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Abstract

We consider a convex Lagrangian L : TM → R quadratic at infinity with L(x, 0) = 0 for every x ∈ M and
such that the 1-form θ defined by θx(v) = Lv(x, 0)v is not closed. We show that for every number a < 0,
there is a contractible (nonconstant) periodic orbit with action a. We also obtain estimates of the period
and energy of such periodic orbits.
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1. Introduction

Let M be a closed connected smooth Riemannian manifold. Let

L : TM → R

be a smooth convex Lagrangian. This means that L restricted to each TxM has positive-
definite Hessian. The Lagrangian L is said to be quadratic at infinity if there exists
R > 0 such that for each x ∈ M and |v|x > R, the function L(x, v) has the form

L(x, v) = 1
2 |v|

2
x + θx(v) − V(x),

where θ is a smooth 1-form on M and V : M → R is a smooth function. We shall
also assume that L(x, 0) = 0 for every x ∈ M and that the 1-form θx(v) = Lv(x, 0)v is
not closed. Our assumptions are satisfied if L(x, v) has the form L(x, v) = 1

2 |v|
2
x + θx(v)

for a nonclosed 1-form θ. The Euler–Lagrange flow of this Lagrangian is called exact
magnetic flow and it models the movement of a particle under the effect of a magnetic
field (see [4, 11, 13, 14, 19]).

Let Λ be the set of absolutely continuous contractible curves x : [0, 1] → M,
x(0) = x(1), such that ẋ has finite L2-norm. It is well known [7, 15] that Λ has a
Hilbert manifold structure compatible with the Riemannian metric on M.
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The free-time actionAL : R+ × Λ→ R (where R+ stands for the set of positive real
numbers) is given by

AL(b, x) =

∫ 1

0
b L(x(t), ẋ(t)/b) dt.

If the Lagrangian is quadratic at infinity, arguments in [2, Proposition 3.1] show that
AL is a C1,1 function (that is, a function with locally Lipschitz derivative).

Periodic orbits with energy larger than Mañé’s critical value were obtained in [7]. In
previous articles [16, 17], we showed the existence of periodic orbits, not necessarily
contractible, with large enough abbreviated action and large enough action. The aim
of this note is to obtain nontrivial (that is, nonconstant) contractible periodic orbits for
every negative value of the action. We also obtain estimates of the period and energy
of such periodic orbits. We prove the following theorem.

Theorem 1.1. Let L be a convex Lagrangian quadratic at infinity such that L(x, 0) = 0
for every x ∈ M and such that the 1-form θx(v) = Lv(x, 0)v is not closed. Then there are
γ > 0 and a1 < 0 such that for every a < 0, the Lagrangian has a nontrivial contractible
periodic orbit with action a so that its period T and energy e satisfy

−γ−1a ≤ T, e ≤ γ for every a < 0,
T ≤ −γa, −γ−1a−1 ≤ e for every a < a1.

We remark that nonconstant periodic orbits with action a are obtained for every
a < 0. The first line of estimates holds for every a < 0 and the second line holds for
every a < a1. All estimates are satisfied if a < a1.

In [5], it is shown that a particular class of Lagrangians has an infinite set of periodic
orbits satisfying similar bounds. In [17], we obtained periodic orbits with large enough
prescribed action but those orbits are not necessarily contractible and satisfy different
estimates.

We outline here the proof of Theorem 1.1. In Lemma 4.5, we show that for every
a < 0, the set Xa of those (b, x) such that AL(b, x) = a is nonvoid. This is achieved by
finding an upper bound of AL(b, x) containing the integral of the 1-form θ. Since θ
is not closed, we find a curve with negative action. By integrating many times along
such a curve, we obtain arbitrarily large negative values of the action. On the other
hand, under our assumptions, the value 0 is attained and hence the action takes every
negative value (note that Λ is connected). In Lemma 4.3, we show that every a < 0 is
a regular value ofAL and consequently Xa is a C1,1 manifold.

Consider the function Ta : Xa → R given by

Ta(b, x) = b.

In Proposition 2.3, we show that critical points of Ta correspond to periodic orbits
of the Lagrangian. The existence of the desired periodic orbits follows by showing
that for every a < 0, the map Ta has a critical point. The periodic orbits obtained are
nonconstant because if (b, x) ∈ Xa, then b and the L2-norm of ẋ are bounded away from
zero (see Lemma 4.4).
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2. Contractible periodic orbits with prescribed action

The energy EL : TM → R is defined by

EL(x, v) =
∂L
∂v

(x, v).v − L(x, v).

Since L is autonomous, EL is a first integral of the Euler–Lagrange flow of L. Critical
points ofAL+k correspond to periodic orbits with energy k.

Proposition 2.1. If (b, x) is a critical point of AL+k, then y : [0, b]→ M given by
y(s) = x(s/b) is a periodic solution of the Euler–Lagrange equation of L with energy
k. (See [2, 3, 8, 9].)

Note that periodic orbits with energy different from k do not correspond to critical
points ofAL+k.

It is useful to define the average energy function e : R+ × Λ→ R by

e(b, x) =

∫ 1

0
EL(x(t), ẋ(t)/b) =

1
b

∫ b

0
EL(y(s), ẏ(s)) ds.

Remark 2.2. It is easy to see that

∂AL

∂b
(b, x) = −e(b, x).

Define Ta : Xa → R by
Ta(b, x) = b

and note that Ta is the restriction to Xa of the canonical projection Π : R+ × Λ→ R+.
Then ∇Ta(b, x) is the orthogonal projection of ∇Π = (1, 0) onto T(b,x)Xa. We can find
the projection by writing

∇Ta = (vb, vx), (1, 0) = α
∇AL

‖∇AL‖
+ (vb, vx).

It follows that

α =
1

‖∇AL‖

∂AL

∂b
, vb = 1 − α2, vx = −

1
‖∇AL‖

2

∂AL

∂b
∂AL

∂x
. (2.1)

Note that ∇Ta is locally Lipschitz.

Proposition 2.3. If (b, x) is a critical point of Ta, then (b, x) corresponds to a periodic
orbit.

Proof. Let (b, x) be such that ∇Ta(b, x) = 0. Then vb(b, x) = 0 and vx(b, x) = 0.
Therefore, α , 0 and hence

∂AL

∂x
(b, x) = 0. �
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3. Minimax principle

Definition 3.1. Let f : X → R be a C1 map, where X is an open set of a Hilbert
manifold. We say that f satisfies the Palais–Smale condition at level c if every
sequence {xn}with f (xn)→ c and ‖dxn f ‖ → 0 as n→∞ has a converging subsequence.

The following version of the minimax principle (Proposition 3.2 below) is a
particular case of [7, Proposition 6.3] (which in turn is inspired by [12] (see also [18])).
Let X be an open set in a Hilbert manifold and f : X → R be a C1,1 map. Observe that
if X is not complete or the vector field Y = −∇ f is not globally Lipschitz, the gradient
flow ψt of − f is a priori only a local flow. Given p ∈ X and t > 0, define

α(p) := sup{a > 0 | s 7→ ψs(p) is defined for s ∈ [0, a]}.

We say that a function τ : X → [0,+∞) is an admissible time if τ is differentiable and
0 ≤ τ(x) < α(x) for all x ∈ X. Given an admissible time τ and a subset F ⊂ X, define

Fτ := {ψτ(p)(p) | p ∈ F}.

Let F be a family of subsets F ⊂ X. We say that F is forward invariant if Fτ ∈ F

for all F ∈ F and any admissible time τ. Define

c( f ,F ) = inf
F∈F

sup
p∈F

f (p).

Proposition 3.2. Let f be a C1,1 function satisfying the Palais–Smale condition at level
c( f ,F ). Assume also that F is forward invariant under the gradient flow of − f .
Suppose that c = c( f ,F ) is finite and that there is an ε such that the gradient flow
is relatively complete in the set [c − ε ≤ f ≤ c + ε]. Then c( f ,F ) is a critical value
of f .

4. Proof of Theorem 1.1

Recall that we are assuming that our Lagrangian L is convex, quadratic at infinity
and such that L(x, 0) = 0 for all x. Let θx be the 1-form θx(v) = Lv(x, 0)v, where Lv is
the derivative along the fibre. Recall that we are assuming that θ is not closed. Set
Θ(x) =

∫
x θ and define

σ(L) = sup
‖ẋ‖,0

|Θ(x)|
‖ẋ‖2L2

.

Lemma 4.1. 0 < σ(L) < +∞.

Proof. Let `(x) be the length of x and note that `(x) ≤ ‖ẋ‖.
By [7, Lemma 5.1, page 369], there is a σ0 > 0 such that |Θ(x)| ≤ σ0`(x)2 for every

x ∈ Λ and therefore σ(L) <∞.
We claim that there is an x ∈ Λ so that Θ(x) , 0. Assume by contradiction that

Θ(x) = 0 for every x ∈ Λ. Consider U ⊂ M, a contractible open set. We have in
particular that Θ(x) =

∫
x θ = 0 for every x contained in U. Therefore, θ|U is exact

and hence dθ|U = 0. Since U is arbitrary, we conclude that θ is closed, contradicting
the hypothesis of Theorem 1.1. This proves the claim, which implies that σ > 0. �
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Lemma 4.2. Set θx(v) = Lv(x, 0)v and let, as before, Θ(x) =
∫

x θ. If L is convex,
quadratic at infinity and such that L(x, 0) = 0 for every x ∈ M, there are positive
constants A, A1, B, B1 such that

A
2b
‖ẋ‖2L2 + Θ(x) ≤ AL(b, x) ≤

A1

2b
‖ẋ‖2L2 + Θ(x), (4.1)

A
2b2 ‖ẋ‖

2
L2 ≤ e(b, x) ≤

A1

2b2 ‖ẋ‖
2
L2 , (4.2)

A
‖ẋ‖2L2

2b
− Bb ≤ AL(b, x) ≤ A1

‖ẋ‖2L2

2b
+ B1b. (4.3)

Proof. Let a, a1 be positive numbers according to [7, Lemma 3.1] such that

a
2
|v|2x + θx(v) ≤ L(x, v) ≤

a1

2
|v|2x + θx(v), (4.4)

a
2
|v|2x ≤ EL(x, v) ≤

a1

2
|v|2x. (4.5)

On the other hand, since L is quadratic at infinity, there are positive numbers ā,B, ā1,B1
such that

ā
2
|v|2 − B ≤ L(x, v) ≤

ā1

2
|v|2 + B1. (4.6)

Take A and A1 such that 0 < A < a, 0 < A < ā and 0 < a1 < A1, 0 < ā1 < A1. The lemma
follows from this choice on taking account of (4.4)–(4.6). �

From (4.2) and (4.3),

A
A1

(
AL(b, x)

b
− B1

)
≤ e(b, x) ≤

A1

A

(
AL(b, x)

b
+ B

)
. (4.7)

Let Xa be the set of those (b, x) ∈ R+ × Λ such thatAL(b, x) = a.

Lemma 4.3. Suppose that a < 0. Then Xa does not contain critical points ofAL.

Proof. Assume that the lemma is false. Then there is (b, x) such that

∂AL

∂x
(b, x) = 0 and

∂AL

∂b
(b, x) = 0.

By Remark 2.2, e(b, x) = 0 and hence, by (4.2), ‖ẋ‖L2 = 0. By (4.1),

0 =
A
2b
‖ẋ‖2L2 + Θ(x) ≤ AL(b, x) = a < 0,

which is a contradiction. �

Note that Lemma 4.3 implies that Xa is a C1,1 manifold for every a < 0 and hence
we can apply the minimax principle to the function Ta : Xa → R. If (b, x) is a
critical point of Ta, it satisfies ∂AL/∂x (b, x) = 0 on account of Proposition 2.3 (and
therefore it corresponds to a periodic orbit). However, such a point (b, x) cannot satisfy
∂AL/∂b (b, x) = 0 at the same time.
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Lemma 4.4. Suppose that (b, x) ∈ Xa and a < 0. Then:

(1) b ≥ (A/2σ);
(2) ‖ẋ‖2L2 ≥ −a/σ.

Proof. By (4.1) and Lemma 4.1,

A
2b
‖ẋ‖2L2 − σ‖ẋ‖2L2 ≤

A
2b
‖ẋ‖2L2 + Θ(x) ≤ AL(b, x) = a < 0

and this gives the first item. To prove the second item, note that

−a ≤
(
σ −

A
2b

)
‖ẋ‖2L2 ≤ σ‖ẋ‖2L2 . �

Recall that Ta : Xa → R is defined by Ta(b, x) = b. Let Fa be the family of sets
F = {(b, x)} such thatAL(b, x) = a.

Lemma 4.5. Fa is nonvoid for every a < 0 and there are γ > 0 and a1 < 0 such that

−γ−1a ≤ c(Ta,Fa) for every a < 0,
c(Ta,Fa) ≤ −γa for every a < a1.

Proof. First we show that AL takes arbitrarily large negative values. To see this, note
that for nonconstant x,

AL(b, x) ≤
A1‖ẋ‖2L2

2b
+ Θ(x) = ‖ẋ‖2L2

(A1

2b
+

Θ(x)
‖ẋ‖2L2

)
.

By Lemma 4.1, σ > 0 and hence there is an x1 ∈ Λ such that Θ(x1) , 0. (Recall that to
show that σ > 0, we used the assumption that θ is not closed.) If Θ(x1) < 0, set x0 = x1
and, if Θ(x1) > 0, set x0(t) = x1(1 − t) for t ∈ [0, 1]. This shows that there is an x0 ∈ Λ

such that Θ(x0) < 0.
Take b0 so thatAL(b0, x0) < 0 and set

a0 =AL(b0, x0).

For n = 1, 2, . . . , let wn : [0, n] → M be the map defined by wn(t) = x0(t − i) for
t ∈ [i, i + 1], where i is any integer such that 0 ≤ i < n. Let xn

0 ∈ Λ be defined by
xn

0(t) = wn(tn). Then
AL(nb0, xn

0) = na0, (4.8)

which shows that AL takes arbitrarily large negative values. On the other hand, since
AL takes the value 0, it takes every negative value since AL is continuous and Λ is
connected. This shows that Xa is nonvoid for every a < 0.

If (b, x) ∈ Xa, then, by (4.3),

−Bb ≤ A
‖ẋ‖2L2

2b
− Bb ≤ AL(b, x) = a.
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Therefore,

−
1
B

a ≤ b

and hence

−
1
B

a ≤ c(Ta,Fa).

For the other inequality, let a < a0 and keep it fixed for the rest of the proof. Take a
positive integer n such that

(n + 1)a0 ≤ a < na0.

Let Γ : [0, 1]→ R+ × Λ be a continuous map given by

Γ(s) = (βs, zs)

such that βs = (n + s)b0, z0 = xn
0 and z1 = xn+1

0 . By (4.8) and the continuity ofAL, there
is an s1 ∈ [0, 1] such that

AL(Γ(s1)) = a.

Then
Ta(Γ(s1)) = βs1

and consequently
c(Ta,Fa) ≤ βs1 .

Therefore,

c(Ta,Fa) ≤ (n + 1)b0 =
b0

−a0
(−na0 − a0) <

b0

−a0
(−a − a0).

We choose a1 < 0 and γ1 > 0 so that

b0

−a0
(−a − a0) < −γ1a for a < a1.

Finally, let γ > B and γ > γ1. �

Lemmas 4.6 and 4.7 below appear also in [17] and we include them here for the
sake of completeness.

Lemma 4.6. The flow of −∇Ta is relatively complete in 0 < c1 ≤ Ta ≤ c2.

Proof. Arguing by contradiction, let s→ Γ(s) = (b(s), x(s)) be a flow semi-trajectory
defined in the maximal interval [0, s̄) and contained in c1 ≤ Ta ≤ c2. Let tn ∈ [0, s̄)
be a sequence converging to s̄. By the same argument as in [7, Lemma 6.9], the
sequence Γ(tn) is a Cauchy sequence, implying that b(tn) converges to b0 ∈ [0,∞).
Since b(tn) ≥ c1 > 0, we know that b0 > 0 and hence the sequence Γ(tn) converges in
Xa, which allows the flow semi-trajectory to be extended. �

Lemma 4.7. Ta satisfies the Palais–Smale condition at level c(Ta,Fa).
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Proof. Let {(bn, xn)} be a sequence in Xa such that Ta(bn, xn)→ c(Ta,Fa) and such
that ‖∇Ta(bn, xn)‖ → 0. By Lemma 4.5, bn is bounded and bounded away from zero.
Then ‖∇AL(bn, xn)‖ is bounded away from zero since otherwise the arguments of
[7, Proposition 3.12] (see also [6, 10]) show that {(bn, xn)} has a subsequence
converging to a critical point of AL, which is impossible because a is a regular
value of AL. Since AL(bn, xn) = a and bn is bounded and bounded away from
zero, we conclude by (4.3) that ‖ẋn‖L2 is bounded and this implies, by (4.2), that
e(bn, xn) = −∂AL/∂b (bn, xn) is bounded.

Let vb, vx, α be as in (2.1). Then vb(bn, xn) converges to 0 and thus α(bn, xn) is
bounded and bounded away from zero. This implies that ‖∇AL(bn, xn)‖ is bounded and
∂AL/∂b (bn, xn) is bounded away from zero.

On the other hand, since ‖vx(bn, xn)‖ also converges to 0,∥∥∥∥∥∂AL

∂x
(bn, xn)

∥∥∥∥∥→ 0.

Hence, by the argument of [7, Proposition 3.12], the sequence {(bn, xn)} has a
convergent subsequence in Xa. In fact [7, Proposition 3.12] assumes that ‖dbn,xnAL‖

converges to zero but it is enough to have ‖∂AL/∂x (bn, xn)‖ → 0 as is shown in
[1, Lemma 5.3]. �

Proof of Theorem 1.1. Lemmas 4.3, 4.5–4.7 allow us to apply Proposition 3.2,
completing the proof. The orbits obtained are nontrivial because of Lemma 4.4. The
estimates for the period follow from Lemma 4.5. The upper bound of the energy is
obtained from the estimates for the period and (4.7) (possibly after taking a bigger γ).
The lower bound of the energy is obtained from the estimates for the period and
Lemma 4.4. �
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