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Abstract

This review proposes a new taxonomy of automatic and controlled attention. The taxonomy distinguishes among the
role of the attendee (puppet and robot, critic and actor), the attention process (stimulus orienting vs. response
control), and the attention operation (activation vs. inhibition vs. adjustment), and identifies cognitive phenotypes
by which attention is overtly expressed. We apply the taxonomy to four childhood attention disorders: attention
deficit hyperactivity disorder, spina bifida meningomyelocele, traumatic brain injury, and acute lymphoblastic
leukemia. Variations in attention are related to specific brain regions that support normal attention processes when
intact, and produce disordered attention when impaired. The taxonomy explains group differences in behavioral
inattention, hyperactivity, and impulsiveness, as well as medication response. We also discuss issues relevant to
theories of the cognitive and neural architecture of attention: functional dissociations within and between automatic
and controlled attention; the relative importance of type of brain damage and developmental timing to attention
profile; cognitive-energetic models of attention and white matter damage; temporal processing deficits, attention
deficits and cerebellar damage; and the issue of cognitive phenotypes as candidate endophenotypes.

(JINS, 2008, 14, 673-690.)
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INTRODUCTION

Attention is unobservable, so models of attention and its
components are based on inferences about how an individ-
ual perceives, thinks, and acts. This article presents a new,
three-dimensional functional taxonomy that organizes con-
tingent relationships among perception, cognition, and move-
ment into a framework for understanding attention and its
disorders in children. Herein, we:
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Describe the architecture of the taxonomy in terms of
three unobservable constructs and an observable cog-
nitive phenotype.

Apply the taxonomy to four childhood attention disor-
ders, making functional comparisons within each
disorder.

Demonstrate compatibility of the taxonomy with the
neurobiology of attention.

Compare behavioral profiles of inattention, impulsiv-
ity, and hyperactivity across disorders and predict treat-
ment responsiveness.

Discuss some theoretical issues pertaining to attention
and predict attention profiles in disorders not yet studied.
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Fig. 1. Attention taxonomy.

ATTENTION TAXONOMY

Stimulus Orienting Versus Response Control

Models of attention include both stimulus orienting and
response control. Stimulus orienting is the automatic cap-
ture of attention by salient sensations (James, 1890; more
recently, automatic disengaging and shifting attention, Mir-
sky et al., 1991; Posner & Peterson, 1990; filtering of salience
information, Knudsen, 2007; or creating saliency maps,
Treue, 2003). Response control is the voluntary direction of
a motor response, corresponding to Posner and Peterson’s
(1990) anterior attention system and to Knudsen’s (2007)
response selection. Being an unobservable construct, atten-
tion is inferred in both stimulus orienting and response con-
trol from manipulations of the relation between sensation
and movement. In stimulus orienting, inhibition of return
(IOR) is inferred from the contingencies between motor
engaging and disengaging. In response control, stopping an
ongoing action is inferred from the relation between go and
stop actions.

A new taxonomy (Figure 1) was prompted by consider-
ations relevant to the specific aims. First, we aimed to inte-
grate stimulus orienting and response control into a single
taxonomy. Some models of attention used in childhood clin-
ical disorders focus on only one process; for example, Bar-
kley’s (1997) model of attention considers only response
control. Second, we wanted to distinguish among opera-
tions within stimulus orienting and response control. Some
earlier models of attention that considered both processes
(e.g., Mirsky et al., 1991; Posner & Peterson, 1990) have
not separated activation, inhibition, and adjustment. Third,
we aimed to incorporate recent parsings of attendee roles
(e.g., the distinction in striatal learning between a “critic”
who evaluates performance and an “actor” who performs)
and cognitive phenotypes (e.g., the distinction in response
control between restraining a prepotent response and can-
celing an ongoing response). Fourth, we wanted to inte-
grate the three attention dimensions into a factorially
structured taxonomy to identify both functional assets and
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deficits. Such an integration will facilitate functional com-
parisons both within and across clinical disorders and gen-
erate not only descriptions, but also principled inferences
about the neural and behavioral correlates of attention.

Puppet Versus Robot Versus Critic Versus
Actor

Within stimulus orienting, the attendee may be a puppet or
robot. We devised the puppet metaphor to capture the idea
of a passive attendee whose attention is driven by bottom-
up, stimulus-driven orienting to exogenous (external) stim-
uli, such as a flash of light. We devised the robot metaphor
to capture the idea of an active attendee whose orienting is
top-down and task-driven, in accord with endogenous (inter-
nal) programs, scripts, or symbols, such as an arrow.

Within response control, the attendee may be a critic or
an actor. The critic metaphor captures the idea of looped,
model-driven responding, involving an active attendee who
evaluates performance options and reward contingencies in
light of an existing model of desired behavior. The actor
metaphor captures the idea of a top-down, action-driven,
active attendee responding in accordance with an instruc-
tional set and attention priorities. We adopted the actor-
critic metaphors from habit-driven learning (Dayan &
Balleine, 2002; O’Reilly & Frank, 2006) and animal stud-
ies separating a dorsal striatum (actor) role in performance
from a ventral striatum (actor and critic) role in perfor-
mance and learning (Atallah et al., 2007).

Activation Versus Inhibition Versus
Adjustment

The attendee is involved in activation, inhibition, or adjust-
ment. Activation enables directed attention towards the
attended material. Inhibition refers to diverse attention pro-
cesses, some of which concern automatic avoidance of pre-
viously attended locations (e.g., IOR), and some of which
involve voluntary acts of inhibitory control (e.g., stopping
an ongoing action in response to a signal). Adjustment refers
to a number of evaluative-regulative processes by which
previous attention modifies subsequent attention (Larson
et al., 2007), including error detection, performance moni-
toring, and adjusting the contingency between present action
and future reward (Holroyd & Coles, 2002; Nigg et al.,
2005; Sagvolden et al., 1998).

Attention Measures Express Cognitive
Phenotypes

The italicized entries in Figure 1 are cognitive phenotypes,
which are overt and measurable expressions of the atten-
tion constructs. For each cognitive phenotype, we identify a
representative task measure, below.

The attendee as puppet

Activation enables automatic stimulus engagement. The
engage cognitive phenotype may be measured by the time
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to orient to a target following an exogenous cue, such as a
flash of light (Posner & Peterson, 1990). Inhibition enables
the attendee to avoid orienting to a previously attended loca-
tion or stimulus. The IOR cognitive phenotype is indexed
by a longer time to return to a previously attended cue
location (Klein, 2000). Adjustment enables a disengage pro-
cess to withdraw attention from one stimulus so that it may
be moved to another. The disengagement cognitive pheno-
type may be measured by disengagement cost, the time to
detach from an exogenous cue conditionalized on engage
time (Dennis et al., 2005a).

The attendee as robot

Activation enables a voluntary focus on the stimulus. The
focus cognitive phenotype may be measured by time to attend
to a target following an endogenous cue, such as a symbol
or an arrow (Posner & Peterson, 1990). Inhibition slows
responses to recently ignored stimulus relative to new stim-
uli. The negative priming (NP) cognitive phenotype may be
measured by a longer time to attend to recently ignored
stimuli (Tipper, 1992). Adjustment enables set shift to redirect
attention. The shift cognitive phenotype may be measured
by shifting attention in response to an endogenous cue
(Schmitter-Edgecombe & Langill, 2006).

The attendee as critic

Activation enables a voluntary allocation of attention. The
divide cognitive phenotype may be measured by the ability
to activate concurrent attention streams (e.g., Manly et al.,
1999). Inhibition enables the suppression of one of two
interfering schemata or behaviors. The conflict cognitive
phenotype may be measured by the ability to perform a
controlled act while inhibiting a prepotent or competing
response (e.g., to say “Day” for a moon picture, Gerstadt
et al.,, 1994, or to inhibit an automatic process like word
decoding in favor of a controlled process like color naming,
Stroop, 1935). Adjustment enables monitoring of response
conflict, errors, and top-down response control (Larson et al.,
2007). The conflict cognitive phenotype may be measured
by error detection and performance adjustment (Holroyd &
Coles, 2002).

The attendee as actor

Activation concerns response control. The sustain cognitive
phenotype may be measured by the slope of the curve of
attentional vigilance over time (Seidel & Joschko, 1990).
Inhibition enables cancellation or withdrawal of a response
being executed. The cancel cognitive phenotype may be
measured by canceling an act being executed (e.g., the stop-
signal task, Logan, 1994). Adjustment enables withholding
or delaying a prepotent response. The restrain cognitive
phenotype may be measured by restraining a response (e.g.,
Axelrod et al., 1978) or delaying an action (e.g., Gordon,
1983).
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Interrelation of Attention Processes

The taxonomy parses a set of attention processes and roles
that normally work together in a complex choreography
(Mesulam, 1990). Bottom-up, top-down, and looped oper-
ations operate in the same attention space. Stimulus orient-
ing serves as a circuit breaker for response control (as when
a flash of lightning draws attention from a book and we
orient to the window). Dissociable inhibitory processes work
together; for example, IOR not only aids visual search, but
also helps adjust behavioral demands in a dynamic environ-
ment (Ivanoff & Taylor, 2006). Arousal influences the level
of activation. Controlled attention helps maintain instruc-
tional set, even for stimulus orienting tasks.

While the key to the taxonomy is attendee roles in stim-
ulus orienting and response control, time is a thread through-
out, and the terms time binding (Dennis, 2006) and
intertemporal competence (Barkley, 1997) characterize tem-
poral processes in attention, such as time estimation, time
management, and rule maintenance (Barkley et al., 1997).
The taxonomy does not explicitly address working mem-
ory, which is the product of currently activated attention,
including the activated subset that can be manipulated or
inhibited (i.e., the products of the right side of Figure 1).
Although it is not an account of executive function, the
taxonomy does address executive constructs like response
control, conflict, and monitoring.

APPLYING THE TAXONOMY TO
CHILDHOOD ATTENTION DISORDERS

Overview

Disordered attention characterizes several childhood condi-
tions, including attention deficit hyperactivity disorder con-
sidered as a primary form of adaptive impairment (P-ADHD,
Barkley, 1997), and other congenital brain malformations
such as spina bifida meningomyelocele (SBM; Dennis et al.,
2005a, 2005b) and Sotos syndrome (a haploinsufficiency
of the Nuclear receptor Set Domain containing protein 1
gene, NSD 1; de Boer et al., 2006; Kurotaki et al., 2002).
Impaired attention is also a consequence of acquired brain
insults, including traumatic brain injury (TBI; Levin et al.,
2007), childhood brain tumors (Dennis et al., 1998), and
acute lymphoblastic leukemia (ALL; Schatz et al., 2004).

Using the taxonomy in Figure 1, we now review atten-
tion in four disorders that vary in prevalence, etiology, and
developmental course: P-ADHD, TBI, SBM, and ALL.
Attention deficits define P-ADHD, and occur in a subset of
children with the three other disorders, in which the pre-
senting problem is explicit brain injury. In P-ADHD and
SBM, attention is disordered early in development; in con-
trast, in TBI and ALL, disordered attention is acquired after
some period of normal development.

To facilitate the review, we consider two paradigmatic
tasks for stimulus orienting (covert orienting, Figure 2) and
response control (stop signal, Figure 3). Most components
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Fig. 2. Covert stimulus orienting paradigms. In exogenous orient-
ing (left), the participant maintains central fixation and then an exog-
enous cue, such as aluminance change, appears to one side of fixation,
followed by a target, to which the participant must respond. In this
example, the brightness cue will facilitate target detection because
it draws attention to the side on which the target will appear (a mis-
leading cue would have appeared on the side opposite to the upcom-
ing target). In endogenous orienting (right), the participant maintains
central fixation, which is then replaced by a central endogenous cue,
such as an arrow, followed by a target, to which the participant must
respond. In this example, the arrow cue will facilitate target detec-
tion because it draws attention to the side on which the target will
appear (amisleading arrow would have directed attention to the side
opposite to the upcoming target).
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Fig. 3. Stop signal paradigm. The participant fixates a central dot
and then a go stimulus appears, either an X indicating a left hand
response (shown in figure) or an O indicating a right hand response.
One-third of the trials involve a stop signal (a background color
change) following the go signal to indicate that the participant
should not respond. Because of the adaptively manipulated delay
interval between go and stop signals, each participant will fail to
stop on half of the stop trials. Failed stop trials activate the error
detection system, so that go trials that follow a failed stop trial
(circled in figure) will be slower than go trials that do not follow
failures to stop.
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of Figure 1 can be understood in the context of these two
tasks. We also summarize the review in Table 1.

Primary Attention Deficit Hyperactivity
Disorder

P-ADHD affects 4-7% of children worldwide (Szatmari,
1992) and is defined by hyperactive, impulsive, inattentive,
and/or maladaptive behavior (Barkley, 2004; Goldman et al.,
1998; Jensen et al., 1999). P-ADHD persists into adult-
hood, although heterogeneity in ADHD is considerable
throughout development (Barkley et al., 2008), with hyper-
activity being more common in children than in adults (Bie-
derman et al., 2000).

Puppet and robot

Meta-analysis of 14 studies on exogenous stimulus orient-
ing (Figure 2) in children with P-ADHD show preserved
engage and move operations (Huang-Pollock & Nigg, 2003).
Children with P-ADHD have normal IOR (Li et al., 2003).
Neither adolescents (Pritchard et al., 2007) nor adults (Nigg
et al., 2002) with P-ADHD exhibit difficulties with NP.
Children with P-ADHD show no set shifting deficits (Piek
et al., 2007; Riccio et al., 2006).

Critic and actor

Children with P-ADHD often have response inhibition def-
icits (Barkley, 1997; McLean et al., 2004; Nigg, 2003; Pen-
nington & Ozonoff, 1996; Rhodes et al., 2005; Schachar
et al., 1995; Westerberg et al., 2004), especially on the stop
signal task (Figure 3; Willcutt et al., 2005). Children with
P-ADHD have deficits both in the ability to cancel a pre-
pared response with a signal to stop (stop signal presented
with a variable delay after go signal) and to restrain a strong
response tendency pending a signal to stop (stop and go
signals presented concurrently) (Schachar et al., 2007). These
children cannot delay responding to achieve a motivation-
ally salient outcome (Kuntsi et al., 2001; Neef et al., 2001;
Schweitzer & Sulzer-Azaroff, 1995; Sonuga-Barke, 1994;
Sonuga-Barke et al., 1996; Tripp & Alsop, 2001).

Divided attention is impaired in children with P-ADHD,
whether treated or drug-naive (Pasini etal.,2007; Tuchaetal.,
2006). Children and adults with P~ ADHD are impaired on
Stroop interference (Lansbergenetal.,2007), suggesting con-
flict impairment. Children with P-ADHD fail to slow after
errors, indicating difficulties in monitoring errors, post-error
adjustment, or conflict management (Schachar et al., 2004b).

Children with P-ADHD struggle to sustain attention over
time (Seidel & Joschko, 1990); they show increased reac-
tion time (RT) over trial blocks and commit more omission
errors (Anderson et al., 2006; Brewer et al., 2001; but see
Huang-Pollock & Nigg, 2003). Increased performance vari-
ability includes transient temporal fluctuations in attention
(Teicher et al., 2004), more variable RT to primary task
stimuli (Alderson et al., 2007), lower response predictabil-
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Table 1. Robots, puppets, critics, and actors: The fractionation of attention in developmental disorders

Puppet Robot Critic Actor
P-ADHD
Activate Intact Intact Impaired Impaired
Inhibit Intact Intact Impaired Impaired
Adjust Intact Intact Impaired Impaired
SBM
Activate Impaired Impaired ? Intact
Inhibit Impaired Intact Intact Intact
Adjust Impaired Intact Intact ?
TBI
Activate Intact ? Impaired Impaired
Inhibit ? Intact Impaired Impaired
Adjust Intact Intact Impaired Impaired
ALL
Activate Impaired Impaired Intact
Inhibit ? ? Intact
Adjust Impaired Impaired Intact

Note. Bold entries are from strong, clear data; regular text entries represent a less clear, more limited, or more qualified database, or
data from related tasks or age group. Intact or impaired refer to group, not individual, data.

ity (Aase et al., 2006; Aase & Sagvolden, 2005), higher
intraindividual variability (Douglas, 1999; Klein et al., 2006),
and increased RT, especially in the slow tail of the distribu-
tion (Hervey et al., 2004, 2006; Leth-Steensen et al., 2000).

Spina Bifida Meningomyelocele

Spina bifida is a common disabling birth defect, occurring in
about 19.3 per 100,000 live births in North America (Martin
et al., 2006). The most severe form, spina bifida meningo-
myelocele (SBM), occurs in 90% of cases (Detrait et al.,
2005). Compared to siblings or to normative samples, chil-
dren with SBM are more distractible and less attentive
(Ammermanetal., 1998; Burmeisteretal.,2005; Colvinetal.,
2003; Rose & Holmbeck, 2007; Vachha & Adams, 2005) and
around one-quarter to one-third is inattentive (Burmeister
etal., 2005; Davidovitch et al., 1999; Fletcher et al., 2005). It
is not clear whether attention deficits extend into adulthood.

Puppet and robot

Children with SBM show accurate but slow covert orient-
ing to both exogenous and endogenous cues (a deficit in the
engage and focus processes; Figure 2), but increased disen-
gagement costs only to exogenous cues (a deficit in the
disengage/move process, Dennis et al., 2005a). Those with
beaking of the midbrain tectum show attenuated IOR (Den-
nis et al., 2005b). Their normal disengagement costs for
endogenously cued information suggests intact NP.

Critic and actor

Children with SBM have not been evaluated on tests of
divided attention. They exhibit difficulties with speed of
response rather than conflict; for example, they show defi-
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cient naming speed but not poorer Stroop interference
(Fletcher et al., 1996a,b). Some monitor skills appear intact:
They adapt to prismatic distortion (Colvin et al., 2003),
respond to error information with corrective saccades (Sal-
man et al., 2006b), and recalibrate movement after forced
ballistic movement errors (Dennis et al., 2006).

Children with SBM can sustain attention over time, and
their RT does not increase over time (Brewer et al., 2001;
Swartwout et al., in press). Studies of commission errors
are not consistent even on similar tasks, with some finding
decreased (Colvin et al., 2003) and others finding increased
error rates (Swartwout et al., in press), so the nature of
restraint is unclear, especially in the absence of prototypic
response control tasks (see Figure 3). Delay has not been
studied.

Traumatic Brain Injury

Traumatic brain injury (TBI) is frequent in children and ado-
lescents (180 in 100,000 youths annually, Kraus & McArthur,
1996; Kraus et al., 1990), and long-term neuropsychological
deficits include inattention (Yeates, 2000). Premorbid
P-ADHD contributes to post-TBI attention symptoms (Ger-
ring et al., 1998, 2000; Levin et al., 2007; Max et al., 1998),
although some 15-20% of TBI survivors with no ADHD his-
tory meet diagnostic criteria for secondary ADHD (S-ADHD;
Gerringetal., 1998, 2000; Herskovits et al., 1999; Max et al.,
2005b, 2005¢; Slomine et al., 2005; Yeates et al., 2005), and
even more develop subthreshold attention symptoms.
S-ADHD is associated not only with severe TBI (Max
et al., 2004) but also with mild or moderate TBI (Gerring
et al., 1998, 2000; Herskovits et al., 1999; Max et al.,
1998; Max et al., 2005a, 2005b; Schachar et al., 2004a;
Slomine et al., 2005), as well as with high levels of pre-
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injury behavioral difficulties (Schachar et al., 2004a), mal-
adaptive function, or psychosocial adversity (Gerring et al.,
1998; Max et al., 2004, 2005b, 2005¢c). S-ADHD mani-
fests as early as 3 months post-TBI (Gerring et al., 1998,
2000) and persists over years (Gerring et al., 1998; Levin
et al., 2007; Max et al., 2005c¢). Inattentive symptoms peak
at six months post-injury and later decline, whereas
hyperactive /impulsive symptoms fluctuate for two years
(Levin et al., 2007) and then diminish (Levin et al., 2007,
Max et al., 2005b, 2005¢). Although poor inhibitory con-
trol improves over time (Leblanc et al., 2005), children
with TBI with or without S-ADHD exhibit impaired long-
term attention (e.g., Dennis et al., 1995; Konrad et al.,
2000a, 2000b; Schachar et al., 2004a).

Puppet and robot

Young adults with severe TBI have intact engage and
disengage/move processes (Bate et al., 2001). Adults with
TBI shift set as well as controls (Schmitter-Edgecombe &
Langill, 2006) and show no NP deficits (Ries & Marks,
2005; Simpson & Schmitter-Edgecombe, 2000), suggesting
intact endogenous stimulus orienting.

Critic and actor

Children with mild or severe TBI slow less than controls
after making an error (Ornstein et al., in press), suggesting
monitor impairment. Children with severe TBI have divided
attention deficits, especially as task demands increase (Cat-
roppa et al., 2007). Conflict difficulty characterizes TBI:
Stroop errors occur more frequently in both the short term
and long term in children and adolescents with mild TBI
complicated by abnormalities detected by computed tomog-
raphy (CT) scans (Levin et al., 2008) or with moderate-
severe TBI (Chadwick et al., 1981; Nolan & Mathieu, 2000;
Ward et al., 2006). Children with TBI have difficulty sus-
taining attention (Dennis et al., 1995), and those with
S-ADHD tend to have longer RT (Slomine et al., 2005).
Children with TBI, or children with S-ADHD and TBI,
exhibit longer stop signal RT than controls (Konrad et al.,
2000a, 2000b; Leblanc et al., 2005), especially those with
more severe injury and a de novo diagnosis of S-ADHD
(Schachar et al., 2004a), suggesting cancel difficulty. Chil-
dren with TBI make more commission errors (Konrad et al.,
2000a; Levin et al., 2004), and exhibit an inability to delay
their motor responses, with or without reward (Dennis et al.,
1995; Konrad et al., 2000a), suggesting difficulty with
cancel /restrain processes.

Acute Lymphoblastic Leukemia

Of the 3,000-6,000 people diagnosed with acute lympho-
blastic leukemia (ALL) each year in the United States, two-
thirds are children (Cortes & Kantarjian, 1995; Parker et al.,
1997), and 80% will survive (Parker et al., 1997). ALL is
associated with cognitive deficits, including poor attention,
after treatment with cranial radiation therapy (CRT) and/or
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chemotherapy, (Christie et al., 1995; Cousens et al., 1988;
Fletcher & Copeland, 1988; Goff et al., 1980; Hertzberg
et al., 1997; Mennes et al., 2005), especially with early
exposure and longer time since treatment (Cousens et al.,
1988; Jankovic et al., 1994). Attention problems are evi-
dent at least 7-14 years following ALL treatment (Lock-
wood et al., 1999; Schatz et al., 2004), especially in females
and in children treated with CRT at a younger age (Lock-
wood et al., 1999; Schatz et al., 2004).

Puppet and robot

Children with ALL treated with CRT, especially those radi-
ated in early childhood, have difficulties with stimulus ori-
enting (Lockwood et al., 1999). ALL participants treated
with CRT demonstrate an exaggerated cue validity effect,
suggesting disengage difficulties (Schatz et al., 2004). Com-
pared to controls, children with ALL have slower but equally
accurate focused attention (Mennes et al., 2005). Set shift-
ing is compromised in children with ALL, even those with
chemotherapy but no CRT (Buizer et al., 2005), although
intensive chemotherapy (Buizer et al., 2005) and CRT (Lock-
wood et al., 1999) both exacerbate deficits.

Childhood survivors of ALL are slow but accurate when
focusing attention (Lahteenmaki et al., 2001), especially if
treated with methotrexate (Mennes et al., 2005). IOR and
negative priming are yet to be studied.

Critic and actor

Divided attention, monitoring, and conflict have not been
studied in ALL. Some studies report intact sustained atten-
tion in children with ALL (Mennes et al., 2005; Rodgers
et al., 2003; but see Spiegler et al., 2006). However, Lock-
wood et al. (1999) found that children with ALL had poor
sustained attention, especially if female, diagnosed at a youn-
ger age, treated with higher doses of methotrexate (Buizer
et al., 2005), or treated with CRT at a younger age.

Children with ALL treated with methotrexate chemother-
apy are slower and more variable than (but as accurate as)
controls on response inhibition tasks (Mennes et al., 2005).
CRT does not exacerbate inhibition problems (Lockwood
etal., 1999). Children with ALL treated with chemotherapy
differ from age norms in delayed response tasks (Spiegler
et al., 2006). The sustain process appears intact in many, if
not all children with ALL, and response inhibition (whether
cancel or restrain/delay) processes are sometimes
unimpaired.

NEUROBIOLOGY OF ATTENTION

The taxonomy is function-based, but we next demonstrate
that: a) the elements of the taxonomy are compatible with
the neurobiology of stimulus orienting and response con-
trol; and b) within each of the childhood attention disor-
ders, functional deficits are present when the putative neural
substrates are impaired and absent when they are intact.
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Stimulus Orienting and the Posterior
Cortex, Midbrain, and Superior Colliculus

Deficits in disengaging (not shifting attentional set) are asso-
ciated with superior colliculus and posterior cortex lesions
in adults (Posner et al., 1984). IOR deficits in adults are
associated with superior colliculus lesions (Rafal et al., 1989,
1991; Sapir et al., 1999) and midbrain lesions such as those
in progressive supranuclear palsy (Rafal & Grimm, 1981;
Rafal et al., 1988).

SBM involves malformations of the cerebellum, hind-
brain, and midbrain (Fletcher et al., 2005; Salman et al.,
2006a). The midbrain abnormality, tectal beaking (Barkov-
ich et al., 2005; Fletcher et al., 2005), is a mechanical con-
sequence of brain development in a small posterior fossa
(McLone & Knepper, 1989). Brain growth in SBM affects
posterior more than anterior cortical structures, producing
selective reduction in posterior cortical volume (Dennis et al.,
1981; Fletcher et al., 1996a,b; Juranek et al., 2008) and
impairments in white matter integrity (Hasan et al., 2008a),
with relative preservation, even hypertrophy, of anterior
cortex (Juranek et al., 2008) and some cortical and subcor-
tical structures (Hasan et al., 2008b; Miller et al., 2008).

In SBM, deficits in disengaging and shifting are associ-
ated with tectal beaking and posterior brain volume loss
(Dennis et al., 2005a), and attenuated IOR is associated
with tectal beaking (Dennis et al., 2005b). Individual dif-
ferences in stimulus orienting deficits are correlated with
individual differences in structural brain damage observed
in children with SBM in the posterior cortex, midbrain, and
superior colliculus.

The midbrain is involved in dopamine dysfunction in
children with P-ADHD. Ernst et al. (1999) found that accu-
mulation of [F-18]DOPA, a measure of dopa decarboxylase
activity in synaptic terminals of dopaminergic-rich regions,
was nearly 50% higher in the right midbrain in children
with ADHD, measures being correlated with symptom sever-
ity. However, this excess of midbrain dopamine does not
disrupt stimulus orienting in P-ADHD.

We predict that structural or neurochemical damage to
the midbrain should produce stimulus-orienting deficits at
any age. For example, childhood acquired midbrain tumors,
such as pineal germinomas, should be associated with
impaired stimulus orienting.

Response Control and Frontal-Striatal
Circuits

Response control develops throughout childhood (David-
son et al., 2006; Rubia et al., 2006) and involves two prin-
cipal dopamine-modulated pathways: a prefrontal-dorsal
striatum circuit and an orbitofrontal-ventral striatum cir-
cuit. Activation of the superior, medial, and inferior frontal
gyri as well as midline networks are associated with with-
holding and monitoring motor responses (Chevrier et al.,
2007; Rubia et al., 2001). The withdrawal or canceling of
responses has been shown to activate the right inferior fron-
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tal gyrus, the right anterior cingulate cortex (ACC), supple-
mentary motor cortex, and caudate (Chevrier et al., 2007;
Rubia et al., 2001). These data are congruent with the idea
of distinct brain systems for intentional actions and the with-
holding of intended actions (Brass & Haggard, 2007). Fron-
tal regions are also implicated in conflict management: Better
interference control is associated with activity in the right
middle frontal gyrus and left inferior frontal gyrus (Bunge
et al., 2001).

There is ongoing debate about the neural basis of error
detection and performance monitoring. The extensive lim-
bic connections of the ACC contribute to the modulation of
emotional expression (Critchley, 2005), and the dorsal ACC
is directly involved in higher-order cognitive functions such
as attention and response selection (e.g., Bush et al., 2000).
Although the striatum has an important role as critic, the
ACC also supports evaluative aspects of performance mon-
itoring (Dias & Aggleton, 2000) that require integration of
cognitive and limbic input. It is activated preceding errors
(Li et al., 2007), responds to both internal and external
error signals (Holroyd et al., 2004), and is more activated
by error responses than by correct responses and by error
feedback than by correct feedback (Holroyd et al., 2004).
The dorsal ACC is particularly activated by error detection
invoked by failed inhibition trials of the stop signal task
(Chevrier et al., 2007), and by changes in task “sets” that
signal adaptive changes in response style (Woodward et al.,
2008). The role of the ACC in conflict monitoring may be
domain-general because dorsal ACC activity is related to a
cognitive conflict between major and minor musical modes
(Mizuno & Sugishita, 2007).

Individuals with P-ADHD show selective cortical thin-
ning of networks serving attention and executive control
(Makris et al., 2007). Structural imaging of children with
P-ADHD has identified volume reduction in the whole cere-
brum (Castellanos et al., 2002), cortical gray matter, cau-
date nucleus, globus pallidus, prefrontal cortex, ACC
(Castellanos et al., 1996; Filipek et al., 1997; Seidman et al.,
2006), and especially, the right inferior frontal cortex (Dur-
ston et al., 2004; Sowell et al., 2003), with relatively lesser
involvement of the posterior cortex, midbrain, and cerebel-
lum (Berquin et al., 1998). Various brain regions have been
implicated in P-ADHD symptoms (Seidman et al., 2005),
including dorsolateral prefrontal cortex and orbitofrontal
cortex (Spencer et al., 2007), and dysfunction has been
identified in dorsolateral and orbitofrontal cortices, ACC,
inferior frontal gyri, and striatal-pallidal-thalamic circuits
(e.g., Bush et al., 2005; Spencer et al., 2007).

Inhibitory control deficits associated with P-ADHD are
correlated with functional alterations in a frontostriatal net-
work. Poor interference control in children with P-ADHD
is associated with decreased activation of the left inferior
frontal gyrus (Vaidya et al., 2005), and hypoactivation of
the dorsal ACC occurs in adults with P-ADHD (Bush et al.,
1999). During inhibition trials, children with P-ADHD fail
to activate the right inferior frontal or precentral gyri (Vaidya
et al., 2005), exhibit abnormal activity in the dorsal ACC
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(no activation, Durston et al., 2003, hypoactivation, Tamm
et al.,, 2004), and exhibit striatal dysfunction, including
decreased left caudate activity (Durston et al., 2003; Vaidya
etal., 1998). Poor cancellation by P-ADHD patients is asso-
ciated with hypoactive mesial prefrontal cortex (i.e., near
the dorsal ACC) and ventrolateral prefrontal cortex, and
decreased left caudate activity (Rubia et al., 1999).

TBI is frequently associated with dysfunction of the pre-
frontal and frontal cortex (Levin et al., 1996; Wilde et al.,
2005), and corpus callosum and frontal lobe white matter
(Levin et al., 2000), with some cerebellar involvement (Spa-
nos et al., 2007). S-ADHD is associated with damage to
neural regions known to be abnormal in P-ADHD, includ-
ing the orbitofrontal gyrus (Max et al., 2005b), thalamus
(Gerring et al., 2000), and basal ganglia (Gerring et al.,
2000; Herskovits et al., 1999; Max et al., 2005a; and see
Max et al., 2005¢). Children with TBI/S-ADHD also exhibit
response inhibition deficits, although there is no clear asso-
ciation with lesion site (Leblanc et al., 2005; Levin et al.,
2004). ACC activity in adults with TBI is abnormal during
conflict tasks (Soeda et al., 2005), possibly because of dif-
fuse axonal damage disrupting frontal-cortical and subcor-
tical networks, leading to reduced post-error slowing (Larson
et al., 2007). In children with TBI, inhibitory impairments
are correlated with prefrontal injury. Restraining a pre-
potent response on go/no-go tasks is related to volume of
left prefrontal lesions (Levin et al., 1993, 2004), as well as
to injury severity (Konrad et al., 2000a; Levin et al., 2004,
but see Leblanc et al., 2005).

Children with P-ADHD and children with TBI have defi-
citsin response control, with individual differences being cor-
related with individual differences in prefrontal-dorsal
striatum and orbitofrontal-ventral striatum circuits. The cau-
date, putamen, and globus pallidus are part of a striatal-
pallidal-thalamic circuit. In feedforward and feedback
relations with the cortex, this circuit modulates inhibitory con-
trol and sensitivity to reward (Alexander et al., 1986), which
is consistent with the idea that dopaminergic and/or norad-
renergic medications affect ADHD by increasing inhibitory
effects of frontal cortical activity on subcortical brain regions
(Zametkin & Rapoport, 1987). The thalamus is part of two
subcortical networks that are implicated in P-ADHD symp-
tomatology as well as response inhibition (Gerring et al.,
2000), and damage to the thalamus produces distractibility
and disinhibition (Gentilini et al., 1987). To be sure, there is
considerable heterogeneity in the brain systems associated
with inhibition. Furthermore, the link of S-ADHD or P-ADHD
to the thalamus is less clear than that of either of these dis-
orders to the caudate, putamen, or inferior frontal gyrus.

CROSS-DISORDER COMPARISONS OF
INATTENTION, IMPULSIVITY, AND
HYPERACTIVITY

Inattentive and/or hyperactive-impulsive behaviors are fea-
tures of P-ADHD, and exhibited by some children with
TBI, SBM, and ALL. The association of inattention, impul-
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sivity, and hyperactivity is strongest in P-ADHD. Between
65% and 90% of children with P-ADHD are hyperactive
(Morgan et al., 1996; Paternite et al., 1995; Spencer et al.,
2007; Wolraich et al., 1996), although the recession of hyper-
activity with age may imply an age-dependent association.
In TBI and S-ADHD, inattention and impulsivity, but not
hyperactivity, are associated, in that most children with
S-ADHD do not show hyperactivity, although they may
exhibit inattention and impulsivity (Max et al., 2005a, 2005b,
2005c¢). Children with ALL exhibit some hyperactive symp-
toms, with approximately one-third of children with ALL
achieving a mildly atypical score on the Conners’ Parent
Rating Scale—Hyperactivity Index (T-score > 60; Conklin,
personal communication, November 26, 2007). Unlike those
with P-ADHD or S-ADHD, children with SBM rarely show
hyperactivity or impulsivity (Fletcher et al., 2005).

The cross-disorder comparison of inattentiveness, hyper-
activity, and impulsivity prompts three testable predictions
about stimulant mediation treatment. Methylphenidate blocks
the dopamine transporter (Dresel et al., 2000), which has a
greater effect on the striatum than on the prefrontal cortex
(Durston et al., 2005), given that the dopamine transporter
gene is more highly expressed in the striatum than in the
cortex, where other means of dealing with intrasynaptic
dopamine predominate. The first prediction is that methyl-
phenidate should affect response control more than stimu-
lus orienting. This prediction is supported by the data
reviewed in this article and also by evidence that methyl-
phenidate specifically affects sustained attention and top-
down control, rather than arousal (Johnson et al., 2008).

P-ADHD is a disorder of neurotransmission (synthesis,
release, reuptake, effect) mediated by genes that code for dys-
functional or suboptimally functioning dopamine, whereas
S-ADHD arises from damaged neural networks, which may
or may not include striatal dysfunction. Given the different
underlying mechanisms in the two conditions, the second
prediction is that methylphenidate will be more effective in
treating response control in P-ADHD than in S-ADHD.
Methylphenidate also improves behavioral (not cognitive)
hyperactivity/impulsiveness in S-ADHD, although improve-
ment occurs acutely and is less robust than that in children
with P-ADHD (Jin & Schachar, 2004).

Combined inattention and hyperactivity may reflect stri-
atal and prefrontal-striatal dysfunction, whereas inatten-
tion may be primarily a problem of the prefrontal cortex
and the prefrontal-parietal circuit (Diamond, 2005). This
distinction, made within P-ADHD, prompts a third predic-
tion across disorders, that treatment responsiveness should
be positively correlated with hyperactivity and impulsive-
ness (specifically, should be highest in P-ADHD, moder-
ate in S-ADHD, lower in ALL, and lowest in SBM).
Stimulants have effectively treated P-ADHD for over more
than three decades of randomized clinical trials, with 65%
to 75% of individuals with P-ADHD being clinical respond-
ers, compared to 4% to 30% of individuals treated with
placebo (Greenhill, 2002). Granted that a smaller propor-
tion of children with S-ADHD (7%; Levin et al., 2007)
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than P-ADHD (56%; Visser et al., 2007) receive stimulant
treatment, methylphenidate does improve attention in chil-
dren after TBI (Mahalick et al., 1998). Methylphenidate
ameliorates attention problems in ALL (Conklin et al.,
2007), and both moderate and low doses of methylpheni-
date improve parent and teacher attention ratings of ADHD
symptoms, as well as teacher ratings of social-academic
competence (Mulhern et al., 2004). Inattention in children
with SBM does not respond robustly to methylphenidate
treatment. In a large double blind, placebo-controlled trial
of methylphenidate medication in a clinic population of
children with SBM, Davidovitch et al. (1999) found no
statistically significant medication effects (but see positive
medication effects in a smaller, heterogeneous sample in
Mayes et al., 1994).

INFERENCES AND PREDICTIONS

The application of the taxonomy to childhood disorders of
attention has produced descriptive comparisons within and
between disorders. New information has been added for
each condition: for P-ADHD, the diversity of deficits in
response control and the intactness of stimulus orienting;
for SBM and ALL, the intactness of response control; and
for S-ADHD, the similarity to P-ADHD with respect to
deficits in response control and adaptive regulation. Indi-
vidual children with P-ADHD are known to have uncorre-
lated deficits in multiple processes (e.g., delay intolerance
is independent of inhibitory dyscontrol, Solanto et al., 2001;
Sonuga-Barke et al., 1994), and we show this to be true for
other childhood attention disorders. In addition, our data
prompt inferences about theoretical questions and predic-
tions about attention in disorders not yet studied.

Double Dissociation Between Automatic and
Controlled Attention

Within- and between-disorder comparisons in childhood con-
ditions have provided functional and neurobiological evi-
dence of a double dissociation between automatic and
controlled forms of attention. This is congruent with a long
history of adult lesion studies, and also with new evidence
from markers of event-related potentials. For example, lis-
tening to Mozart’s D major sonata K.448 has opposite effects
on event-related potentials markers of involuntary and vol-
untary attention (Zhu et al., 2008).

Inhibition Is a Diverse Attention Construct

Inhibition constitutes a diverse and often uncorrelated group
of functions. In children with P-ADHD, the puppet is intact
(normal IOR), but the actor is impaired (poor restrain). Dif-
ferent conditions have the same inhibitory impairment
(P-ADHD and TBI both show impaired actor role and have
restrain deficits). Adult disorders show differently dissoci-
ated forms of inhibition; for example, patients with
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Parkinson’s disease demonstrate intact IOR but impaired
endogenously evoked inhibition (NP) (Grande et al., 2006).
Dissociations also exist within and between top-down
and bottom-up processes. Children with P-ADHD are
impaired on top-down response inhibition of the actor but
not on endogenous top-down stimulus orienting of the robot.
In children with SBM, bottom-up exogenous stimulus ori-
enting deficits in the puppet are uncorrelated with intact
top-down endogenous stimulus orienting in the robot.

Brain Injury Trumps Age at Onset

Anatomy trumps age at onset with respect to the puppet in
stimulus orienting, in that SBM and ALL share deficits in
this domain despite differences in age at onset, although
stimulus-orienting deficits may have different anatomical
origins in these two conditions. Anatomy certainly trumps
age at onset for response control. Despite differences in age
at onset, response control is largely unimpaired in SBM and
ALL, and impaired in P-ADHD and TBI/S-ADHD, high-
lighting the role of anterior brain regions and the subcorti-
cal dopaminergic system in the production of response
control deficits. Age at onset seems relevant to persistence
of deficits in the two congenital conditions and the relative
volatility over time of deficits in acquired conditions.

Although both P-ADHD and SBM are congenital condi-
tions, they have distinct attentional and neurobiological pro-
files. Children with SBM have difficulties with error
detection, although not with post-error adjustment. It is pos-
sible that they share error detection difficulties with chil-
dren with P-ADHD because of shared midbrain dysfunction,
perhaps related to mesolimbic dopamine (Di Chiara, 1998),
or mesencephalic function more generally, affecting dorsal
ACC and right frontal function. We predict some error detec-
tion deficits in children with other forms of structural or
neurochemical midbrain dysfunction (e.g., children with pon-
tine tumors).

Temporal Stability of Attention Deficits

Both P-ADHD and SBM have attention deficits that persist
over time and, at least for P-ADHD, into adult life. Their
common pattern of stability of attention problems over time
is consistent with their shared status as genetically based
life-long developmental conditions with no period of nor-
mal development.

Compared to P-ADHD, children with TBI and S-ADHD
have more volatile attention symptoms over time. Children
with P-ADHD are evaluated in the school-aged years, and
are already into the chronic stage of their attention disorder.
It is unclear whether the picture of enhanced symptom vol-
atility in children with TBI and S-ADHD arises because
they have been studied in relatively short terms in relation
to injury onset. Perhaps S-ADHD recovers over time, while
formative brain anomalies ensure that P-ADHD will per-
sist. However, one issue is that the time frame for resolu-
tion of cognitive deficits matches long-term TBI degenerative
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processes (e.g., loss of axonal connections and secondary
focal brain atrophy) better than the short-term recovery
mechanisms known to be operative (e.g., reduction in inflam-
matory processes and brain swelling).

Based on our data, we predict that attention deficits, what-
ever their form, will be more stable over time in develop-
mental conditions (e.g., Sotos syndrome) than in acquired
conditions (e.g., childhood strokes).

Cognitive-Energetic Models, White Matter
Damage, and Activating the Actor

In their cognitive-energetic model of attention, Russell et al.
(2006) propose that P-ADHD involves inefficient astrocyte
function from deficient ATP production in neurons, over
milliseconds, and deficient myelination of axons during
development, over months and years. Poor formation and
supply of lactate produces inefficient and inconsistent per-
formance in P-ADHD and other white matter disorders (Rus-
sell et al., 2006).

Although ALL treatment produces cortical atrophy (Baron
etal., 1995), CRT and/or chemotherapy (Moore, 2005) par-
ticularly disrupt white matter, disturbances of which range
from folate deficiency and subacute myeloencephalopathy
to leukoencephalopathy with myelin degeneration and white
matter necrosis (Maria et al., 1993). Antimetabolites such
as methotrexate involved in ALL treatment particularly affect
white matter (Cole & Kamen, 2006). SBM involves two
types of white matter disruption, the first involving abnor-
mal white matter development and the second, persistent
white matter degeneration with increased age. Diffusion
tensor tractography in children with SBM reveals abnormal
development in the association pathways (e.g., poor visual-
ization of tracts, impairment in myelination) as well as
acquired abnormalities in intrinsic axonal characteristics
(Hasan et al., 2008a).

The cognitive-energetic model of Russell and colleagues
(2006) predicts increased response variability with compro-
mised white matter, congenital or acquired. Children with
SBM or ALL have little increased variability on sustained
attention tasks despite impaired white matter, so our data
provide no support for this prediction.

Temporal Processing and the Cerebellum

Temporal processing has been proposed as a key deficit in
P-ADHD (e.g., Barkley et al., 1997), with a central impor-
tance being given to cerebellar abnormalities (Berquin et al.,
1998). The cerebellar abnormalities in P-ADHD are minor
compared to the massive cerebellar compromise in SBM,
which is associated with abnormalities (in 98%) and vol-
ume reductions in the lateral cerebellum (Fletcher et al.,
2005) and with upward and downward displacement of the
cerebellar vermis (Salman et al., 2006a). Children with
S-ADHD exhibit the typical P-ADHD attention profile, and
are less likely than children with SBM to have cerebellar
damage.
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Perception of brief time intervals (around 400 ms) is con-
sistently impaired in childhood cerebellar disease (SBM,
Dennis et al., 2004), adolescents with cerebellar degenera-
tive disease (ataxia-telangiactiasia, Mostofsky et al., 2000),
and adult survivors of childhood cerebellar tumors (Heth-
erington et al., 2000). Temporal estimation tasks, involving
cognitive estimations of longer durations ranging from 4
minutes to a half hour, is intact in adult survivors of child-
hood cerebellar tumors (Hetherington et al., 2000). Chil-
dren with P-ADHD cannot estimate long durations, around
4 sec, although they accurately perceive brief durations
(Radonovich & Mostofsky, 2004), suggesting that the tem-
poral impairment in P-ADHD involves failure to monitor
temporal information in working memory rather than a cer-
ebellar central timing deficit (Mahone et al., 2007).

Our data temper the view that the cerebellar temporal
processing is of primary importance in P-~ADHD. Not only
is the degree of cerebellar damage unrelated to attention
profiles, but children with P-ADHD have temporal estima-
tion rather than timing deficits.

Can Puppets as Well as Actors be Candidate
Endophenotypes?

Endophenotypes are hypothetical constructs intervening
between genes and symptoms (Almasy & Blangero, 2001).
Endophenotypes were originally proposed in the context of
psychiatric disorders (Gottesman & Gould, 2003), but have
more recently been used in neurodevelopmental disorders
such as ADHD (Aron & Poldrack, 2005). Endophenotypes
have more explanatory power than the cognitive pheno-
types italicized in Figure 1, so we consider whether two of
our cognitive phenotypes, response inhibition and IOR, might
be considered as candidate endophenotypes. Crosbie et al.
(2008) examined the theoretical rationale and a priori cri-
teria for validating an endophenotype in P-ADHD and, with
Biederman et al. (1995), propose that a candidate endophe-
notype should be common in affected individuals (sensi-
tive), relatively unique to the disorder (specific), and
relatively uncommon in the general population; they sug-
gest, further, that a powerful way to establish endopheno-
type status would be to identify markers in cases with genetic,
but not acquired, ADHD.

Response inhibition is a candidate endophenotype for
P-ADHD (Aron & Poldrack, 2005; Crosbie et al., 2008).
While response inhibition deficits are common in P-ADHD,
but not in SBM or ALL, and are relatively uncommon in the
general population, they also occur in S-ADHD, an acquired
condition. A convincing non-genetic etiology for acquired
conditions is difficult to demonstrate (Crosbie et al., 2008),
and children with S-ADHD, considered as a group, have
elevated rates of P-ADHD. Informative comparisons for
invalidating response inhibition as a putative endopheno-
type would be a study of response inhibition in mild TBI,
and a comparison of response inhibition deficits in children
with TBI and a de novo S-ADHD diagnosis and those with
TBI and preexisting P-ADHD.
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Endophenotypes should be state-independent (i.e., should
not vary with disease progression or treatment, Crosbie et al.,
2008). Both acquired conditions, TBI and ALL, show cog-
nitive phenotypes that fluctuate with disease characteris-
tics, time since diagnosis, or treatment. Attention is worsened
by severe injury in TBI and by adjuvant CRT treatment in
ALL, in contrast to the relatively stable patterns of congen-
ital conditions over the lifespan (in P-ADHD and, possibly,
in SBM). Cognitive phenotypes in acquired conditions are
perhaps less likely than those in congenital conditions to be
endophenotypes marking genetic risk.

IOR may be a candidate endophenotype. Children of moth-
ers with a genetic mutation in the folate metabolic pathway
share the genetic mutation, have the upper spinal cord lesions
(Volcik et al., 2000) associated with tectal beaking (Fletcher
et al., 2005), and have IOR deficits primarily when they
have tectal beaking (Dennis et al., 2005b). Children with
ALL have a dual compromise of folate metabolism. Part of
their treatment-related delayed neurotoxicity is a pharmaco-
logic disruption of CNS folate physiology (Cole & Kamen,
2006), and they have a genotype involving a folate meta-
bolic mutation linked to inattentive symptoms (Krull et al.,
2008). While it is not clear that the identical mutations are
involved (the C677T methylenetetrahydrofolate is the risk
factor for upper spinal lesion level deficits in SBM, Volcik
et al., 2000, the A1298C methylenetetrahydrofolate geno-
type is the predominant link to inattention in ALL, Krull
et al., 2008), there is evidence for a link between folate
mutations and inattention. More broadly, candidate endophe-
notypes for attention disorders might exist, not only in the
actor and critic, but also in the puppet and robot.

CONCLUSIONS

Taxonomies are useful to the extent that they organize what
is known and direct the search for the unknown. Our tax-
onomy describes attention within and across childhood atten-
tion disorders, is congruent with known neurobiology of
attention, and predicts treatment responsiveness. It facili-
tates critical evaluation of some theoretical positions on
attention and predicts specific attention deficits in clinical
conditions not yet studied.
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