM 6. The symmetric difference in a semi-Brouwerian algebra is a metric operation.

PROOF. Obviously $a^*a = 0$ and suppose $a^*b = 0$; then a - b = 0 and b - a = 0 so that a = b by (2.4). Now let $(a^*b) + (b^*c) = t$. Then each of

a-b, b-a, b-c and c-b is $\leq t$ so that $a \leq t+b$, $b \leq t+a$, $b \leq t+c$ and $c \leq t+b$. Hence $a \leq t+c$ and $c \leq t+a$ so that $a*c = (a-c) + (c-a) \leq t$.

COROLLARY 1. Every semi-Brouwerian algebra is an autometrized space (see definition 1 in [5]).

DEFINITION 2. A semi-Brouwerian algebra autometrized via the symmetric difference is called a semi-Brouwerian geometry.

In the rest of this article L denotes a semi-Brouwerian geometry. We will regard a triple of elements a, b, c as the vertices of a triangle denoted by $\Delta(a, b, c)$ and call a * b, b * c, c * a the sides of this triangle.

THEOREM 7. L is a Boolean geometry if and only if it is free of isosceles triangles.

PROOF. The necessity is obvious. Conversely suppose that a * b = a * c and $b \neq c$; then it follows that a, b, c are all distinct and hence $\Delta(a, b, c)$ is an isosceles triangle. Hence if L is free of isosceles triangles, then * is cancellative and therefore (by Theorem 5) L is a Boolean geometry.

The proofs of the following Theorems 8 to 14 are the same as for Brouwerian geometry (see [9]).

THEOREM 8. In L the relation (a, b, c)T is equivalent to each of the relations (i) a + b = b + c = c + a = a + b + c.

- (ii) $a-b \leq c, b-a \leq c, c-a \leq b$.
- (iii) $a * b \leq c \leq a + b$.
- (iv) b-a = c-a, a-b = c-b, a-c = b-c.

COROLLARY 2. For $a, b \in L$ we have (a, b, a * b)T.

THEOREM 9. L is a chain if and only if all triangles are isosceles.

THEOREM 10. In L each side of a first distance triangle is under the opposite vertex.

THEOREM 11. In L every second distance triangle has fixity.

THEOREM 12. L is a Boolean geometry if and only if every first distance triangle has fixity.

THEOREM 13. L contains no equilateral triangles.

THEOREM 14. L contains no equilateral n-circuit for n-odd.

Nordhaus and Lapidus [9] proved that a Brouwerian algebra with 1 is a Boolean algebra if and only if it admits a metric group operation. However we now show that even an improved result with much less hypothesis is valid.

THEOREM 15. A semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric group operation.

To prove this theorem we need the following two lemmas.

LEMMA 9. Let θ be a metric group operation in a semi-Brouwerian algebra L. Then for all a, b in L, $a\theta b \leq a + b$.

PROOF. Since $0 \theta 0 = 0$ the zero element of the group is zero. Thus $a \theta b \leq (a \theta 0) + (0 \theta b) = a + b$.

LEMMA 10. For any $a, b \in L$, $(a + b) * \{a - [a - (b - a)]\} = a + b$.

PROOF. First we observe that (a + b) - a = (a + b) - [a - (b - a)] for all $a, b \in L$. Since $a - (b - a) \leq a$ we have $(a + b) - a \leq (a + b) - [a - (b - a)]$. Also $(a + b) - [a - (b - a)] \leq b - a = (a + b) - a$ since (b - a) + [a - (b - a)]= a + (b - a) = a + b. Thus (a + b) - a = (a + b) - [a - (b - a)]. Now putting s = a - (b - a) and t = (a + b) - (a - s) we have t + (a - s) = (a + b) + (a - s) = a + b so that $a + b = t + (a - s) \leq t + [(a + b) - s] \leq a + b$. Hence a + b = t + [(a + b) - s] = t + [(a + b) - a] (by the observation made above) $= t + \{[t + (a - s)] - a\} = t + (t - a) = t = (a + b)^* \{a - [a - (b - a)]\}$.

PROOF OF THEOREM 15. Suppose that θ is a metric group operation in a semi-Brouwerian algebra L, and $c, d \in L$. Then $c = c\theta 0 \leq (c\theta d) + (d\theta 0) = (c\theta d) + d$ so that $c - d \leq c\theta d$; and similarly $d - c \leq c\theta d$ so that $c^*d \leq c\theta d$. Now let $a, b \in L$ and put a + b = x. By Lemma 10 we have $x = x^* \{a - [a - (b - a]]\} \leq x\theta \{a - [a - (b - a)]\}$ and on applying Lemma 9 we get $x\theta \{a - [a - (b - a)]\}$ $= x = x\theta 0$ so that a - [a - (b - a)] = 0. Hence a = a - (b - a) so that by Theorem 5, L is a Boolean ring. The converse is clear.

THEOREM 16. The subgeometry (see definition 2.7 in [9]) generated by two elements of L contains atmost nine elements.

PROOF. The same proof (with the same notation) as in Theorem 2.13 of [9] shows that (a, b, c)T and (a, d, c)T so that by (iv) of Theorem 8 it follows that $c = (a-b) + (b-a) = (c-b) + (c-a) \leq (c-d) + (c-a)$ (since $d \leq b$) = $(a-d) + (d-a) = a * d \leq c$; hence c = a * d. The rest of the proof is the same as in [9].

COROLLARY 3. The subgeometry generated by any two comparable elements of L contains atmost six elements.

PROOF. See [9].

Theorems 3.5 and 3.6 of [9] are valid even if L is a semilattice.

REMARK 3. The concept of semilattice betweenness (and symmetry) are as in [9] where ab is interpreted as (a + b) - (a * b).

THEOREM 17. (a, b, c)L implies $ac \leq b \leq a + c$.

PROOF. If ab + bc = b = (a + b)(b + c), then $b = ab + bc \leq a + c$; also $a - \{[(a-c) - b] + [(c-a) - b]\} = a - \{[a - (b + c)] + [c - (a + b)]\} \leq (a + b) - \{[a - (b + c)] + [c - (a + b)]\} = (a + b) - \{[(a + b) - (b + c)] + [(b + c) - (a + b)]\} = (a + b) - [(a + b) * (b + c)] = (a + b)(b + c) = b$ so that $a \leq b + [(a - c) - b] + [(c - a) - b] \leq b + (a - c) + (c - a) = b + (a * c)$ and hence $ac = a - (a * c) \leq b$.

THEOREM 18. L is a Boolean geometry if and only if $ac \leq b \leq a + c$ implies (a, b, c)L.

PROOF. The necessity follows from the fact that in a distributive lattice $(L, +, \cdot)$ ac $\leq b \leq a + c$ if and only if (a, b, c)L. Conversely suppose that $ac \leq b \leq a + c$ implies (a, b, c)L. For $a, b \in L$, $ab \leq b \leq a + b$ and hence by hypothesis we have (a, b, b)L so that b = (a + b)(b + b) = (a + b)b = b - [(a + b) - b] = b - (a - b). Therefore by Theorem 5, L is a Boolean geometry.

THEOREM 19. If (a-b) + ab = a for all a, b in L, then (i) L is symmetric and (ii) semilattice betweenness implies metric betweenness (see definition 3.2 in [9]).

PROOF. (i) since a = (a-b) + ab we have $a - ab = [(a-b) + ab] - ab \le a - ab$ so that a - b = a - ab. Hence $(a + b)^* ab = (a+b) - ab = (a-ab) + (b-ab) = (a-b) + (b-a) = a^*b$. (ii) Assuming (a, b, c)L we have by Theorem 17, $ac \le b \le a + c$. Now $ac \le b$ implies $a - b \le a - ac = a - c$ and $c - b \le c - ac = c - a$. Also $b \le a + c$ implies $b - c \le a$ and $b - a \le c$ so that $b - c = (b - c) - c \le a - c$ and $b - a = (b - a) - a \le c - a$. Now we have $a - b \le a - c$ and $b - a \le c - a$. Now we have $a - b \le a - c$ and $b - a \le c - a$. Now we have $a - b \le a - c$ and $b - a \le c - a$. Now we have $a - b \le a - c$ and $b - a \le c - a$. Now we have $a - b \le a - c$ and $b - c \le a - c$ so that $a^*b \le a^*c$ and $b^*c \le a^*c$. Thus $(a^*b) + (b^*c) \le a^*c \le (a^*b) + (b^*c)$ so that (a, b, c)M.

THEOREM 20. L is a Boolean geometry if and only if semilattice betweenness coincides with metric betweenness.

PROOF. Suppose L is a Boolean geometry. Then by Theorem 19 semilattice betweenness implies metric betweenness and a straightforward verification shows that metric betweenness implies semilattice betweenness. Conversely, suppose that semilattice betweenness coincides with metric betweenness. In view of Theorem 5 it is enough to show that * is cancellative. Now let $a, b, c \in L$ with a*b = a*c. Then it follows that (a, b, c)M and (a, c, b)M from which we have (a, b, c)L and (a, c, b)L. Hence ab + bc = b and ac + cb = c so that ab = a - (a*b) = a - (a*c) = ac. Therefore b = ab + bc = ac + bc = c.

THEOREM 21. L is a Boolean geometry if and only if metric betweenness has transitivity t_1 (see definition 3.3 in [9]).

PROOF. The necessity is obvious. Conversely suppose that the metric betweenness in L has transitivity t_1 . Let $a, b, c \in L$ with a * b = a * c. It follows that (a, b, c)M and (a, c, b)M so that by transitivity t_1 we have (c, b, c)M. Therefore $b^*c = (c*b) + (b^*c) = c^*c = 0$ so that b = c and by Theorem 5, L is a Boolean geometry.

[10]

THEOREM 22. A semi-Brouwerian geometry is a Boolean geometry if and only if it has congruence order three relative to the class of L-metrized spaces. (see definition 1.7 in [5]).

PROOF. The necessity follows from Theorem 14 in [5]. We need only show that a semi-Brouwerian geometry L with congruence order three is a Boolean geometry. Now by supposing $a - [a - (b-a)] \neq 0$ we arrive at a contradiction just in the same way as in [9], where a - [a - (b-a)] is in the place of $x \cdot \neg x$ and a + b is in the place of 1. Therefore L is a Boolean geometry.

THEOREM 23. A semi-Brouwerian geometry is a Boolean geometry if and only if its group of motions is simply transitive (see definitions 1.4 and 1.5 in [5]).

PROOF. The necessity is obvious. The converse follows from Theorem 13 of [5] and Theorem 5 part (4) of the present paper.

In conclusion I thank the referee for his valuable comments. I also thank Professor Dr. N. V. Subrahmanyam for his valuable guidance throughout the preparation of this revised paper.

References

- [1] G. Birkhoff, 'Lattice theory', (Am. Math. Colloquium publications, (25), (1948)).
- [2] D. Ellis, 'Autometrized Boolean algebras I', Canad. J. Math. 3 (1951), 83-87.
- [3] D. Ellis, 'Autometrized Boolean algebras II', Canad. J. Math. 3 (1951), 145-147.
- [4] Roy Kamalaranjan, 'Newmannian geometry I', Bull. Calcutta Math. Soc. 52 (1960), 187-194.
- [5] K. L. Narasimha Swamy, 'A general theory of autometrized algebras', Math. Annalen 157 (1964), 65-74.
- [6] K. L. Narasimha Swamy, 'Autometrized lattice ordered groups I', Math. Annalen 154 (1964), 406-412.
- [7] K. L. Narasimha Swamy, 'Dually residuated lattice ordered semigroups', Math. Annalen 159 (1965), 105-114.
- [8] W. C. Nemitz, 'Implicative semilattices', Trans. Amer. Math. Soc. 117 (1965), 128-142.
- [9] E. A. Nordhaus and Leo Lapidus, 'Brouwerian geometry', Canad. J. Math. 117 (1965), 6 (1954), 217-229.

Department of Mathematics College of Arts Andhra University Waltair, A.P., India