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Minimal Non Self Dual Groups

Lili Li and Guiyun Chen

Abstract. A group G is self dual if every subgroup of G is isomorphic to a quotient of G and every
quotient of G is isomorphic to a subgroup of G. It is minimal non self dual if every proper subgroup
of G is self dual but G is not self dual. In this paper, the structure of minimal non self dual groups
is determined.

1 Introduction

Let G be a ûnite group. It is s-self dual if every subgroup of G is isomorphic to a
quotient of G. It is self dual if it is s-self dual and every quotient of G is isomorphic
to a subgroup of G. _e study of ûnite self dual groups was initiated by Armond E.
Spencer in [6]. He obtained the following results.

_eorem 1.1 A ûnite group G is self dual if and only if G is nilpotent and all Sylow
subgroups of G are self dual.

_e structure of ûnite self dual p-groups was determined by L. An, J. Ding and
Q. Zhang in [1]. _ey obtained the following result.

_eorem 1.2 If G is a ûnite p-group, then G is self dual if and only if G is abelian or
G = ⟨a, b∣ap = bp = cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩ × M, where p > 2,M is
abelian and exp(M) ≤ p.

By _eorem 1.1 and _eorem 1.2, the structure of ûnite self dual groups is deter-
mined completely.

It is clear that s-self duality and self duality are inherited by subgroups. Hence,
we deûne that a group G is minimal non s-self dual if proper subgroups of G are all
s-self dual but G is not s-self dual. Likewise, a group G is minimal non self dual if
proper subgroups of G are all self dual but G is not self dual. In this article, we study
non s-self dual groups with “large” s-self duality. Obviously,minimal non s-self dual
groups play an important role in the study of the s-self duality of a group. Based on
this observation, we classiûed minimal non s-self dual groups, and as a byproduct,
the classiûcation ofminimal non self dual groups is given.
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Minimal Non Self Dual Groups 539

LetG be a ûnite p-group. We use c(G), d(G) and exp(G) to denote the nilpotency
class, the minimal number of generators, and the exponent of G respectively. We
use Cn to denote the cyclic group of order n, and Cm

n to denote the direct product
of m copies of Cn . We use a ∈ G/H to denote a ∈ G but a /∈ H.

In this paper, p is always a prime. For other notation and terminology, the reader
is referred to [3].

2 Preliminaries

Lemma 2.1 ([1]) If G is a ûnite s-self dual p-group, then G is one of the following
groups:
(i) an abelian p-group;
(ii) Mp(1, 1, 1) ×M, whereM is abelian and exp(M) ≤ p;
(iii) Mp(n, n) ×M, where n ≥ 2,M is abelian and exp(M) < pn .

Lemma 2.2 ([1]) IfG is a ûnite self dual p-group, thenG is one of the following groups:
(i) an abelian p-group;
(ii) Mp(1, 1, 1) ×M, whereM is abelian and exp(M) ≤ p.

A ûnite group G is said to beminimal nonabelian if proper subgroups of G are all
abelian, butG isnot abelian. Forminimal nonabelian p-groups, the following lemmas
are well known.

Lemma 2.3 ([5]) Let G be a minimal nonabelian p-group._en G is one of the fol-
lowing non-isomorphic groups:
(i) Q8 = ⟨a, b∣a4 = 1, a2 = b2 , [a, b] = a2⟩;
(ii) Mp(n,m) = ⟨a, b∣apn

= bpm
= 1, [a, b] = apn−1

⟩, where n ≥ 2;
(iii) Mp(n,m, 1) = ⟨a, b∣apn

= bpm
= cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩, where

n ≥ m, and if p = 2, then n +m ≥ 3.

Lemma 2.4 ([7, Lemma 2.2]) LetG be a ûnite p-group. _en the following conditions
are equivalent:
(i) G is aminimal nonabelian p-group;
(ii) d(G) = 2 and ∣G′∣ = p;
(iii) d(G) = 2 and Z(G) = Φ(G).

Lemma 2.5 ([2]) Let G be a ûnite group of order p4, for p odd. If G has a non-
abelianmaximal subgroup, then nonabelianmaximal subgroups ofG are all isomorphic
to Mp(1, 1, 1) if and only if G is one of the following non-isomorphic groups:
(i) Mp(1, 1, 1) × Cp , where p > 2;
(ii) ⟨a, b ∣ ap = bp = cp = d p = 1, [a, b] = c, [c, b] = d , [c, a] = [d , a] = [d , b] = 1⟩,

where p > 3;
(iii) ⟨a, b ∣ a9 = b3 = c3 = 1, [a, b] = c, [c, b] = a3⟩.
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A ûnite group G is said to be metacyclic if there is a cyclic normal subgroup N
such that G/N is cyclic. We need the following characteristic ofmetacyclic p-groups.

Lemma 2.6 ([9]) LetG be a ûnite p-group. IfG has a nonabelianmaximal subgroup
and all nonabelian maximal subgroups of G are isomorphic to Mp(n, n), then G is
metacyclic.

A nonabelian group G is said to bemetabelian if G′ is abelian. Sinceminimal non
self dual groups are metabelian, the following commutator formula is useful in this
paper.

Lemma 2.7 ([8]) LetG be ametabelian group and a, b ∈ G. For any positive integers
i and j, let

[ia, jb] = [a, b, a, . . . , a
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

i−1

, b, . . . , b
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j−1

].

(i) For any positive integers m and n,

[am , bn] =
m
∏
i=1

n
∏
j=1

[ia, jb](
m
i )(nj) .

(ii) For any positive integer n,

(ab−1)n = an
∏

i+ j≤n
[ia, jb](

n
i+ j)b−n .

Lemma 2.8 ([4]) Assume thatmaximal subgroups of a ûnite groupG are all nilpotent
but G is not nilpotent.
(i) ∣G∣ = pmqn , where p and q are unequal primes and there is a unique Sylow p-

subgroup P ⊲ G and a Sylow q-subgroup Q is cyclic. Hence, G = QP.
(ii) If p > 2, then exp(P) = p; if p = 2, then exp(P) ≤ 4.

3 Finite p-groups whose Nonabelian Maximal Subgroups are all
Isomorphic to Mp(1, 1, 1) × Cn

p with p > 2
Lemma 3.1 Let G be a ûnite p-group. If G possesses a nonabelian maximal subgroup
and all nonabelian maximal subgroups of G are of exponent p, then p ≥ 3 and one of
the following holds:
(i) G is a p-group of exponent p;
(ii) G = ⟨a, b∣ap2 = bp = cpi = 1, [a, b] = c1 , [c i , a] = 1, [c i , b] = c i+1 , cp−1 =

a−p , [a−p , b] = 1⟩, where i = 1, 2, . . . , p − 2.
(When ∣G∣ ≥ p5, c(⟨ab, c1⟩) ≥ 3.)

Proof We claim that p ≥ 3. (Otherwise, p = 2, so G doesn’t have nonabelian max-
imal subgroup, since a ûnite 2-group of exponent 2 is abelian, contradicting the as-
sumption of the lemma). Let H be a nonabelianmaximal group ofG. _en exp(H) =
p. We may assume that exp(G) ≥ p2. Since ∣G/H∣ = p and exp(H) = p, we have
exp(G) = p2 and o(a) = p2 for any a ∈ G/H.
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We claim that d(G) = 2. Otherwise, d(G) ≥ 3. Since o(a) = p2, a ∈ Z(G).
Since H is not abelian and exp(H) = p, H possesses a nonabelian subgroup ⟨x , y⟩,
where exp(⟨x , y⟩) = p, thenG possesses anonabelianproper subgroup ⟨ax , y⟩,where
exp(⟨ax , y⟩) = p2, a contradiction.

Since d(G) = 2, there exists b ∈ H such that G = ⟨a, b⟩. It follows from o(a) =

p2 that [ a, [a, b]] = 1. Since exp(G′) = p and ∣G∣ ≥ p4, o([b, [a, b]]) = p. If
ap ∉ G′, then (ab−1)p ≡ ap(modG′),we have o(ab−1) = p2, and hence ⟨ab−1 , [a, b]⟩
is abelian. But [ a, [a, b]] = 1 and o([b, [a, b]]) = p, a contradiction. Hence ap ∈

G′. Since [ap , b] = [a, b]p = 1, ap ∈ Z(G). Since again [a, d] = 1 for any d ∈ G′,
∣Gk/Gk+1∣ = p, where 1 ≤ k ≤ c(G) − 1 and Gc(G)−1 = ⟨ap⟩. Note that ⟨ab−1 , [a, b]⟩
is a nonabelian proper subgroup of G. _en o(ab−1) = p. On the other hand, we
compute:

(ab−1)p = ap[a, b](
p
2)[a, 2b](

p
3) ⋅ ⋅ ⋅ [a, (p − 1)b].

_en [a, (p − 1)b] = a−p . _us we get the group of type (iii) in the statement of the
lemma.

_eorem 3.2 LetG be aminimal non s-self dual p-group. IfG possesses a nonabelian
maximal subgroup and the nonabelian maximal subgroups of G are all isomorphic to
Mp(1, 1, 1) × Cn

p with p > 2, then G is one of the following non isomorphic groups:

(i) Mp(1, 1, 1) × Cp , where p > 2;
(ii) ⟨a, b ∣ ap = bp = cp = d p = 1, [a, b] = c, [c, b] = d , [c, a] = [d , a] = [d , b] = 1⟩,

where p > 3;
(iii) ⟨a, b ∣ a9 = b3 = c3 = 1, [a, b] = c, [c, b] = a3 , [c, a] = 1⟩;
(iv) ⟨a, b∣ap = bp = cp = d p = e p = 1, [a, b] = c, [b, c] = d , [a, c] = e , [d , a] =

[d , b] = [e , a] = [e , b] = 1⟩, where p > 3;
(v) ⟨a, b, c∣ap = bp = cp = d p = e p = 1, [b, c] = d , [a, b] = e , [a, c] = [d , a] =

[d , b] = [d , c] = [e , a] = [e , b] = [e , c] = 1⟩, where p > 2;
(vi) ⟨a, b, c∣ap = bp = cp = hp

i = 1, [b, c] = h1 , [a, b] = h2 , [a, c] = h3 , [h i , a] =
[h i , b] = [h i , c] = 1⟩, where p > 2, i = 1, 2, 3;

(vii) Mp(1, 1, 1) ∗Mp(1, 1, 1), where p > 2.

Proof Let H be a maximal subgroup of G, and H = ⟨b, c∣bp = cp = d p = 1,
[b, c] = d , [d , b] = [d , c] = 1⟩ ×M, where M ≅ Cn

p and p > 2. We know that ∣G∣ ≥ p4.
If ∣G∣ = p4, then we get groups of types (i), (ii), and (iii) in the statement of the

theorem by Lemma 2.5.
If ∣G∣ ≥ p5, then a ∉ Z(G) for any a ∈ G/H (otherwise, there exists a ∈ G/H such

that a ∈ Z(G). If o(a) = p, then G ≅ Mp(1, 1, 1)×Cn+1
p , a contradiction. If o(a) = p2,

then G = ⟨a, b, c⟩ since exp(Mp(1, 1, 1) × Cn
p) = p, so ∣G∣ = p4, a contradiction). We

have exp(G) = p by Lemma 3.1. _us G = H ⋊ ⟨a⟩, where o(a) = p and a ∉ Z(G).
It is easy to see that ⟨x , y⟩ is abelian or isomorphic to Mp(1, 1, 1) for any ⟨x , y⟩ < G.
Since Φ(H) = ⟨d⟩ ≤ Z(G), there exists x ∈ H/Φ(H) such that [a, x] /= 1.

Case 1: x ∈ ⟨b, c⟩/⟨d⟩. Without loss of generality, we assume that x = b. Since
p2 ≤ ∣⟨a, b, Z(H)⟩/Z(H)∣ ≤ p3 and ∣G/Z(H)∣ = p3, ∣G/⟨a, b, Z(H)⟩∣ ≤ p.
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Subcase 1: G = ⟨a, b, Z(H)⟩. Since H = ⟨b, [a, b], Z(H)⟩, [b, [a, b]] /= 1. With-
out loss of generality we assume that c = [a, b]. Since ⟨a, c⟩ < G and ⟨b, c⟩ < G,
[ a, [a, c]] = [b, [b, c]] = 1, and so G3 ≤ Z(H). _en [b, [a, c]] = [b, [b, c]] = 1.
It follows that c(G) = 3. Let [a, c] = e and [b, c] = d. We have G = ⟨a, b⟩ with the
following relations:

ap = bp = cp = d p = e p = 1, [a, b] = c, [a, c] = e ∈ Z(G), [b, c] = d ∈ Z(G)/{1}.

Since ∣G∣ ≥ p5, e ∉ ⟨d⟩. If p = 3, ⟨ba, c⟩ ≅ M3(2, 1), a contradiction. _us we get a
group of type (iv) in the statement of the theorem.

Subcase 2: ∣G/⟨a, b, Z(H)⟩∣ = p. Since p2 ≤ ∣⟨a, c, Z(H)⟩/Z(H)∣ ≤ p3 and
∣G/Z(H)∣ = p3, ∣G/⟨a, c, Z(H)⟩∣ ≤ p. If G = ⟨a, c, Z(H)⟩, replace c and b with b
and c respectively, it turns into Subcase 1. If ∣G/⟨a, c, Z(H)⟩∣ = p, then G = ⟨a, b, c⟩.
Since ⟨[a, b]⟩ char ⟨a, b, Z(H)⟩ ⊴ G and o([a, b]) = p, [a, b] ∈ Z(G). Using the
same argument, we can also demonstrate that [a, c] ∈ Z(G). Hence, G = ⟨a, b, c⟩
with the following relations:

[a, b] = h1 ∈ Z(G)/{1}, [a, c] = h2 ∈ Z(G)/{1}, [b, c] = d ∈ Z(G)/{1}.

If h1 ∉ ⟨d⟩ and h2 ∈ ⟨d , h1⟩, let h2 = d sht
1 . Replacing a, c and h1 with ab−s , cb−t and

e respectively, we get a group of type (v) in the statement of the theorem. If h1 ∉ ⟨d⟩
and h2 ∉ ⟨d , h1⟩, replace h2 , h1 and d with h3 , h2 and h1 respectively. We get a group
of type (vi) in the statement of the theorem. If h1 ∈ ⟨d⟩, then h2 ∉ ⟨d⟩ since ∣G∣ ≥ p5.
Replace b and c with c and b−1 respectively. It turns into [a, b] ∉ ⟨d⟩ and [a, c] ∈ ⟨d⟩,
i.e., h1 ∉ ⟨d⟩ and h2 ∈ ⟨d⟩.

Case 2: x ∈ M. For any y ∈ ⟨b, c⟩ we have [a, y] = 1. Note that ⟨a, x , b, c⟩ ≇
Mp(1, 1, 1) × Cn

p . _en G = ⟨a, x , b, c⟩ with the following relations:

[b, c] = d ∈ Z(G)/{1}, [a, x] = h ∈ Z(G)/{1},
[a, b] = [a, c] = [x , b] = [x , c] = 1.

If h ∉ ⟨d⟩, then G possesses a proper subgroup ⟨ac, x , b⟩ which is not s-self dual,
contradicting the assumption of the theorem. Hence, h = d i , where (p, i) = 1. Re-
placing a with as , where is ≡ 1(mod p), we get a group of type (vii) in the statement
of the theorem.

Case 3: x = sk, where s ∈ ⟨b, c⟩/{1}, k ∈ M/{1}. Assume that M = ⟨k⟩ × ⟨k1⟩ ×
⋅ ⋅ ⋅ × ⟨kn⟩. If s ∈ ⟨b, c⟩/Φ(⟨b, c⟩), there exists f ∈ ⟨b, c⟩/Φ(⟨b, c⟩) such that H =
⟨sk, f ⟩ ×M. We can replace b and c with sk and f respectively. _en b = x, it turns
into Case 1. If s ∈ Φ(⟨b, c⟩)/{1}, then H = ⟨b, c⟩ × ⟨sk⟩ × ⋅ ⋅ ⋅ × ⟨kn⟩. We can replace
M with ⟨sk⟩ × ⟨k1⟩ × ⋅ ⋅ ⋅ × ⟨kn⟩. _en b ∈ M, it turns into Case 2.

Next, we need to prove that the groups of types (i)–(vii) are not isomorphic to
each other. By Lemma 2.5, we know that the groups of types (i), (ii) and (iii) are not
mutually isomorphic. Since ∣G∣ = p4 for types (i)–(iii), ∣G∣ = p5 for types (iv), (v),
and (vii), and ∣G∣ = p6 for type (vi),we only need to prove that the groups of type (iv),
(v), and (vii) are not isomorphic to each other. Since d(G) = 2 for type (iv), d(G) = 3
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for type (v) and d(G) = 4 for type (vii), the groups of types (iv), (v), and (vii) are not
isomorphic to each other.

It is trivial to check that the groups in the theorem satisfy the conditions in the
theorem.

4 Finite p-groups whose Nonabelian Maximal Subgroups are all
Isomorphic to Mp(n, n) ×M, where n ≥ 2,M is Abelian and
exp(M) < pn

Lemma 4.1 Assume that nonabelianmaximal subgroups of aminimal non s-self dual
p-group G are all isomorphic to Mp(n, n)×M, whereM is abelian and exp(M) < pn .
If H is a nonabelian maximal subgroup of G and G′ ≤ Z(H), then o(a) > p and
ap ∈ M/Φ(M) for any a ∈ G/H.

Proof Let H = ⟨x , y∣x pn
= ypn

= 1, [x , y] = x pn−1
⟩ × M, where M is abelian,

exp(M) = pm and m < n. For any a ∈ G/H, we consider three cases:
(1) ap ∈ ⟨x , y⟩/⟨x p , yp⟩;
(2) ap ∈ ⟨x p , yp⟩;
(3) ap = de, where d ∈ ⟨x , y⟩ and e ∈ M/{1}.

Case 1. By ⟨x , y⟩ ≅ Mp(n, n), we know that o(a) = pn+1 and there exists b ∈
H/Z(H) such that ⟨ap , b⟩ = ⟨x , y⟩. Hence G = ⟨a, b⟩. Since G′ ≤ Z(H) and
exp(Z(H)) = pn−1, exp(G′) ≤ pn−1. Note that o(a) = pn+1 and o(b) = pn , we
have that ⟨[a, b], a⟩, ⟨[a, b], b⟩ and ⟨a, bp⟩ are abelian, and hence [a, b] ∈ Z(G) and
[a, bp] = 1, which implies [ap , b] = [a, bp] = 1, contradicting ⟨ap , b⟩ ≅ Mp(n, n).

Case 2. Without loss of generality, we assume that ap = x p or ap = yp . If ap = x p ,
[a, x] = 1 by ⟨a, x⟩ < G, then o(ax−1) = p, and so G ≅ Mp(n, n) ×M × Cp , contra-
dicting the assumption of the theorem. _us ap /= x p . Using the same argument, we
have ap /= yp .

Case 3. If e ∈ Φ(M), let e = hp , where h ∈ M, then [a, h] = 1 since ⟨a, h⟩ < G
and ⟨a, h⟩ ≇ Mp(n, n). Replace a with ah−1, then ap ∈ ⟨x , y⟩. It turns into Case 1
or Case 2. If e ∈ M/Φ(M) and d ∈ ⟨x , y⟩/⟨x p , yp⟩. _ere exists s ∈ ⟨x , y⟩ such
that ⟨d , s⟩ = ⟨x , y⟩. We have ⟨de , s⟩ ≅ ⟨x , y⟩ and H = ⟨de , s⟩ × M. Replace {x , y}
with {de , s}, we have ap ∈ ⟨x , y⟩/⟨x p , yp⟩, it turns into Case 1. If e ∈ M/Φ(M), d ∈
⟨x p , yp⟩/{1} and o(d) ≤ o(e),wemay replace e with d−1e,we get ap = e ∈ M/Φ(M).
If e ∈ M/Φ(M), d ∈ ⟨x p , yp⟩/{1} and o(d) > o(e), let d = x i p y jp , we have ap =
x i p y jpe. SinceG′ ≤ Z(H) and ap ∉ M/Φ(M), d(G) ≥ 3. We have o([a, x i]) ≤ p and
o([a, y j]) ≤ p. Replace a and e with a(x i y j)−1 and [a, x i](

p
2)[a, y j](

p
2)[x , y]i j(

p
2)e

respectively, we get ap = e ∈ M/Φ(M). Hence ap ∈ M/Φ(M) for any a ∈ G/H.

_eorem 4.2 Let G be a minimal non s-self dual p-group. If G possesses a non-
abelian maximal subgroup and nonabelian maximal subgroups of G are all isomorphic
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to Mp(n, n) × M, where n ≥ 2,M is abelian and exp(M) < pn , then G is one of the
following non isomorphic groups:
(i) ⟨a, b∣a8 = b4 = 1, [a, b] = a2⟩;
(ii) ⟨a, b∣a8 = b4 = 1, [a, b] = a−2⟩;
(iii) ⟨a, b∣a4 = b4 = c4 = 1, [a, b] = c, [a, c] = c2 , [b, c] = c2⟩;
(iv) ⟨a, b, c∣apn

= bpn
= cp

n
= 1, [a, b] = 1, [a, c] = apn−1

, [b, c] = bpn−1
⟩, where n ≥ 2,

when p = 2, n ≥ 3;
(v) Mp(n, n) × Cp2 , where n ≥ 2.

Proof Let H be a maximal subgroup of G, and H = ⟨x , y∣x pn
= ypn

= 1, [x , y] =
x pn−1

⟩ × M, where M is abelian and exp(M) < pn . We have G = ⟨a,H⟩ for any
a ∈ G/H.

Since Z(H) = ⟨x p , yp⟩ × M, we have ⟨a, c⟩ < G and ⟨a, c⟩ is abelian for any c ∈
Z(H). _us c ∈ Z(G), which implies ⟨x p , yp⟩×M ≤ Z(G). Since ∣G/Z(H)∣ = p3, we
consider two cases:
(1) G′ /≤ Z(H),
(2) G′ ≤ Z(H).

Case 1: G′ ≰ Z(H). By ∣G/Z(H)∣ = p3 and Z(H) ≤ Z(G), we know that Z(H) =
Z(G) and there exists b, c ∈ H such that [a, b] = c and ⟨b, c⟩ = ⟨x , y⟩. Hence, G =
⟨a, b⟩ with the following relations:

apt
= bpn

= cp
n
= 1, ap ∈ H, [a, b] = c, [b, c] = b i pn−1

c jp
n−1

∈ Z(G),

[a, c] = akpt−1
csp

n−1
∈ Z(G), o(b i pn−1

c jp
n−1

) = p, o(akpt−1
csp

n−1
) ≤ p.

It follows from ap2 ∈ Z(G) that 1 = [ap2 , b] = cp
2
[a, c](

p2
2 ) = cp

2
, then n = 2 and

exp(Z(G)) = p. By ap2 ∈ Z(G), we have t = 2 or 3.
It follows from b i pc jp ∈ Z(G) and o(b i pc jp) = p that 1 = [a, b i pc jp] = c i p , i.e., p∣i,

then [b, c] = c jp , where ( j, p) = 1. Replace b and c with bs and [a, bs] respectively,
where s j ≡ 1(mod p), then [b, c] = cp . Since bp ∈ Z(G), [a, bp] = cp(1−(

p
2)) = 1, then

p = 2. _us G = ⟨a, b⟩ with the following relations:

o(a) = 4 or 8, a2 ∈ H, b4 = c4 = 1,

[a, b] = c, [b, c] = c2 , [a, c] = ak2t−1
c2s .

If o(a) = 8, then [a, c] = 1 and a2 ∈ ⟨b, c⟩. By [a2 , b] /= 1, we have ⟨a2 , b⟩ = ⟨b, c⟩,
then c = a2 , a−2 , a2b2 or a−2b2. When c = a2, we get a group of type (i) in the
statement of the theorem. When c = a−2, we get a group of type (ii) in the statement
of the theorem. When c = a2b2, o(ab) = 4. Replace awith ab; then o(a) = 4. _uswe
get a group of type (iii) in the statement of the theorem. When c = a−2b2, o(ab) = 2,
then ab ∈ G/H and ab ∈ Z(G). We have G ≅ Mp(n, n) ×M × Cp , contradicting the
assumption of the theorem.

If o(a) = 4, we have [a, c] = c2 by 1 = [a2 , b] = c2[c, a]. Since G is not metacyclic,
we have ∣M∣ ≥ p by Lemma 2.6, so a2 ∉ ⟨b, c⟩. _us we get a group of type (iii) in the
statement of the theorem.
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Case 2: G′ ≤ Z(H). By Lemma 4.1, we have o(a) > p and ap ∈ M/Φ(M), then
d(G) ≥ 3. We claim that d(G) = 3. (Otherwise, d(G) ≥ 4, then ⟨x , y, a⟩ < G. But
⟨x , y, a⟩ ≇ Mp(n, n) ×M, where exp(M) < pn , a contradiction). We have M = ⟨ap⟩,
and hence G = ⟨a, x , y⟩.

Subcase 1: ⟨a, x⟩ ≅ Mp(n, n). Since ⟨a, y⟩ < G, ⟨a, y⟩ is abelian or isomorphic to
Mp(n, n). Let [a, x] = a i pn−1

x jpn−1
, [a, y] = aspn−1

ytpn−1
.

If p = n = 2, we have [a, y] = y2, a2 or 1 (otherwise, [a, y] = a2 y2, then o(ay) = 2,
contradicting Lemma 4.1). Since ⟨a, xy⟩ ≅ M2(2, 2), [a, xy] = a2ix2 j[a, y] ∈
⟨a2 , y2⟩, then 2∣ j. It follows that [a, x] = a2. Replace x and ywith b and c respectively,
we have:
(i) [a, b] = a2, [a, c] = c2, [b, c] = b2;
(ii) [a, b] = a2, [a, c] = 1, [b, c] = b2;
(iii) [a, b] = a2, [a, c] = a2, [b, c] = b2.
We know that o(abc) = 2 for type (i), contradicting Lemma 4.1. We replace c with
bc for type (iii), it turns into type (ii). But ⟨ac, b⟩ < G and ⟨ac, b⟩ ≅ M2(2, 2, 1) for
type (ii), a contradiction.
Except for p = n = 2. We claim that [a, x] = x pn−1

and [a, y] = apn−1
ypn−1

. Note
that ⟨ay, x⟩ < G, then [ay, x] = a i pn−1

x( j−1)pn−1
∈ ⟨(ay)pn−1

, x pn−1
⟩, so i = 0. Replace

a with as , where s j ≡ 1(mod p), then [a, x] = x pn−1
. Note that ⟨a, xy⟩ ≅ Mp(n, n)

and ⟨ax , y⟩ ≅ Mp(n, n), then [a, xy] = aspn−1
x pn−1

ytpn−1
∈ ⟨apn−1

, (xy)pn−1
⟩ and

[ax , y] = aspn−1
x pn−1

ytpn−1
∈ ⟨(ax)pn−1

, ypn−1
⟩, we have s = t = 1, i.e., [a, y] =

apn−1
ypn−1

. Replace ay, x and y with a, b and c respectively, we have [a, b] = 1 and
[a, c] = apn−1

. _us we get a group of type (iv) in the statement of the theorem.

Subcase 2: ⟨a, x⟩ is abelian. If [a, y] = 1, we get a group of type (v) in the statement
of the theorem. If [a, y] /= 1, we have ⟨a, y⟩ ≅ Mp(n, n) by ⟨a, y⟩ < G. Let [a, y] =
a i pn−1

y jpn−1
. Since ⟨ax , y⟩ < G, [ax , y] = a i pn−1

x pn−1
y jpn−1

∈ ⟨apn−1
x pn−1

, ypn−1
⟩, then

i = 1. When p = n = 2, we have ay ∈ G/H and (ay)2 ∉ M/Φ(M), contradicting
_eorem 4.1. Except for p = n = 2, we have [a, xy] = apn−1

y jpn−1
∈ ⟨apn−1

, x pn−1
ypn−1

⟩
by ⟨a, xy⟩ ≅ Mp(n, n), then p ∣ j. Replace x and y with b and c respectively. _us we
get a group of type (iv) in the statement of the theorem.

In the following, we prove that the groups of types (i)–(iv) are not isomorphic to
each other. Since d(G) = 2 and G is metacyclic for type (i) and (ii), d(G) = 2 and G
is not metacyclic for type (iii), d(G) = 3 and G′ ≅ C2

p for type (iv), and d(G) = 3 and
G′ ≅ Cp for type (v), we only need to prove that the groups of type (i) and (ii) are not
isomorphic to each other. If G1 = ⟨a1 , b1⟩ for type (i) is isomorphic to G2 = ⟨a2 , b2⟩

for type (ii). Let the map σ ∶ a1 z→ b j
2a

i
2 , b1 z→ b l

2a
k
2 be an isomorphism from G1

onto G2. Since G′
2 = (a2

1 )
σ = (b j

2a
i
2)

2, 2 ∣ j and 2 ∤ l . Since again (b2
1 )

σ
= b2 l

2 ,
the map σ is an isomorphism from ⟨b2

1 ⟩ onto ⟨b2
2⟩. By ⟨b2

1 ⟩ ≤ Z(G1) and ⟨b2
2⟩ ≤

Z(G2), we know that G1/⟨b2
1 ⟩ ≅ G2/⟨b2

2⟩. But G1/⟨b2
1 ⟩ ≅ SD16 and G2/⟨b2

2⟩ ≅ D16, a
contradiction. Hence, the groups of type (i) and (ii) are not isomorphic to each other.
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It is trivial to check that the groups in the theorem satisfy the conditions in the
theorem.

5 Minimal Non s-self Dual Groups and Minimal Non Self Dual
Groups

Lemma 5.1 Let G be aminimal nonabelian p-group.
(i) If G is not s-self dual, then G is one of the following non-isomorphic groups:

(a) Q8;
(b) Mp(n,m), where n /= m;
(c) Mp(n,m, 1),where n +m ≥ 3.

(ii) If G is not self dual, then G is one of the following non-isomorphic groups:
(a) Q8;
(b) Mp(n,m);
(c) Mp(n,m, 1), where n +m ≥ 3.

Proof We can get the groups in the statement of the lemma by _eorem 1.2 and by
Lemmas 2.3 and 2.1.

Lemma 5.2 Let G be a ûnite p-group. If there exists a maximal subgroup H of G
isomorphic to Mp(1, 1, 1) × Cm

p , then no maximal subgroup K of G can be isomorphic
to Mp(n, n) ×M, where n ≥ 2,M is abelian and exp(M) < pn .

Proof Suppose that there exists a maximal subgroup K of G isomorphic to
Mp(n, n) ×M, where M is abelian and expM < pn . It follows from G = HK and
HK/H ≅ K/H ∩ K that ∣K/H ∩ K∣ = ∣G/H∣ = p. Using the same argument, we
can also demonstrate that ∣H/H ∩ K∣ = p. But there exists no H ∩ K such that
∣K/H ∩ K∣ = ∣H/H ∩ K∣ = p, a contradiction.

_eorem 5.3 Let G be aminimal non s-self dual group.
(i) If G is nilpotent, then G is determined by Lemma 5.1 (i),_eorem 3.2, and_eo-

rem 4.2.
(ii) If G is not nilpotent, then G ≅ P ⋊ ⟨c⟩, where P is a s-self dual p-group, ⟨c⟩ ≅ Cqm

is an automorphism of P of order q and p, q are unequal primes.

Proof If G is a nilpotent group, then G is a p-group. By Lemmas 2.1 and 5.2, we can
get case (i). If G is not a nilpotent group, it follows from Lemmas 2.1 and 2.8 and the
assumption that we can get case (ii).

_eorem 5.4 Let G be aminimal non self dual group.
(i) If G is nilpotent, then G is determined by Lemma 5.1 (ii) and_eorem 3.2.
(ii) If G is not nilpotent, then G ≅ P ⋊ ⟨c⟩, where P is a self dual p-group, ⟨c⟩ ≅ Cqm

is an automorphism of P of order q and p, q are unequal primes.

https://doi.org/10.4153/CMB-2015-007-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-007-9


Minimal Non Self Dual Groups 547

Proof If G is a nilpotent group, then G is a p-group. By Lemmas 2.2 and 5.2, we can
get case (i). If G is not a nilpotent group, it follows from Lemmas 2.2 and 2.8 and the
assumption that we can get case (ii).
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