SEMI-BROUWERIAN ALGEBRAS

P. V. RAMANA MURTY

(Received 20 September 1972)
Communicated by B. Mond

Introduction

Ever since David Ellis has shown that a Boolean algebra has a natural structure of an autometrized space, the interest in such spaces has led several authors to study various autometrized algebras like Brouwerian algebras [9], Newman algebras [4], Lattice ordered groups [6], Dually residuated lattice ordered semigroups [7] etc. However all these spaces are lattices (with the exception of Newman algebra which is not even a partially ordered set); and a natural question would be whether there are semilattices with a natural structure of an autometrized space. In the present paper we observe that the dual of an implicative semilattice [8] is a generalization of Brouwerian algebra and it has a natural structure of an autometrized space.

In $\S 1$ we define a semi-Brouwerian algebra and show that a semi-Brouwerian algebra is a semilattice with 0 satisfying (F) (see Theorem 1) which readily shows that a semi-Brouwerian algebra is the dual of an implicative semilattice. We also prove that a semi-Brouwerian algebra is a Boolean ring if and only if the symmetric difference is a group operation. In $\S 2$ we observe that a semi-Brouwerian algebra is an autometrized space and show that the entire Brouwerian geometry of E. A. Nordhaus and Leo Lapidus can be extended to these spaces. We also prove that a semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric group operation. We further prove that a semi-Brouwerian geometry (see definition 2) is a Boolean geometry if and only if semilattice betweenness coincides with metric betweenness.

1

Definition 1. An algebra $L=(L ;+,-, 0)$ with two binary operations + , - and a nullary operation 0 is called a semi-Brouwerian algebra if and only if (1.1) $a+a=a$, (1.2) $a+b=b+a$, (1.3) $a-a=0$, (1.4) ($a-b$) $+b=a+b,(1.5)(a-b)-c=a-(c+b)$ for all a, b, c in L.

We now show that these axioms are independent.
Example 1. Let S be any non-empty set with more than one element and let 0 be an element of S. Define $a+b=0$ and $a-b=0$ for all a, b in S. Then S satisfies all the axioms except (1.1).

Example 2. Let S be any set with more than one element and let $0 \in S$. Define $a+b=b$ and $a-b=0$ for all a, b in S. Then S satisfies all the axioms except (1.2).

Example 3. Let $(S,+)$ be the two element join semilattice $\{0,1\}$ and define $1-0=1,0-0=0-1=0,1-1=1$ on S. Clearly S satisfies all the axioms except (1.3).

Example 4. Let $(S,+)$ be the two element join semilattice $\{0,1\}$ and define $a-b=0$ for all a, b in S. Obviously S satisfies all the axioms except (1.4). Axiom (1.4) does not hold in S for $(1-0)+0=0+0=0 \neq 1=1+0$.

Example 5. Consider $S=\{0, a, b\}$. Define $a+b=b+a=b, a+0=$ $0+a=a, \quad b+0=0+b=b, \quad a+a=a, \quad b+b=b, \quad 0+0=0 \quad$ and $a-a=b-b=0-0=0-a=0-b=0, a-0=a, b-0=b, a-b=a$, $b-a=b$ on S. Obviously S satisfies all the axioms except (1.5). Axiom (1.5) does not hold in S for $(a-b)-a=a-a=0 \neq a=a-b=a-(a+b)$.

Remark 1 . Example 2 shows that associativity of + may be valid even without commutativity. However it is not known whether any significant results can be obtained by replacing commutativity in the definition 1 by associativity.

Theorem 1. Let $L=(L ;+,-, 0)$ be a semi-Brouwerian algebra. If we write $a \leqq b$ to mean $a+b=b$, then (L, \leqq) is a semilattice with 0 as the least element satisfying $(F) a-b \leqq c$ if and only if $a \leqq c+b$. Conversely if $(L,+, 0)$ is a semilattice with 0 and - is a binary operation in L-with (F), then $(L,+,-, 0)$ is a semi-Brouwerian algebra.

Obviously (L, \leqq) is reflexive and antisymmetric; and to prove this theorem we need the following four lemmas in which we assume that L is a semi-Brouwerian algebra and $a, b, c, \cdots, \in L$.

Lemma 1. (i) $0+a=a$, (ii) $0-a=0$ and (iii) $a-(b+a)=0$.
Proof. (i): $(a-a)+a=a+a$ (by (1.4)) so that $0+a=a$ (by (1.3) and (1.1)).
(ii) $(0-a)=(a-a)-a(b y(1.3))=a-(a+a)(b y(1.5))=a-a=0$,
(iii) $a-(b+a)=(a-a)-b$ (by (1.5)) $=0-b=0$ (by (ii) above).

Lemma 2. $a-b=0$ if and only if $a \leqq b$.

Proof. If $a-b=0$ then $b=0+b=(a-b)+b=a+b$ so that $a \leqq b$. Conversely suppose that $a \leqq b$. Then $0=a-(b+a)=a-(a+b)=a-b$.

Lemma 3. (i) $(a+b)-b=a-b$, (ii) $(a+b)-(a+c)=b-(a+c)$.
Proof. (i) $[(a+b)-b]-(a-b)=(a+b)-[(a-b)+b]$ (by (1.5)) $=(a+b)-(a+b)($ by $(1.4))=0$ and $(a-b)-[(a+b)-b]=a-\{[(a+b)$ $-b]+b\}($ by (1.5)) $=a-[(a+b)+b]$ (by (1.4)) $=(a-b)-(a+b)$ (by $1.5))=(a-b)-(b+a)($ by $(1.2))=[(a-b)-a]-b=[a-(a+b)]-b$ $=[a-(b+a)]-b=0-b=0$ so that by Lemma 2 we have $(a+b)-b$ $=a-b$.
(ii) $[(a+b)-(a+c)]-[b-(a+c)]=(a+b)-\{[b-(a+c)]+(a+c)\}$ (by (1.5)) $=(a+b)-[b+(a+c)]$ (by (1.4)) $=(a+b)-[(a+c)+b]$ (by (1.2)) $=[(a+b)-b]-(a+c)(b y 1.5))=(a-b)-(a+c)$ (by (i) above) $[(a-b)-a]-c($ by (1.2) and (1.5)) $=[a-(a+b)]-c=0-c=$ (by (iii) of Lemma 1) $=0$ and $[b-(a+c)]-[(a+b)-(a+c)]=b-\{[(a+b)-(a+c)]$ $+(a+c)\}($ by $(1.5))=b-[(a+b)+(a+c)]($ by $(1.4))=b-[(a+c)+(a+b)]$ (by (1.2)) $=[b-(a+b)]-(a+c)(b y(1.5))=0-(a+c)=0$ so that by Lemma 2 we have $(a+b)-(a+c)=b-(a+c)$.

Lemma 4. $a+(b+c)=(a+b)+c$.
Proof. $[a+(b+c)]-[(a+b)+c]=\{[a+(b+c)]-(a+b)\}-c$ (by (1.2) and (1.5)) $=[(b+c)-(a+b)]-c($ by (ii) of Lemma 3) $=[c-(b+a)]-c$ (by (1.2) and (ii) of Lemma 3) $=c-[c+(b+a)]$ (by (1.5)) $=0$ so that by Lemma 2 we have $a+(b+c) \leqq(a+b)+c$. Now $(a+b)+c=c+(b+a)$ $\leqq(c+b)+a=(b+c)+a=a+(b+c)$ so that $a+(b+c)=(a+b)+c$.

Proof of Theorem 1. Lemma 1.(i) and Lemma 4 readily imply that (L, \leqq) is a semilattice with 0 as the least element. Now for all a, b, c in $L, a \leqq c+b \Leftrightarrow$ $a-(c+b)=0 \Leftrightarrow(a-b)-c=0 \Leftrightarrow a-b \leqq c$. For the proof of the converse see Nemitz [8].

Remark 2. If a semi-Brouwerian algebra is a lattice, then it is a Brouwerian algebra.

For an example of a semi-Brouwerian algebra which is not a lattice see page 139 in [8].

Throughout this article L denotes a semi-Brouwerian algebra. The following theorem is an immediate consequence of Theorem 1 (see Nemitz [8]).

Theorem 2. For all a, b, c in L the following are valid.
(2.1) $a=a-0$.
(2.2) $a-b \leqq a$.
(2.3) If $a \leqq b$, then $a-c \leqq b-c$ and $c-b \leqq c-a$.
(2.4) $a \leqq b$ if and only if $a-b=0$.
(2.5) $(a-b)-b=a-b$.
(2.6) $(a+b)-c=(a-c)+(b-c)$.
(2.7) If L is a lattice with greatest lower bound \cap, then L is distributive and $a-(b \cap c)=(a-b)+(a-c)$.

Theorem 3. Let $(L ;+, \leqq,-)$ be a system in which $(L,+, \leqq)$ is a semilattice with $0,+$ denotes the least upper bound with respect to \leqq and $(L,-)$ is a binary algebra. Then the following statements are equivalent.

1. $a-b \leqq c$ if and only if $a \leqq c+b$.
2. (i) $(a-b)+b=a+b$, (ii) $a-a=0$ and (iii) $(a-b)-c=a-(c+b)$.
3. (i) $(a-b)+b=a+b$, (ii) $a-(a+b)=0$ and (iii) $(a-b)-c=a-(c+b)$.
4. (i) $(a-b)+b=a+b$, (ii) $(a+b)-c=(a-c)+(b-c)$, (iii) $a-a=0$ and (iv) $(a-b)+a=a$.

Proof. That 1 implies 2 follows from Theorem 1.
Assume 2. From 2 (ii) and 2 (iii) we have $0-a=0$ so that by 2 (ii) $0=(a-a)-b=a-(b+a)=a-(a+b)$. Hence 2 implies 3.

Assume 3. From 3(ii) and 3(iii) we have $a-a=0-a=0$ and by 3 (i) $(a-b)+a=[(a-b)-a]+a=[a-(a+b)]+a=0+a=a$. From 3 (i) and 3(ii) it is clear that $a \leqq b$ if and only if $a-b=0$. We also observe that $a \leqq b$ implies $a-c \leqq b-c$. If $a \leqq b$, then $a+b=b$ so that $a+b+c=b+c$ and hence $a-(b+c)=a-(a+b+c)=0$ (by 3 (ii)). Now $(a-c)-(b-c)=a-[(b-c)+c]($ by $3($ iii $))=a-(b+c)(b y 3(i))=0$ so that $a-c \leqq b-c$. $[(a+b)-c]-[(a-c)+(b-c)]=(a+b)-$ $[(a-c)+(b-c)+c] \quad$ (by 3 (iii)) $=(a+b)-[(a-c)+b+c]$ (by 3(i)) $=$ $(a+b)-[(a-c)+c+b]=(a+b)-(a+c+b)$ (by $3(\mathrm{i}))=0$ (by 3 (ii)) so that $(a+b)-c \leqq(a-c)+(b-c)$. Also $a \leqq a+b$ and $b \leqq a+b$ imply $(a-c)+(b-c) \leqq(a+b)-c$ so that $(a+b)-c=(a-c)+(b-c)$. Thus 3 implies 4.

Assume 4 and let $a \leqq c+b$. From 4(ii) $a \leqq b$ implies $a-c \leqq b-c$; hence $a-b \leqq(c+b)-b=(c-b)+(b-b)=c-b \leqq c$ by 4(iii) and 4(iv). If $a-b \leqq c$ then $a \leqq a+b=(a-b)+b \leqq c+b$. Hence 4 implies 1 .

We shall write $a^{*} b=(a-b)+(b-a)$ for $a, b \in L$ and call $a^{*} b$ the symmetric difference of a and b. It is known that in a Brouwerian algebra (with 1) the symmetric difference is a group operation if and only if it is a Boolean algebra and we show now that the same is true even in the case of a semi-Brouwerian algebra. Put $a b=(a+b)-\left(a^{*} b\right)$.

Lemma 5. $a b=a-\left(a^{*} b\right)=b-\left(a^{*} b\right)$.

Proof. First observe that $a b=b a$. Now by (2.6) and (1.3) we have $a-\left(a^{*} b\right)=\left[a+\left(a^{*} b\right)\right]-\left(a^{*} b\right)=[a+(a-b)+(b-a)]-(a * b)=$ $(a+b)-\left(a^{*} b\right)$ (and hence by symmetry) $=b-\left(a^{*} b\right)$.

Theorem 4. If $a-(b-a)=a$ for all a, b in L, then L is a Boolean ring.
To prove this theorem we require the next three lemmas in which we assume $a-(b-a)=a$ for all a, b in L.

Lemma 6. $a(b c)=(a b) c$ for all a, b, c in L.
Proof. By hypothesis $a-(a-b)=[a-(b-a)]-(a-b)=a-[(a-b)+$ $(b-a)]($ by $(1.5))=a-\left(a^{*} b\right)$ so that by the above lemma $a b=a-(a-b)=$ $b-(b-a)$ (by symmetry). Now $(a b) c=a b-(a b-c)=[b-(b-a)]-$ $\{[b-(b-a)]-c\}=[b-(b-a)]-\{b-[c+(b-a)]\}(b y(1.5))=[b-(b-a)]$ $-\{b-[(b-a)+c]\}=[b-(b-a)]-[(b-c)-(b-a)] \quad(b y \quad(1.5))=$ $b-\{[(b-c)-(b-a)]+(b-a)\}$ (by (1.5)) $=b-[(b-c)+(b-a)]$ (by (1.4)) $=b-[(b-a)+(b-c)]=(c b) a=a(b c)$.

Lemma 7. $a b$ is the greatest lower bound of a and b in L.
Proof. Firstly if $a b=a$ then by Lemma $5, b-\left(a^{*} b\right)=a$ so that $a \leqq b$ and if $a \leqq b$ and $a-(b-a)=a$ then $a b=a-(a-b)=a-0=a$. Obviously $a b$ is a lower bound of a and b by Lemma 5 and (2.2); and now let t be a lower bound of a and b. Then $t a=t$ and $t b=t$ so that $t(a b)=(t a) b=t b=t$. Therefore $t \leqq a b$ so that $a b$ is the greatest lower bound of a and b in L.

Lemma 8. L is a relatively complemented distributive lattice.
Proof. From lemmas 6 and 7 it follows that L is a lattice with greatest lower bound of a and b as $a b$ so that by (2.7) it follows that L is a distributive lattice. Now let $a \in L$ and $0 \leqq x \leqq a$. Put $y=a-x$. Clearly by $2.2,0 \leqq y \leqq a$. Further $y+x=(a-x)+x=a+x=a$. Also $x y=y-\left(x^{*} y\right)=y-[(x-y)+(y-x)]$ $=y-[(y-x)+(x-y)]=[y-(x-y)]-(y-x)=y-(y-x)=y-[(a-x)$ $-x]=y-(a-x)=0$. Thus $[0, a]$ is complemented for every $a \in L$ so that L is relatively complemented.

Proof of Theorem 4. From lemmas 6, 7 and 8 it follows that L is a relatively complemented distributive lattice with 0 and hence L has the structure of a Boolean ring.

Now the following theorem shows that if ${ }^{*}$ is a group operation in L, then L has the structure of a Boolean ring.

Theorem 5. In L the following statements are equivalent.
(1) * is a group operation.
(2) * is associative.
(3) ${ }^{*}$ is cancellative.
(4) $a-(b-a)=a$ for all a, b in L.
(5) $\left(L,{ }^{*}, \cdot\right)$ is a Boolean ring.
(6) $\left(L,{ }^{*}\right)$ is a loop.
(7) $a b$ is the greatest lower bound of a and b in L.
(8) $a+b c=(a+b)(a+c)$ for all a, b, c in L.
(9) $a-b c=(a-b)+(a-c)$ for all a, b, c in L.
(10) $x \leqq y$ implies $a x \leqq$ ay for all a in L.

Proof. The order of demonstration is $(1) \Rightarrow(2)$, (3) and (6); (2) $\Rightarrow(1)$; $(3) \Rightarrow(4) ;(4) \Rightarrow(5) ;(5) \Rightarrow(1)$ and $(7) ;(6) \Rightarrow(3) ;(7) \Rightarrow(4),(8),(9)$ and (10); $(8) \Rightarrow(4) ;(9) \Rightarrow(7) ;(10) \Rightarrow(7)$.

Now (1) $\Rightarrow(2),(3)$ and $(6) ;(4) \Rightarrow(5) ;(5) \Rightarrow(1) ;(6) \Rightarrow(3) ;(7) \Rightarrow(8),(9)$ and (10) are all obvious.

Assume (2). Since $a^{*} a=0$ and $a^{*} 0=0^{*} a=a$ for every a in L it follows that ${ }^{*}$ is a group operation. Hence (2) $\Rightarrow(1)$.

Assume (3). Then $a^{*}(b-a)=[a-(b-a)]+[(b-a)-a]=[a-(b-a)]$ $+(b-a)=a+(b-a)=a+b$ and $[a-(b-a)]^{*}(b-a)=(b-a)^{*}[a-(b-a)]$ $=(b-a)+a=a+b$ so that $a-(b-a)=a$. Hence (3) \Rightarrow (4).

Assume (5). Let $a X b$ be the greatest lower bound of a and b in L. Then since (5) implies (1) we have $a b=a-\left(a^{*} b\right)=a^{*}\left[a X\left(a^{*} b\right)\right]$ (since in a Boolean ring (B,+, $) a-b=a+a b)=a^{*}\left[(a X a)^{*}(a X b)\right]=a^{*}[a *(a X b)]$ $=\left(a^{*} a\right) *(a X b)=a X b$. Hence (5) \Rightarrow (7).

Assume (7). Let $a, b \in L$. Then $a=(a+b) a=a-\left[a^{*}(a+b)\right]=a-[(a+b)$ $-a]=a-(b-a)$ so that (7) \Rightarrow (4).

Assume (8). Now $a=a+a b=(a+a)(a+b)=a(a+b)=a-(b-a)$ so that $(8) \Rightarrow(4)$.

Assume (9). Let $a, b \in L$. We already know that $a b$ is a lower bound of a and b. Let t be a lower bound of a and b. Then $0=(t-a)+(t-b)=t-a b$ so that $t \leqq a b$. Hence (9) \Rightarrow (7).

Assume (10). Let $a, b \in L$ and let t be a lower bound of a and b. Now $t \leqq a$ and $t \leqq b$ implies $t=t^{2} \leqq t b \leqq a b$ so that $t \leqq a b$. Hence (10) \Rightarrow (7).

2
It is well known that a relatively complemented distributive lattice with 0 is an autometrized space. We refer to this space as Boolean geometry (see [9]).

THEOREM 6. The symmetric difference in a semi-Brouwerian algebra is a metric operation.

Proof. Obviously $a^{*} a=0$ and suppose $a^{*} b=0$; then $a-b=0$ and $b-a=0$ so that $a=b$ by (2.4). Now let $\left(a^{*} b\right)+\left(b^{*} c\right)=t$. Then each of
$a-b, b-a, b-c$ and $c-b$ is $\leqq t$ so that $a \leqq t+b, b \leqq t+a, b \leqq t+c$ and $c \leqq t+b$. Hence $a \leqq t+c$ and $c \leqq t+a$ so that $a^{*} c=(a-c)+(c-a) \leqq t$.

Corollary 1. Every semi-Brouwerian algebra is an autometrized space (see definition 1 in [5]).

Definition 2. A semi-Brouwerian algebra autometrized via the symmetric difference is called a semi-Brouwerian geometry.

In the rest of this article L denotes a semi-Brouwerian geometry. We will regard a triple of elements a, b, c as the vertices of a triangle denoted by $\Delta(a, b, c)$ and call $a^{*} b, b^{*} c, c^{*} a$ the sides of this triangle.

Theorem 7. Lis a Boolean geometry if and only if it is free of isosceles triangles.

Proof. The necessity is obvious. Conversely suppose that $a^{*} b=a * c$ and $b \neq c$; then it follows that a, b, c are all distinct and hence $\Delta(a, b, c)$ is an isosceles triangle. Hence if L is free of isosceles triangles, then ${ }^{*}$ is cancellative and therefore (by Theorem 5) L is a Boolean geometry.

The proofs of the following Theorems 8 to 14 are the same as for Brouwerian geometry (see [9]).

Theorem 8. In L the relation $(a, b, c) T$ is equivalent to each of the relations
(i) $a+b=b+c=c+a=a+b+c$.
(ii) $a-b \leqq c, b-a \leqq c, c-a \leqq b$.
(iii) $a^{*} b \leqq c \leqq a+b$.
(iv) $b-a=c-a, a-b=c-b, a-c=b-c$.

Corollary 2. For $a, b \in L$ we have $\left(a, b, a^{*} b\right) T$.
Theorem 9. L is a chain if and only if all triangles are isosceles.
Theorem 10. In Leach side of a first distance triangle is under the opposite vertex.

Theorem 11. In Levery second distance triangle has fixity.
Theorem 12. Lis a Boolean geometry if and only if every first distance triangle has fixity.

Theorem 13. L contains no equilateral triangles.
Theorem 14. L contains no equilateral n-circuit for n-odd.
Nordhaus and Lapidus [9] proved that a Brouwerian algebra with 1 is a Boolean algebra if and only if it admits a metric group operation. However we now show that even an improved result with much less hypothesis is valid.

Theorem 15. A semi-Brouwerian algebra is a Boolean ring if and only if it admits a metric group operation.

To prove this theorem we need the following two lemmas.
Lemma 9. Let θ be a metric group operation in a semi-Brouwerian algebra L. Then for all a, b in $L, a \theta b \leqq a+b$.

Proof. Since $0 \theta 0=0$ the zero element of the group is zero. Thus $a \theta b \leqq(a \theta 0)+(0 \theta b)=a+b$.

Lemma 10. For any $a, b \in L,(a+b) *\{a-[a-(b-a)]\}=a+b$.
Proof. First we observe that $(a+b)-a=(a+b)-[a-(b-a)]$ for all $a, b \in L$. Since $a-(b-a) \leqq a$ we have $(a+b)-a \leqq(a+b)-[a-(b-a)]$. Also $(a+b)-[a-(b-a)] \leqq b-a=(a+b)-a$ since $(b-a)+[a-(b-a)]$ $=a+(b-a)=a+b$. Thus $(a+b)-a=(a+b)-[a-(b-a)]$. Now putting $s=a-(b-a)$ and $t=(a+b)-(a-s)$ we have $t+(a-s)=(a+b)$ $+(a-s)=a+b$ so that $a+b=t+(a-s) \leqq t+[(a+b)-s] \leqq a+b$. Hence $a+b=t+[(a+b)-s]=t+[(a+b)-a]$ (by the observation made above $)=t+\{[t+(a-s)]-a\}=t+(t-a)=t=(a+b)^{*}\{a-[a-(b-a)]\}$.

Proof of Theorem 15. Suppose that θ is a metric group operation in a semi-Brouwerian algebra L, and $c, d \in L$. Then $c=c \theta 0 \leqq(c \theta d)+(d \theta 0)=(c \theta d)$ $+d$ so that $c-d \leqq c \theta d$; and similarly $d-c \leqq c \theta d$ so that $c * d \leqq c \theta d$. Now let $a, b \in L$ and put $a+b=x$. By Lemma 10 we have $x=x^{*}\{a-[a-(b-a]\}$ $\leqq x \theta\{a-[a-(b-a)]\}$ and on applying Lemma 9 we get $x \theta\{a-[a-(b-a)]\}$ $=x=x \theta 0$ so that $a-[a-(b-a)]=0$. Hence $a=a-(b-a)$ so that by Theorem 5, L is a Boolean ring. The converse is clear.

Theorem 16. The subgeometry (see definition 2.7 in [9]) generated by two elements of L contains atmost nine elements.

Proof. The same proof (with the same notation) as in Theorem 2.13 of [9] shows that $(a, b, c) T$ and $(a, d, c) T$ so that by (iv) of Theorem 8 it follows that $c=(a-b)+(b-a)=(c-b)+(c-a) \leqq(c-d)+(c-a)$ (since $d \leqq b)=$ $(a-d)+(d-a)=a * d \leqq c$; hence $c=a * d$. The rest of the proof is the same as in [9].

Corollary 3. The subgeometry generated by any two comparable elements of L contains atmost six elements.

Proof. See [9].
Theorems 3.5 and 3.6 of [9] are valid even if L is a semilattice.
Remark 3. The concept of semilattice betweenness (and symmetry) are as in [9] where $a b$ is interpreted as $(a+b)-\left(a^{*} b\right)$.

Theorem 17. $(a, b, c) L$ implies $a c \leqq b \leqq a+c$.

Proof. If $a b+b c=b=(a+b)(b+c)$, then $b=a b+b c \leqq a+c$; also $a-\{[(a-c)-b]+[(c-a)-b]\}=a-\{[a-(b+c)]+[c-(a+b)]\} \leqq$ $(a+b)-\{[a-(b+c)]+[c-(a+b)]\}=(a+b)-\{[(a+b)-(b+c)]+$ $[(b+c)-(a+b)]\}=(a+b)-\left[(a+b)^{*}(b+c)\right]=(a+b)(b+c)=b$ so that $a \leqq b+[(a-c)-b]+[(c-a)-b] \leqq b+(a-c)+(c-a)=b+\left(a^{*} c\right)$ and hence $a c=a-\left(a^{*} c\right) \leqq b$.

Theorem 18. L is a Boolean geometry if and only if $a c \leqq b \leqq a+c$ implies $(a, b, c) L$.

Proof. The necessity follows from the fact that in a distributive lattice $(L,+, \cdot) a c \leqq b \leqq a+c$ if and only if $(a, b, c) L$. Conversely suppose that $a c \leqq b \leqq a+c$ implies $(a, b, c) L$. For $a, b \in L, a b \leqq b \leqq a+b$ and hence by hypothesis we have $(a, b, b) L$ so that $b=(a+b)(b+b)=(a+b) b=b-$ $[(a+b)-b]=b-(a-b)$. Therefore by Theorem $5, L$ is a Boolean geometry.

THEOREM 19. If $(a-b)+a b=a$ for all a, b in L, then (i) L is symmetric and (ii) semilattice betweenness implies metric betweenness (see definition 3.2 in [9]).

Proof. (i) since $a=(a-b)+a b$ we have $a-a b=[(a-b)+a b]-$ $a b \leqq a-b \leqq a-a b$ so that $a-b=a-a b$. Hence $(a+b)^{*} a b=(a+b)-a b$ $=(a-a b)+(b-a b)=(a-b)+(b-a)=a^{*} b$. (ii) Assuming $(a, b, c) L$ we have by Theorem 17, $a c \leqq b \leqq a+c$. Now $a c \leqq b$ implies $a-b \leqq a-a c=a-c$ and $c-b \leqq c-a c=c-a$. Also $b \leqq a+c$ implies $b-c \leqq a$ and $b-a \leqq c$ so that $b-c=(b-c)-c \leqq a-c$ and $b-a=(b-a)-a \leqq c-a$. Now we have $a-b$ $\leqq a-c, b-a \leqq c-a, c-b \leqq c-a$ and $b-c \leqq a-c$ so that $a * b \leqq a * c$ and $b^{*} c \leqq a^{*} c$. Thus $\left(a^{*} b\right)+\left(b^{*} c\right) \leqq a^{*} c \leqq\left(a^{*} b\right)+\left(b^{*} c\right)$ so that $(a, b, c) M$.

Theorem 20. L is a Boolean geometry if and only if semilattice betweenness coincides with metric betweenness.

Proof. Suppose L is a Boolean geometry. Then by Theorem 19 semilattice betweenness implies metric betweenness and a straightforward verification shows that metric betweenness implies semilattice betweenness. Conversely, suppose that semilattice betweenness coincides with metric betweenness. In view of Theorem 5 it is enough to show that ${ }^{*}$ is cancellative. Now let $a, b, c \in L$ with $a^{*} b=a^{*} c$. Then it follows that $(a, b, c) M$ and $(a, c, b) M$ from which we have $(a, b, c) L$ and $(a, c, b) L$. Hence $a b+b c=b$ and $a c+c b=c$ so that $a b=a-\left(a^{*} b\right)=a-\left(a^{*} c\right)=a c$. Therefore $b=a b+b c=a c+b c=c$.

Theorem 21. L is a Boolean geometry if and only if metric betweenness has transitivity t_{1} (see definition 3.3 in [9]).

Proof. The necessity is obvious. Conversely suppose that the metric betweenness in L has transitivity t_{1}. Let $a, b, c \in L$ with $a^{*} b=a^{*} c$. It follows that $(a, b, c) M$ and $(a, c, b) M$ so that by transitivity t_{1} we have $(c, b, c) M$. There-
fore $b^{*} c=(c * b)+\left(b^{*} c\right)=c^{*} c=0$ so that $b=c$ and by Theorem $5, L$ is a Boolean geometry.

Theorem 22. A semi-Brouwerian geometry is a Boolean geometry if and only if it has congruence order three relative to the class of L-metrized spaces. (see definition 1.7 in [5]).

Proof. The necessity follows from Theorem 14 in [5]. We need only show that a semi-Brouwerian geometry L with congruence order three is a Boolean geometry. Now by supposing $a-[a-(b-a)] \neq 0$ we arrive at a contradiction just in the same way as in [9], where $a-[a-(b-a)]$ is in the place of $x \cdot \neg x$ and $a+b$ is in the place of 1 . Therefore L is a Boolean geometry.

Theorem 23. A semi-Brouwerian geometry is a Boolean geometry if and only if its group of motions is simply transitive (see definitions 1.4 and 1.5 in [5]).

Proof. The necessity is obvious. The converse follows from Theorem 13 of [5] and Theorem 5 part (4) of the present paper.

In conclusion I thank the referee for his valuable comments. I also thank Professor Dr. N. V. Subrahmanyam for his valuable guidance throughout the preparation of this revised paper.

References

[1] G. Birkhoff, 'Lattice theory', (Am. Math. Colloquium publications, (25), (1948)).
[2] D. Ellis, 'Autometrized Boolean algebras I', Canad. J. Math. 3 (1951), 83-87.
[3] D. Ellis, 'Autometrized Boolean algebras II', Canad. J. Math. 3 (1951), 145-147.
[4] Roy Kamalaranjan, 'Newmannian geometry I', Bull. Calcutta Math. Soc. 52 (1960), 187-194.
[5] K. L. Narasimha Swamy, 'A general theory of autometrized algebras', Math. Annalen 157 (1964), 65-74.
[6] K. L. Narasimha Swamy, 'Autometrized lattice ordered groups I', Math. Annalen 154 (1964), 406-412.
[7] K. L. Narasimha Swamy, 'Dually residuated lattice ordered semigroups', Math. Annalen 159 (1965), 105-114.
[8] W. C. Nemitz, 'Implicative semilattices', Trans. Amer. Math. Soc. 117 (1965), 128-142.
[9] E. A. Nordhaus and Leo Lapidus, 'Brouwerian geometry', Canad. J. Math. 117 (1965), 6 (1954), 217-229.

Department of Mathematics
College of Arts
Andhra University
Waltair, A.P., India

