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Abstract

Strategies are proposed to cope with uncertainties in a way that all possible kinds of uncertainty
are named, recognized, statistically quantified as far as possible and utilized in efficient decision-
making in flood risk management (FRM). We elaborated on the metaphor of uncertainty as a
monster. We recommend two strategies to cope with the uncertainty monster to support
efficient decision-making in FRM: monster adaptation and monster assimilation. We present
three cases to illustrate these strategies.We argue that these strategies benefit from improving the
structure and reducing the complexity of decision problems. We discuss ways to involve
decision-makers in FRM, and how communication strategies can be responsive to their
informational needs.

Impact statements

In decision making on flood risk management (FRM) uncertainties have to dealt with. In this
article expertise from hydrology, statistics, communication and behavioral science is combined.
This collaborative approach contributes to a better understanding of the various ways uncer-
tainties are dealt with in decision making in FRM. Moreover, with this integration of expertise
the article opens ways to strategies in which uncertainties are actually assimilated and adapted by
decision makers in taking efficient decisions in (local) FRM.

Introduction

Flood riskmanagement (FRM) aims to reduce the harm caused by flooding. In FRM, three sets of
actions can be distinguished (Plate, 2002). First, actions are needed to operate an existing system
in an actual flood risk situation. Second, actions are needed to plan a new system or to revise an
existing system to meet new needs and conditions. Following from this second action, a third set
of actions is needed to obtain an optimum design for a new or revised system. In all three sets of
actions, FRM deals with decision problems of varying complexity, characterized by varying types
and levels of uncertainties that may or may not be statistically quantifiable. In this paper, we
address the question of how to cope with these uncertainties, with a focus on the third set of
actions: designing an optimal system. The key question is: how can uncertainties, whether
statistically quantified or not, be dealt with to support efficient decision-making?

The aim of this paper is to propose the strategies to cope with uncertainties in a way that all
possible kinds of uncertainty are named, recognized, statistically quantified as far as possible and
utilized in efficient decision-making. For this purpose, we use the monster metaphor (Van der
Sluijs, 2005; Smits, 2006). We address the following questions:

1. What are the origins and guises of the various uncertainty monsters?
2. How are these monsters perceived by decision-makers?
3. Which coping strategies are available to “tame” the uncertainty monsters?
4. How do the choice between coping strategies depend on structure and complexity of

decision problems?
5. Which coping strategies are preferred in efficient decision-making?

We show in a mock case on FRM how statistical knowledge on uncertainty can be adapted in
order to enable efficient decision-making. We do not pretend to have solutions for complex
decision problems with uncertainties. Nevertheless, with this paper, we hope to contribute to
improved structure and reduced complexity of decision problems, which we consider as the key
conditions for efficient decision-making in FRM. Besides the opportunities for utilization of
statistical knowledge on uncertainty in decision-making, we also discuss the limitations.
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Origins and guises of uncertainty monsters

The monster metaphor was developed by Smits (2006) to improve
the understanding of risk controversies related to new technologies,
based on the work of Douglas (1966) on purity and danger in
traditional cultures. The monster metaphor was introduced into
the environmental sciences by Van der Sluijs (2005). The basic idea
is that if two categories that were considered to be mutually exclu-
sive mix up, monstrous hybrids can grow. As Smits (2006)
describes, these ambiguous phenomena can evoke feelings of fear
or abhorrence, but also feelings of fascination and reverence. Van
der Sluijs (2005) considers the following mutually exclusive cat-
egories that create monsters in the science–policy interface: know-
ledge versus ignorance, objective versus subjective, facts versus
values, prediction versus speculation and science versus policy.
These categories can also be found in the area of FRM, where
uncertainty monsters can appear at various places, including pre-
dictions or speculations on floods and their effects, risk awareness,
support base and efficacy and efficiency of decisions. Some of these
monsters spit out uncertainties that can more or less easily be
statistically quantified. Other monsters spit out uncertainties that
can only qualitatively be described. The existence of somemonsters
and the genesis of new monsters can only be suspected.

The guises of uncertainty monsters can vary. The most simple
monster has one head that spits out statistically quantifiable uncer-
tainty only. More complex species are multi-headed. The uncertain-
ties that are spit out vary in space and time and can be mutually
dependent. Nevertheless, they can still be quantified statistically
although this can be complicated. These uncertainties are referred
to as aleatory, whichmeans that they are related to randomprocesses
that can be described in probabilistic terms. Besides aleatory uncer-
tainties, epistemic uncertainties that are related to lack of knowledge
can be distinguished. However, aleatory and epistemic uncertainty
can be blurred, for example, Nearing et al. (2016) argue that most
aleatory uncertainty at the scale of watersheds is also epistemic. It
might be believed that all epistemic uncertainties can be reduced or
eliminated by more accurate and detailed descriptions of hydro-
logical systems. However, these efforts on model improvement can
only concern known unknowns, while the existence of unknown
unknowns cannot be excluded. Besides known and unknown
unknowns, Di Baldassarre et al. (2016) distinguish wrong assump-
tions: things we think we know, but we actually do not know. Efforts
can be made to represent epistemic uncertainty probabilistically
(Montanari and Koutsoyiannis, 2012). However, it cannot be ruled
out that deep uncertainties remain that cannot be expressed in
probabilistic terms, also referred to as Knightian uncertainties
(Knight, 1921) or surprises (Brown, 2004; Merz et al., 2015).

Brown (2004) defines uncertainty as a state of confidence in
knowledge, varying between being certain and accepting that we
cannot know, that is indeterminacy. In this definition, confidence is a
state of awareness of imperfect knowledge. Ignorance is defined as
lack of awareness of imperfect knowledge. Further, Brown (2004)
distinguishes “bounded” and “unbounded” uncertainty. “Bounded”
means that all possible outcomes are known, but not necessarily all
corresponding probabilities. Uncertainty is “unbounded” when
some possible outcomes are known, possibly with corresponding
probabilities, or when no possible outcomes are known.

Perceptions and behavioral consequences of uncertainty
monsters

In the above, we have described that the uncertainty monster may
come in different forms and shapes. The guises of the uncertainty

monster can influence the perceptions of uncertainties and risks and
the ways in which the uncertainty monster is dealt with. The risk
perception literature describes that people are subject to forming
overall risk perceptions on the basis of various cues (Slovic et al.,
2004).One of them is the extent towhich (possible) events are viewed
to be dreadful – that is, having catastrophic potential, affectingmany
people and so forth. Another is the experienced level of uncertainty –
is it a phenomenon known to science, is it a novel event, and so forth.
Typically, individuals rely on such cues in forming perceptions, and
cues inform human decision-making, too.

Relying just on contextual cues – or heuristics – may, however,
lead to faulty or suboptimal decisions (Kahneman, 2011). In par-
ticular when decision problems are complex in nature, it may be
important to process information with logic and reason. Humans
are equipped with an analytical system to perform such informa-
tion processing. However, individuals can also process information
with the use of the so-called experiential system. In this case, affect
and intuition play a more dominant role in the processing of
information and in reaching a decision.

In some cases, individuals may be very aware of risks but still
deny it. Denial may be a coping mechanism, and may be brought
about when people do not see a clear behavioral pathway to deal
with the risk – that is, they lack a sense of efficacy (Maddux and
Rogers, 1983). In the financial realm, the denial of a risk that one is
actually aware of is coined the ostrich effect (Karlsson et al., 2009). It
may also lead to avoiding the search for additional information that
could actually help to better understand the risk problem. Another
example of how individuals can deal with an uncertainty monster is
by continuing to put resources into endeavors that are not likely to
be successful, or at least break even the investment made. This can
lead to an ironic effect of people clinging on to projects that have
limited viability, but given the amount of investments that were
already made it is considered a “waste” to abandon the project – a
phenomenon called the sunk cost fallacy or Concorde effect (Arkes
and Ayton, 1999).

There are examples of the Concorde effect in natural flood
management (NFM), in which efficacy is at times blown out of
proportion (Bokhove et al., 2021), in part because it is challenging
to assess at a strategic or policy level (Environment Agency,
2022). In particular, lack of upscaling potential of NFM to
intermediate and large floods remains an issue, leading to a
blended approach that aims to place different types of flood
mitigation measures in the right places (Environment Agency,
2021c). Proposing flood storage due to beaver dams is an extreme
example; it is officially mentioned in government reports
(DEFRA, 2018) without mentioning the lack of upscaling poten-
tial (Bokhove et al., 2018) or international viewpoints thereon.
The available flood-storage volume behind perfect beaver dams
tends to be very small, such that 1,000s–10,000s beaver colonies
would be needed to prevent intermediate to larger floods, which
remains unrealistic even for 1% coverage. Furthermore, potential
dam collapse (Hillman, 1998; Butler and Malanson, 2005) and
lack of planned maintenance are sources of uncertainty. In con-
trast, in the Netherlands, the 1,000s of beavers roaming the
countryside are valued for their local wildlife value, for example,
in terms of locally improving water quality and creating wetland
habitat, but beavers are deemed destructive with respect to flood
mitigation, since they seriously undermine protective berms and
dikes. The involved stakeholders (province, water authorities,
nature conservation managers and other actors) were increasingly
aware of the risks as well of their specific responsibilities toward
flood protection and nature conservation, which resulted in a
joint policy established in a beaver protocol (Heijer et al., 2023).

2 Martin Knotters et al.

https://doi.org/10.1017/wat.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/wat.2024.4


On the one hand, here we have argued that an uncritical reliance
on uncertain benefits is related to the Concorde effect if one takes
account of social and emotional investments. On the other hand,
the counter-argument would be that decades of investment of large
amounts of public money (and carbon, political capital, etc.) on
hard infrastructure may be a Concorde effect in some places, for
example, for 149–185 km of the U.K. coastline where protecting or
adapting as currently planned appears to be economically unfeas-
ible (CCC, 2018). In either case, it is important to understand both
the ongoing benefits and residual risks arising from past invest-
ments, and a failure to assimilate the associated uncertainties may
provide a platform for pathological monster coping strategies
discussed in the following sections.

In analyzing the role of uncertainty in FRM, it is important to be
aware of the bounded rationality of human decision-making. This
is not to say that humans are irrational, but their rationality is
bounded by an array of perceptual and motivational phenomena
that may impact or bias behavior (Simon, 1990). Given the simple
fact that in FRM the stakes are high, it is crucial to adopt a
structured and systematic approach toward decision problems.
Before doing so, we will first describe the various ways uncertainty
in decision-making may be dealt with.

Coping strategies

Van der Sluijs (2005) mentioned four possible strategies to cope
with the monster of uncertainty: monster exorcism, monster adap-
tation, monster assimilation and monster embracement. We sum-
marize our interpretations of these strategies and we add monster
denial and monster anesthesia to them.

In monster exorcism, it is tried to reduce uncertainty to zero.
However, zero uncertainty is unreachable since knowledge is
limited, reality is necessarily generalized in models, sample sizes
are limited and observations have limited accuracy.Monster adap-
tation transforms the monster into a phenomenon that fits in the
aforementioned categories. This is attempted by quantifying uncer-
tainty to support rational risk management on the basis of opti-
mization of expected utility. Bluntly said, the decision is the
outcome, or at least supported by the outcome of calculations.
However, uncertainties are not always quantifiable, sometimes
hidden, and have sometimes not arisen yet.

Monster embracement can possibly be related to a fascination for
the complexity of environmental systems. However, magnification
of uncertainties can also be a strategy to trivialize unpleasant
outcomes of scientific research.

Monster assimilation differs from monster adaptation in that
not only the monster is adapted, but also the mutually exclusive
categories that were mixed up, such as science and policy. These
categories are assumed to be flexible enough to learn from uncer-
tainty and to change. In monster assimilation a central place is
given to uncertainties in environmental risk management. The
idea of one certain truth is dropped. Parties involved in risk
assessment strive for transparency and learn to live with ambiguity
and pluralism.

To the four coping strategies described above, we add two
strategies to cope with unwelcome uncertainty: monster denial
and monster anesthesia. Van der Sluijs (2005) considers the
strategy of hiding unwelcome uncertainty as a case of monster
exorcism. However, for monster exorcists, uncertainty can be
welcome, because it legitimates their efforts to improve deter-
ministic models. Information on uncertainty can be unwelcome
for several reasons, in policy as well as in science (see, for

instance, Pappenberger and Beven, 2006). They discussed seven
possible reasons why uncertainty analysis is not performed in
hydrological and hydraulic modeling by a significant part of the
professional community, and concluded that none of these seven
reasons are, in the end, tenable. Not mentioning or even denying
can be a strategy in these cases. Another strategy to deal with
unwelcome uncertainty is striving for consensus in the deliber-
ations of supervisory committees. An agreement about the qual-
ity of information does not imply that uncertainty is expelled,
however. After the deliberations, the unwelcome uncertainty
monster sleeps.

Levels of complexity and structure in decision-making

In a discussion on the place of uncertainty in FRM, it makes sense
that decision problems can vary in complexity and structure (see
Figure 1). A complex decision problem has many components. We
consider ambiguity as part of the complexity of a decision problem:
different parties may think differently about the causes and effects
of risks (interpretive ambiguity), and about what actions are justi-
fied once risks are characterized (normative ambiguity) (Renn,
2008). Besides complex, decision problems can be poorly struc-
tured. We relate structure to the conditions under which decisions
are made. Poor structure can make decision problems appear more
complex than they actually are. Turnhout et al. (2007)) distinguish
unstructured, badly structured, moderately structured and well-
structured decision problems. In these categories, knowledge is
used bymeans of ideas, concepts, arguments and data, respectively.
The roles of scientists are problem signaling, accommodation,
advocacy and problem solving, respectively. At best, the policy
process can result in learning, finding compromises, negotiation
and taking formal decisions, respectively.

The levels of complexity and structure determine which strategy
can be chosen to tame the uncertainty monsters (Poortvliet et al.,
2019). In the following section, we argue why monster adaptation
and monster assimilation should be strived for to enable efficient
decision-making, and monster embracement, exorcism, denial and
anesthesia should be avoided. This implicates that decision prob-
lems should be structured as well as possible, and be simplified as
far as possible. These aims are indicated with the blue, dashed
arrows in Figure 1.

Preferred coping strategies: Monster adaptation and monster
assimilation

Monster exorcism, monster denial and monster anesthesia can be
seen as strategies sprouting from “certainification”: striving for
certainty (Van Asselt et al., 2007). Although it is acknowledged
that certainification enables practitioners to proceed, Van Asselt
et al. (2007) question whether this is a sustainable strategy in the
long run. For instance, the public can lose trust in policy makers if
things went out in a different way than was told. Whereas in
controversies, decision-makers tend to certainification, the strategy
of opponents can be “decertainification” (monster embracement).
To reduce risks of cumbersome decision processes, we prefer
monster assimilation and wherever possible monster adaptation
above the certainifying strategies of monster exorcism, monster
denial and monster anesthesia and decertainifying monster
embracement. Besides this, it can be more efficient to take quanti-
fied uncertainty into account rather than to make costs to reduce
uncertainty (Morgan and Henrion, 1990). Therefore, we recom-
mend quantitative uncertainty and risk analysis, that is, monster
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adaptation rather than monster exorcism, as will become clear in
the examples we will consider next. Monster adaptation is possible
if uncertainties can be quantified, that is, bounded uncertainties
with all probabilities known (Brown, 2010). If some or all uncer-
tainties can be described qualitatively only, we prefer monster
assimilation as a coping strategy in decision-making. The percep-
tual model of uncertainty as described by Westerberg et al. (2017)
can be helpful in monster adaptation and assimilation. Westerberg
et al. (2017) illustrated a three-step procedure to construct a per-
ceptual uncertainty model with an example on flood risk change.
The three steps include (1) identifying uncertainty in the framing of
the studied system and problem, (2) identifying the uncertainty
sources in the socio-hydrological system and (3) defining the
nature, interactions and relative importance of the uncertainty
sources.

These two preferred coping strategies emerging in the FRM
practice are exemplified next in three ways, which involve:

A. adaptation to aleatory uncertainty through the design flood
concept;

B. assimilation through recognition of epistemic uncertainties in
flood hydrology; and,

C. adaptation and assimilation intertwined in a mock pluvial
flood-mitigation case study wherein several scenarios are juxta-
posed using a graphical cost-effectiveness tool.

A. Monster adaptation: Aleatory uncertainty and the design flood
concept
Although direct, systematic observations of precipitation and
river flows have been made in some places since at least the
17th century (Deming, 2021), it was the development of math-
ematical theory about the statistics of extremes that enabled a
coherent, quantitative approach to flood risk analysis. In the
United States, Dawdy et al. (2012)) reported that statistical ana-
lysis of flooding started with Fuller (1914), who advocated that
“study of their [floods] past frequency gives the best indication of

what may be expected in the future” (although Robert Horton
had applied probability analysis to plot flood data on logarithmic
paper since 1896).

By the mid-20th century, the theoretical foundations for prob-
abilistic analysis of flooding were growing stronger with pioneering
work by Gumbel (1958) on extreme value theory, which included
analysis of “the design flood,” amongst other applications in cli-
matology, meteorology and hydrology.

Aided by extreme value theory, the concept of a statistical design
flood effectively internalized aleatory uncertainty by simplifying the
flood-protection decision problem to one of selecting an appropri-
ate tail quantile of the flood distribution to reflect a chosen toler-
ance of risk. This internalization has proven to be a lasting and
important form of monster adaptation, even though some did
object to it, exemplified by T. Merriman’s statement in the 1926
Transactions of the American Society of Civil Engineers that flood-
ing could not be “fairly treated by any method of probabilities”
(Dawdy et al., 2012), arguably a case of determinism leading to
monster exorcism.

By the late 1960s and early 1970s, statistical analysis of river flow
extremes was an established tool for hydrologists and engineers.
Even so, hydrologists were aware of epistemic uncertainties, with
the choice of statistical distribution being both an important prac-
tical question and a lively topic of research ever since (Benson, 1968;
Bobée et al., 1993; Vogel et al., 1993a, 1993b; Kochanek et al., 2014).
In a global meta-review by Diaconu et al. (2021)), 20% of 1,326
research papers about flood risk analysis methodology published
between 1979 and 2020 concerned statistical analysis. Detailed
guidance emerged for practical applications in which choices about
statistical distributions and procedures for assessing data adequacy
were considered (NERC, 1975; Institute of Hydrology, 1999; Ball
et al., 2019; England Jr et al., 2019). In Europe, Castellarin et al.
(2012) found that public agencies and institutions of six countries
provide guidance about statistical distributions suitable for flood
hydrology, while national statistical analyses of flood peaks exist in
12 of the 18 countries surveyed.

Well-structured, simple (not complex or
ambiguous), all uncertainties can be
quantified (although possibly
complicated), statistically based decision
models are applied.

Ill-structured, complex,
ambiguous, no information
about uncertainties (either
quantitative or qualitative).

Well-structured, quantifiable
uncertainties are quantified, involved
parties are made aware of
uncertainties that cannot be
quantified. Uncertainties play a
central role in decision making.

Good structure Poor structure

Simple

Complex

Monster adaptation

Monster assimilation

Monster embracement
Monster exorcism
Monster denial

Monster anesthesia

Decision problems:

The poor structure makes decision
problems appear more complex than
they actually are.

Figure 1. Decision problems categorized into levels of complexity and structure, as well as strategies to cope with uncertainty.
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Deterministic models of flood hydrology have been used in
estimating design floods since at least the development of unit
hydrograph theory (Sherman, 1932; Clark, 1945; Dooge, 1973).
Eagleson (1972) showed how aleatory uncertainty about rainfall
extremes, embedded in a statistical model, could be integrated
analytically with a deterministic model of rainfall–runoff dynamics
to derive a flood peak flow distribution. In our monster analogy,
this physically motivated reasoning can be interpreted as an
attempt to address epistemic uncertainty about the representation
of complex hydrological processes that may have otherwise been
ignored (monster denial). Subsequently, many combinations of
stochastic weather models and deterministic hydrological system
models have been proposed or applied to support flood risk analysis
(Boughton andDroop, 2003; Lamb, 2006). Primarymotivations for
the rainfall–runoff approaches were to incorporate knowledge
about hydrological processes into design flood estimation (Lamb
et al., 2016), and to take advantage of both river flow data and
precipitation measurements, which can be longer and spatially
denser. Aleatory uncertainty in the rainfall or river flow data
remained the dominant guise of the uncertainty monster, with
the target remaining a design event.

B. Monster assimilation: Recognition of epistemic uncertainties in
flood hydrology
The introduction of process-based modeling to derive design flows
was at first motivated by a desire to reduce uncertainty by applying
deterministic understanding of processes to add information in
deriving a design flood. Yet opening the door to physical processes
inevitably exposes the decision analysis to complexities of the real
world, where it is difficult to find simple adaptations to uncertainty
monsters. In flood management, and across other natural hazards,
there has been an increasing focus on the epistemic uncertainties,
which are not well-determined by historical observations (Beven
et al., 2018). Where the uncertainties can be expressed in terms of
input factors or choices made in applying a model, then sensitivity
analysis is a powerful tool to structure and quantify a wide range of
sources of uncertainty (Pianosi et al., 2016; Gupta and Razavi, 2018;
Wagener and Pianosi, 2019; Pianosi et al., 2020).

Quantification is difficult, or may be impossible, for deep epi-
stemic uncertainties (Stein and Stein, 2013), so the uncertainty
monster appears in guises that are not amenable to monster adap-
tation. Instead, we try to assimilate those monsters to avoid the
pathological states of embracement, exorcism, denial or anesthesia.
Environmental or socioeconomic change is often the dominant
uncertainty for long-term FRM planning. A typical paradigm for
assimilating such deep uncertainty monsters is to use scenario-
based analysis (Hallegatte et al., 2012), an approach formalized for
national FRM investment planning in England by the Environment
Agency (2021b). Future projections of risk are needed for scenario-
based decision analysis, but growing evidence of historical changes
in flooding (Blöschl et al., 2019; Environment Agency, 2020; Han-
naford et al., 2021; Slater et al., 2021) has also challenged the
assumption of stationarity that has been inherent in most statistical
flood models. Practical guidance on the incorporation of nonsta-
tionary extreme value analysis is now appearing for flood analysts
(US Army Corps of Engineers, 2018; Ryberg et al., 2020; Environ-
ment Agency, 2021a), enabling uncertainty relating to the choice of
an appropriate baseline to be quantified within a decision analysis.

For example, in JBA Consulting (2022) (Section 6), a decision
analyst’s choice between adopting a stationary or nonstationary
model for river flow extremes was framed as an epistemic uncer-
tainty in the design of an idealized flood management scheme. The

implications were investigated by assessing the sensitivity of the
scheme design to this choice between models, using a method
outlined in Figure 2, adapted from Rehan (2016) and Rehan and
Hall (2016). Context was provided by basing the idealized case on a
real flood management scheme, and adding a comparison with a
second source of epistemic uncertainty, represented by contamin-
ation of the gauged flow data with hydrometricmeasurement errors
that were introduced artificially for the purposes of the experiment.
The three possible inputs are plotted in Figure 3. The models
adopted for the flood peaks were generalized logistic distributions,
which are widely used in U.K. flood hydrology. Sensitivity of the
design with respect to these input choices was studied by simulating
an FRMeconomic appraisal tominimize the total present value cost
with respect to the design height of the scheme’s flood defense.
Monte Carlo simulation (MCS) was used to account for sampling
uncertainty about the flood peak distribution for comparison with
the epistemic uncertainties.

Results of the simulation in Figure 4 show that the adoption of a
nonstationary model for the flood peak distribution would make a
substantial difference to the idealized scheme design. This impact
was larger than the effect of the second counterfactual case, in
which errors were added to the peak flow data as a confounding
uncertainty, and distinguishable from the sampling uncertainty as
indicated by the interquartile range obtained by MCS.

Statistical models applied routinely in U.K. flood management
practice have usually been predicated on stationarity assumptions.
However, recent guidance (Environment Agency, 2021a) describes
situations in which a nonstationary model may be preferred to

Scheme cost and 
flood damage 

functions

Hydraulic model 
outputs (flow:depth 

function)

Flood peak extreme 
value model

Parameter 
covariance matrix

Ramdomly sample 
parameter sets

Optimise scheme 
design

Monte Carlo simulation

Stationary or non-
stationary model for peak 

river flows?

Gauged peak flow data 
contaminated by 

measurement errors?

Epistemic uncertainties

Scheme design with 
uncertainty

Figure 2. Schematic of flood risk management (FRM) decision simulation by JBA
Consulting (2022). Economic relationships for the scheme costs and flood damages
are combinedwithmodels for the extreme value distribution of peak river flows and the
hydraulic model outputs relating flows and flood depths. The choice between a
stationary or a nonstationary flood peak model is represented as an epistemic uncer-
tainty, as is the effect of artificially introducing errors to the gauged flows. Parameters
of the peak flowmodel are sampled randomly in a Monte Carlo simulation to allow the
epistemic uncertainties to be compared with aleatory uncertainty related to the
sampling of the gauged flows.
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inform the planning and economic appraisal of FRM schemes. The
guidance requires analysts to apply judgment after taking account
of different analytical approaches, which raises a need for the type
of epistemic uncertainty assimilation that is illustrated in the case
study.

Similar uncertainties arise in the context of landuse change. This is
both a historical issue, in terms of its influence on observed flood data,
and an uncertainty in evaluating future flood management actions
that involve nature-based solutions (NBS, also called working with
natural processes, and includingNFM).With rapidly growing interest
worldwide in the potential of NBS to deliver multiple co-benefits
(Iacob et al., 2014; Seddon et al., 2020), uncertainties about the effects
of land management changes on flooding have received considerable
attention (Dadson et al., 2017; Lane, 2017; Möller, 2019; Ellis et al.,
2021). Somemodeling studieshave attempted to captureuncertainties
about land use changes through conditional probabilistic approaches
to the inference of shifts in the parameters of deterministic models
(Hankin et al., 2021;Beven et al., 2022), although theremaybe residual

risks associated with some systems of NBS (Hankin et al., 2020).
Controversy about the effectiveness of NBS for FRM (Ellis et al.,
2021) can also be rooted in uncertainties, a form ofmonster embrace-
ment such as that documented by Turnhout et al. (2008) in two
controversies regarding cockle fisheries and gas mining in the Wad-
den Sea (an estuarine area with high ecological potential), where
scientific uncertainties were exploited by competing stakeholders to
undermine each other’s claims.

When confronted with deep uncertainties and knowledge con-
troversies, one strategy that may help to navigate a path from
pathological monster coping strategies toward assimilation is
expert elicitation. Structured, performance-weighted elicitation
has been shown in many applications to add decision- or policy-
relevant information (Colson and Cooke, 2018). Good elicitation
practice requires skill, resources and care; it is not a low-cost
alternative to research or analysis (Morgan, 2014), and can surface
meta-uncertainties related to cognitive biases (Morgan, 2014) or
methodological choices (Clemen, 2008). By conditioning expert
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hydrometric errors

Figure 4. Results of the flood risk management (FRM) decision simulation outlined in Figure 2, showing the economically optimum defense height, with uncertainties estimated by
drawing 1,000 samples from the covariancematrices of generalized logistic distribution parameters fitted to the peak river flows. Panels show the results for different combinations
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judgments against calibration questions (for which uncertainty
ranges are known objectively) and pooling multiple expert views,
it is possible to obtain probabilistic statements from an elicitation
(Aspinall and Cooke, 2013). In the case of scour damage to bridges
caused by river flooding, Lamb et al. (2017) demonstrated an
elicitation approach to deriving scour failure probabilities
(similar to the uncertain failure probabilities in our case study in
Section 5C) by applying the method of Cooke (1991).

C. Monster assimilation and adaptation: Fluvial flood-mitigation
case study
We introduce a mock or hypothetical flood-mitigation study on
pluvial or surface flooding in a local neighborhood to highlight
decision-making challenges in FRM. The study fits in the middle of
themonster-metaphor schematic of Figure 1, as it is of intermediate
complexity but some uncertainties are difficult to quantify. It is
inspired by an actual case. The study will employ a graphical cost-
effectiveness tool, see Bokhove et al. (2019) and Bokhove (2021),
which has successfully engaged decision-makers in France and
Slovenia (see Piton et al., 2018a, 2018b; Bokhove et al., 2021;
Bokhove et al., 2024). First, fluvial flooding of the neighborhood
can be caused by the adjacent river and the outflow of the stream or
brook “High Beck” into that river is closed off at higher river levels.
Newly built flood walls aim to protect against fluvial events with
return periods of 1 : 200yrs. Second, High Beck has caused inter-
mittent pluvial or surface flooding for decades, regarding beck-
flooding events with return periods of 1 : 10yrs or higher. To avoid
increased surface flooding when the beck cannot flow into the river,
a pumpwith amaximum rate ofQT = 0.245m3/s has been installed.
Hence, without further interventions, the intermittent surface-
flooding events remain. The stream or beck has a length of circa
2,000 m with a drop of circa 100 m. Upstream of the outflow into
the river, the beck passes under a canal in a nearly horizontal 200m-
long culvert passing under playing fields to the river, which culvert
floods the neighborhood in extreme beck events. The relevant canal
segment has a large size of 7.5 km × 10 m × 1.5 km with several
overflow weirs to the river.

The council is exploring flood-mitigation measures against the
surface flooding, as follows:

(C1) The beck flow gets diverted into the canal instead of being
channeled under the canal (C1). An extra canal-river overflow will
be built as well as an automated gate to divide water into canal
and/or culvert. Costs q1.

ðB2) Far upstream, bunds (B2) are built at a few flatter areas to slow
the beck’s flow during severe rainfall. The bunds partially prevent
the downstream surface flooding. Costs q2.

ðFP3 ) The culvert from canal to river will be opened up with
playing fields acting as flood-plain storage ( FP3) and protective
bunds are built. Costs q3.

Measures B2 and FP3 offer insufficient protection in separation
against the design flood but five permissible scenarios: C1, B2+FP3,
B2+C1, FP3+C1 and B2+FP3+C1, do offer protection against
150 years return-period beck floods modeled using intense 3 h
rainfall events. Except when C1 is fully used, scenarios with outflow
into the river do require prolonged pumping of beck flood waters
over the flood-defense wall into the river, for up to 10 h.

The following monster risks emerge:

(M1) There is a fear of berm collapse of the Victorian-age canal C1.
Breaches can occur at two weaker spots and would lead canal waters
through fields to the river. However, berm collapse is already a fear

to-be-dealt-with during heavy rainfall periods when the canal fills
from its uphill side. Failure probability p1 and damage qp1 were a
priori unknown. Both fear and ignorance combine in M1.

(M2) The new upstream bunds for B2 may fail with failure prob-
ability p2 < p1 but failure can lead to a flood wave of the beck into
urban areas with potential for a lot of damage, given the steep slopes,
carrying an estimate damage qp2, both a priori unknown. Ignorance
enters M2.

(M3) The bunds lying in the playing fields for FP3may fail with low
probability p3 < p2 < p1 and each flooding event requires a clean-up
of deposited debris; costs qp3 . This monster is one of fear of and
opposition against intermittent pollution of the public playing fields.

(M4) Subjective rejections or co-benefits of options can become
monsters or fairies. For example, the canal has ecological value and
cannot be used for flood protection (according to some); feeding
the canal with beck water offsets droughts (a co-benefit) and,
hydrographs, probabilities and costs include uncertainty. How
do we value such monsters and fairies in the decision-making
process?

Costs q1,q2,q3 are known. Probabilities p1,p2,p3 and costs
qp1 ,qp2 ,qp3 over the entire 25 years write-off period were unknown a

priori but have been estimated through expert elicitation, a scien-
tific consensus methodology (Aspinall and Cooke, 2013).

For a design-flood event with a 1 : 50yrs return period or an
annual event probability of 2% the beck’s flood hydrograph is
shown in Figure 5. Flooding occurs for discharges above the
threshold QT . The flood-excess-volume (FEV) responsible for
the flood damage is then the time-integrated discharge excess
Q tð Þ�QT over time t, with the event starting at t = t0 and ending
at t = t0 +T :

FEV =
Z t0 +T

t0

Q tð Þ�QTð Þdt ≈ 9600m3 ≈ 98m × 98m × 1m, (1)

reexpressed as a (dynamic) square lake of 1 m depth. This
High-Beck FEV-lake is large, given the size of the neighborhood.
Displaying FEV as a 1 m-deep lake therefore adds a sense of
size to a flooding event, with 1 m being (half ) a human-size scale.

Base costs q1,q2,q3 concern basic construction, occurring with
probability one. Monster failure or poorly quantified costs con-
cern costs p1qp1 ,p2qp2 ,p3qp3 with the probabilities including

adverse monstrous climate-change effects. Each option leads to
overall costs, assuming the probabilities to be independent, as
follows:

C analð Þ,C1 : q1 + p1qp1 , (2a)

B undð Þ+FP3,B2 +FP3 : q2 + q3 + p2qp2 + p3qp3 , (2b)

F loodð ÞP lain storageð Þ+C1,FP3 +C1 : q3 + q1 + p3qp3 + p1qp1 , (2c)

B2 +C1 : q2 + q1 + p2qp2 + p1qp1 , (2d)

B2 +FP3 +C1 : q2 + q3 + q1 + p2qp2 + p3qp3 + p1qp1 : (2e)

The five flood-mitigation scenarios eachmitigate the entire FEV
responsible for flood damage of the simulated 1 : 50yrs event,
which is the designated design flood. Each scenario can be graphed
as a square lake viewed from above with each option ðC1,B2,FP3)
portioning the square lake, cf. Figure 6, with costs per option
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overlaid. Any option involving the canal ðC1) can include add-
itional storage against higher return-period or monster events
beyond the target FEV emerging from the design flood, thus
assimilating some monster events. Hitherto, the graphical cost-
effectiveness tool has been used to inform decision-makers to make
the available scenarios transparent, but no process has been devel-
oped to rationally and quantifiably choose between them. How do
we value the monsters and fairies involved, in a just and science-
based decision-making process, and choose the best one among
these flood-mitigation scenarios?

Note that in the square graphs presented here, we have left
out the uncertainties in the FEV and the flood-mitigation-
measure volumes (the rectangular areas in the graphs). The latter
(mitigation) uncertainties can be represented to some extent
by using the vertical axis as uncertainty axis, from least
to most uncertainty, leading to triangular and quadrilateral
instead of rectangular shapes, cf. Bokhove et al. (2019) and
Bokhove (2021).

The above is an example of how the strategies of monster
assimilation and monster adaptation can be. The decision problem
has been made structured and complexity has been reduced to an
unavoidable minimum level. Yet a final step has to be made:
decision-makers need to be informed in a comprehensible way,
to support what decisions are deemed “good.” Otherwise, new
monsters of uncertainty can grow. The question is also what
characteristics define “good,” that is, decisions need to be rational,
cost-effective/efficient, have minimum regret and maximum polit-
ical support and so forth. Furthermore, decision-makers should be
supported in Bayesian decision-making, which implies that uncer-
tainties are explicitly incorporated in the decision-making process
(Morgan and Henrion, 1990).

The importance of what could characterize and qualify a “good
decision” in FRM can be illustrated by considering what can cause
suboptimal decisions. Addressing only one dimension of flood-

mitigation problems, albeit rationally, may adversely affect other
aspects in that the chosen solution taken:

(a) may lead to new problems (e.g., loss of ecological functions)
(Auerswald et al., 2019);

(b) has unintended long-term consequences (e.g., a dependence on
higher flood-defense walls to contain river levels for
1-in-200 years protection in a narrow channel could lead to a
false sense of security, especially as return periods reduce due to
climate change, causing future overtopping or breaches) (Kates
et al., 2006; Di Baldassarre et al., 2013a, 2013b; Gohari et al.,
2013); and,

(c) has an uneven distribution of costs and benefits when
other sectors and social groups are taken into account
(e.g., if optimism bias about the extrapolation of NFM bene-
fits were to cause reduced investment in other, more pre-
dictable, flood risk mitigations for vulnerable communities)
(Savelli et al., 2021).

Morgan and Henrion (1990) comprehensively discuss decision-
taking criteria in their Section 3.4. In a nutshell, which does
insufficient justice to their writing: they distinguish utility-based,
rights-based, technology-based and hybrid criteria. In particular,
maximization of a multi-attribute utility function would address
the points above. Various relevant aspects are then brought
together in one utility function, without assigning monetary
values to relevant aspects. While that sounds simple, an apparent
drawback can be that the as-such defined function often becomes
complex and difficult to understand for the decision-makers.
Transparency thereon and on the general decision-process can
be achieved by defining the relevant decision-criteria and asso-
ciated functionality at the beginning of the process with all
relevant actors, including communication experts, in order to
clearly define and accept the chosen criteria. Moreover, also in
FRM, it is important to make the decision-process adaptive such

Figure 5. Hydrograph of a simulated 150 years return-period design flood-event of High Beck, displaying discharge Q tð Þ versus time twith 5%error bars indicated as dotted lines.
The integrated discharge above the flooding threshold QT = 0:245m3=s constitutes the flood-excess volume, here FEV ≈ 9600m3, causing the flood damage.
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Figure 6. Square-lake cost-effectiveness graphs of five flood-mitigation scenarios to prevent High Beck surface flooding for the 1 : 50yr design flood. These involve possible
combinations of storage into canal ( C1, purple), upstream bunds ( B2, red) and/or downstream flood-plain storage ( FP3, green). Base costs q1,q2,q3 plus costs with uncertainty
p1qp1 ,p2qp2 ,p3qp3 have been superimposed using the double-sided arrows. Each square lake with a lateral depth of 1m (out of the page) and side lengths of 98m represents the FEV

( FEV ≈ 9600m3 ≈ 98m× 98m× 1m) to be reduced to zero by the combinations of mitigation measures. The canal measure C1 can provide extra mitigation (as indicated) by
diverting less flood water to the downstream fields, thus reducing FP3, and some to the canal C1. In those partial cases, uncertain costs may be lower. Diverting flood waters into
the canal does not affect the upstream measure B2.
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that it can be revisited in the future, when new technology,
observational data and information become available. Most
organizations might find it difficult to adopt such adaptivity,
but it should be adopted as long as the process is primarily geared
to focus on improved decision-making and not on assigning
blame for taking past wrong or suboptimal decisions. Finally,
Morgan and Henrion (1990) discuss an “approved process” as
decision criterion and declare that to be a widely used approach,
in which a decision is considered acceptable when a specified set
of procedures is followed. They point out that the language of
decision analysis is inappropriate for such a social as opposed to
analysis-based process.

A graphical cost-effectiveness tool was exemplified through a
hypothetical study with five flood-mitigation scenarios. Each scen-
ario had base construction costs and potentially additional costs
associated with failures of uncertain nature, and some scenarios had
a co-benefit. An outstanding question is how to construct a
decision-tree in order to make the best decision under such uncer-
tainties. While the square-lake cost-effectiveness graphics has
proven to be beneficial to decision-makers, see Piton et al.
(2018a) and Piton et al. (2018b), a pressing question is how to
visualize and explain decision-trees such these can be understood
and applied by decision-makers.

This case study falls in the middle of our schematic of FRM-
challenges displayed in Figure 1, as it is of intermediate complexity
with estimates of the uncertainties involved. Intuitively, it seems
obvious that the optimal scenario must include the canal-storage
option since the canal offers extra buffer capacity beyond the target
flood-excess volume FEV.However, when it turns out that the canal
option becomes (nearly) impossible, it shifts the study to the right
side of the schematic where FRM is poorly-structured: for example,
when a combined-sewer overflow (CSO) pollutes the beck during
intermediate rainfall and a short extra CSO-pipe along part of the
beck and debris filter could prevent pollution flowing into the canal
and lower pollution flow into the river, the issue can become that
the public council is only responsible to deal with flooding, that the
nonprofit “Trust” only maintains the canal and its ecological value,
that private business “The Shire” is only responsible for the sewer
system and that there is no legislation to enforce effective collab-
oration to solve the integral water-sewer management challenge
described. A case of monster anesthesia?

The decision-making bodies on FRM can have highly different
levels of expertise. In the Netherlands, for example, (fluvial and
pluvial) FRM is channeled to a large extent through so-called
waterboards or “Waterschappen,” which boards contain elected
people who are exclusively focusing on decisions in water manage-
ment. Perhaps in contrast, in theUK, FRMdecisions span a range of
organizations with differing responsibilities (Finlay and Bolton,
2022), sometimes working independently, but often in partnership,
and involving people with range of expertise and interests. Conse-
quently, equipping decision-making bodies with adequate
(visualization) tools to be engaged in a meaningful way with
FRM will be a different task depending on the situation.

Discussion

In the present contribution, we have described the various guises of
uncertainty monsters and possible coping strategies. If efficient
decision-making in FRM is aimed for, then monster adaptation
and monster assimilation are the preferred coping strategies. We
argued that these strategies benefit from improving structure and

reducing complexity of decision problems. Against this light, it is
helpful to unpack the steps needed to effectively communicate
uncertainties in FRM.

As exemplified by the cases above, a dominant aspect of FRM is the
epistemic nature of uncertainty. That is, it deals with phenomena that
we do not fully understand (yet) due to limited scientific knowledge or
one being ignorant. Dealing effectively with epistemic uncertainty
requires a deliberate risk communication strategy. In their framework,
Van der Bles et al. (2019) stipulated that (1) what, (2) in what form,
(3) to whom and (4) to what effect are all elements to be considered:

1. the object, source, level and magnitude of uncertainty;
2. how is the uncertainty described, in which format, and via

which medium?
3. what kind of audience is involved, what is their relationship

with the content of the communication and the communicator?
4. communication can have impact on the thinking (cognition),

feeling (affect), trust and, importantly, decision-making.

However, neithermaximized structure norminimized complex-
ity of decision problems nor prudent communication still do not
guarantee that decision-makers take this information into account.
Indeed, monster adaptation and assimilation imply careful consid-
eration of information, referred to as the central route of informa-
tion processing (Petty and Cacioppo, 1984). Decision-makers may
not always be motivated or equipped to this. The attitudes of
decision-makers can be changed via an alternative route, to which
Petty and Cacioppo (1984) refer as the peripheral route, character-
ized by informational cues, such as the number of arguments, the
implied expertise of the communicator and so forth. These cues are
not directly related to content of themessage, butmay still influence
the decision-making process. Possibly, the involvement of decision-
makers in monster adaptation or assimilation could be achieved by
a more peripheral route of information processing along storylines,
as Shepherd et al. (2018) proposed for representing uncertainty in
physical aspects of climate change. The conventional approach to
representing uncertainty in the physical aspects of climate change is
probabilistic, based on ensembles of climate model simulations.
However, in the face of deep uncertainties, the known limitations of
this approach are becoming increasingly apparent. An alternative is
thus emerging which may be called a “storyline” approach. Shep-
herd et al. (2018) defined storylines as “a physically self-consistent
unfolding of past events, or of plausible future events or pathways.
No a priori probability of the storyline is assessed; emphasis is
placed instead on understanding the driving factors involved, and
the plausibility of those factors.”

As discussed, structured and evidence-based approaches to
communication will help our uncertainty monsters to be assimi-
lated, provided that sufficient resources can be allocated to devel-
oping communication strategies that integrate with analyses such
as those discussed in this paper. Where uncertainties can only be
expressed as conditional on assumed future scenarios or narratives,
the expert elicitation approach discussed earlier may be useful.
Other, innovative approaches may emerge to aggregate informa-
tion about uncertain future risks; for example, prediction markets
have been proposed as an efficient mechanism to allocate funding
for applied climate research (Roulston et al., 2022).
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