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EXACT SOLUTIONS FOR THE SINGULARLY PERTURBED
RICCATI EQUATION AND EXACT WKB ANALYSIS

NIKITA NIKOLAEV

Abstract. The singularly perturbed Riccati equation is the first-order nonlin-

ear ordinary differential equation �∂xf = af2 + bf + c in the complex domain

where � is a small complex parameter. We prove an existence and uniqueness

theorem for exact solutions with prescribed asymptotics as �→ 0 in a half-plane.

These exact solutions are constructed using the Borel–Laplace method; that is,

they are Borel summations of the formal divergent �-power series solutions. As

an application, we prove existence and uniqueness of exact WKB solutions for

the complex one-dimensional Schrödinger equation with a rational potential.

§1. Introduction

The purpose of this article is to analyze the singularly perturbed Riccati equation

�∂xf = af2+ bf + c, (1)

where x is a complex variable and � is a small complex perturbation parameter, and where

the coefficients a,b,c are holomorphic functions of (x,�) which admit asymptotic expansions

as �→ 0. The main problem we pose here is to construct canonical exact solutions, that is,

solutions that are holomorphic in both variables and that are uniquely determined by their

prescribed asymptotics as �→ 0. This is a quintessential problem in singular perturbation

theory.

1.1 Motivation

Existence and uniqueness theory for first-order ODEs is obviously a very well-developed

subject which can also be analyzed in the presence of a parameter like �. However, it gives

no information about the asymptotic behavior of solutions as �→ 0. Attempting to solve

an equation like (1) by expanding it in powers of � generically leads to divergent power

series solutions.

Of course, the subject of Riccati equations is vast with an exceptionally long history,

appearing in a very wide variety of contexts (see, e.g., [15]). Our motivation has two primary

sources.

One is the exact WKB analysis of Schrödinger equations in the complex domain [3, 4, 7,

8, 16, 20]. This very powerful approximation technique was popularized in the early days of

quantum mechanics and goes back to as early as Liouville. However, the natural question

of existence of exact solutions with prescribed asymptotic behavior as �→ 0 (often called

exact WKB solutions) has remained open in general. (Though in the course of finishing a
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draft of this paper, we became aware of the recent work of Nemes [10].) Our main result can

be used to give a positive answer to this question in a large class of problems (generalizing

in particular the recent results of Nemes). This is briefly described in a special case in §6.3,
and a full description is given in [12].

Another interesting problem serving as motivation for this paper is encountered in

the analysis of singularly perturbed differential systems and more generally meromorphic

connections on holomorphic vector bundles over Riemann surfaces. Given a singularly

perturbed differential system with a singular point, the question is that of constructing

a filtration by growth rates on the vector space of local solutions which is holomorphically

varying in � and has a well-defined limit as �→ 0. For a large class of systems, the main result

in this article can be used to construct such filtrations and furthermore show that they con-

verge to the eigendecomposition of the unperturbed system as �→ 0 as well as to the eigen-

decomposition of the principal part of the system as x tends to the singular point (see [13]).

1.2 Setting and overview of main results

Take a domain X ⊂ Cx, a sector S ⊂ C� at the origin, and consider a Riccati equation

(1) whose coefficients a,b,c are holomorphic functions of (x,�) ∈ X×S which admit locally

uniform asymptotic expansions â, b̂, ĉ as �→ 0 in S. More details are presented in §2, but for
the purposes of this introduction, let us focus on the most ubiquitous scenario where a,b,c

are in fact polynomials in �. The leading-order part in � of the Riccati equation (1) is the

quadratic equation a0f
2
0 +b0f0+c0 =0, which generically has two distinct local holomorphic

solutions f±
0 away from turning points (i.e., the zeros of the discriminant D0:=b20−4a0c0).

Let U⊂X be a domain free of turning points that supports a univalued square-root branch√
D0. Then it is well known (see Theorem 3.1) that (1) has precisely two formal solutions

f̂± on U which are uniquely determined by the leading-order solutions f±
0 via a recursion

on the coefficients f±
k . The main goal of this paper is to promote—in a canonical way—the

formal solutions f̂± to exact solutions f± (formally defined in §2), that is, holomorphic

solutions defined on U0×S0 where U0 ⊂ U and S0 ⊂ S is some sectorial domain such that

f± ∼ f̂± as �→ 0 in S0.

Although existence of exact solutions is a classical fact in the theory of singularly

perturbed differential equations (see, e.g., [21, Theorem 26.1]), they are inherently

nonunique due to the problem of missing exponential corrections in asymptotic expansions.

Part of the issue is that classical techniques in general give no control on the size of

the opening of the sectorial domain S0 (see, e.g., the remark in [21, p. 144], immediately

following Theorem 26.1). In particular, it is impossible in general to identify a given exact

solution with its asymptotic formal solution.

In this paper, we develop a general procedure applicable to a large class of problems to

obtain canonical exact solutions which indeed can be identified in a precise sense with their

corresponding asymptotic formal solutions. In order to achieve this, the opening angle |A|
of S must be at least π, the most fundamental case being |A|= π. For the purposes of this

introduction, let us assume that A= (−π
2 ,+

π
2 ).

Fix a basepoint x0 ∈ X that is not a turning point, choose a local square-root branch√
D0 near x0, and consider the Liouville transformation

z =Φ(x):=

∫ x

x0

√
D0(t)dt. (2)
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Suppose that x0 has a neighborhood W ⊂ X which is mapped by Φ to a horizontal strip

H=
{
z
∣∣ − r < Im(z)< r

}
of some width r > 0. Suppose furthermore that the �-polynomial

coefficients ak, bk, ck of a,b,c are bounded on W by
√
D0. Then, under these assumptions,

the main results of this paper can be summarized as follows.

Theorem 1.1. The Riccati equation (1) has a pair of canonical exact solutions f± near

x0 ∈ X which are asymptotic to the formal solutions f̂± as � → 0 in the right half-plane.

Namely, there is a neighborhood U0 ⊂X of x0 and a sectorial subdomain S0 ⊂ S with the same

opening A such that the Riccati equation (1) has a unique pair of holomorphic solutions f±
on U0×S0 which are Gevrey asymptotic to f̂± as �→ 0 along the closed arc Ā uniformly

for all x ∈ U0:

f± � f̂± as �→ 0 along Ā, unif. ∀x ∈ U0. (3)

Moreover, f± is the uniform Borel resummation of the formal solution f̂±:

f± = S
[
f̂±
]
. (4)

This is a special case of Theorems 5.1 and 5.2, which are the two main results of this

paper.

1.3 Discussion and method

We construct the canonical exact solutions f± by employing relatively basic and

classical techniques from complex analysis which form the basis for the more modern and

sophisticated theory of resurgent asymptotic analysis. Namely, we use the Borel–Laplace

method, also known as the theory of Borel–Laplace summability. We stress that the Borel–

Laplace method is nothing other than the theory of Laplace transforms, written in slightly

different variables, echoing the words of Sokal [17]. As such, we have tried to keep our

presentation very hands-on and self-contained, so the knowledge of basic complex analysis

should be sufficient to follow.

An additional significant benefit of our approach is that we obtain uniqueness of the

solution in the same sector where the initial data are specified. This feature does not hold

for other less explicit approaches, such as, e.g., [21, Theorem 26.1] where an existence

theorem is proved only on a smaller subsector and there is no hope of uniqueness.

Finally, we want to take the opportunity to acknowledge the unpublished work of Koike

and Schäfke on the Borel summability of WKB solutions of Schrödinger equations with

polynomial potentials. See [19, §3.1] for a brief account of their work. Their ideas (which

were kindly explained to the author in a private communication from Kohei Iwaki) provided

the initial inspiration for the more general strategy of the proof pursued in this article.

§2. Singularly perturbed Riccati equations

2.1 Background assumptions

Throughout the paper, we fix a complex plane Cx with coordinate x and another complex

plane C� with coordinate �. Let X be a domain in Cx or indeed a coordinate chart on a

Riemann surface. Let S ⊂ C� be a sectorial domain at the origin with opening arc A. We

assume that 0< |A| ≤ 2π.

Consider the Riccati equation

�∂xf = af2+ bf + c (5)
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whose coefficients a,b,c are holomorphic functions of (x,�)∈X×S admitting locally uniform

asymptotic expansions with holomorphic coefficients as �→ 0 along A:

a(x,�)∼ â(x,�):=
∞∑

n=0

an(x)�
n,

b(x,�)∼ b̂(x,�):=
∞∑

n=0

bn(x)�
n,

c(x,�)∼ ĉ(x,�):=
∞∑

n=0

cn(x)�
n.

as �→ 0 along A, loc.unif. ∀x ∈ X, (6)

The main problem we pose in this article is to find canonical exact solutions of the Riccati

equation (5) in the following sense.

Definition 2.1. Fix any phase θ∈A. A local θ-exact solution of the Riccati equation (5)

near a point x0 ∈X is a holomorphic solution f = f(x,�), defined on a domain U0×S0 where

U0 ⊂ X is a neighborhood of x0 and S0 ⊂ S is a sectorial subdomain with opening A0 ⊂ A

containing θ, such that f admits an asymptotic expansion with holomorphic coefficients as

�→ 0 along A0 uniformly for all x ∈ U0.

A θ-exact solution on a domain U ⊂ X is a holomorphic solution f = f(x,�) which is a

local θ-exact solution near every point in U. That is, f is a holomorphic solution defined

on a domain U ⊂ U× S with the following property: for every x0 ∈ X, there is a domain

neighborhood U0 ⊂ U of x0 and a sectorial domain S0 ⊂ S with opening A0 ⊂ A containing

θ such that f admits an asymptotic expansion with holomorphic coefficients as �→ 0 along

A0 uniformly for all x ∈ U0.

2.2 Examples

The following is a list, included here for illustrative purposes only, containing a few

explicit examples of Riccati equations to which the main results in this paper can be applied.

The most typical situation is one where the coefficients a,b,c of the Riccati equation (5)

are polynomials in � with coefficients which are rational functions of x. In this case, X is the

complement of the poles in Cx, and the sectorial domain S can be taken to be the whole

open right half-plane {Re(�)> 0}. The simplest example is

(1) �∂xf = f2−x.

This Riccati equation is examined in great detail in §6.2. It arises in the exact WKB

analysis of the Airy equation �2∂2
xψ(x,�) = xψ(x,�) (see [12]). In this case, X = Cx

and the sectorial domain S is the open right half-plane {Re(�)> 0}. If U is any of the

three sectorial domains in Cx given by {0< arg(x)<+4π/3}, or {+2π/3< arg(x)<+2π},
or {−2π/3< arg(x)<+2π/3}, then on each of these domains, the main existence and

uniqueness result in this paper produces a pair of canonical exact solutions. More generally,

(2) �∂xf = f2+ q(x),

where q(x) is any polynomial or a rational function with poles of order 2 or higher. In this

case, S can again be arranged to be the right half-plane, and U is a sectorial domain near

a pole of q(x) of order 2 or higher.
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Many Riccati equations arise from the WKB analysis of classical second-order differential

equation. For example, the following Riccati equation appears in the WKB analysis of the

Gauss hypergeometric equation:

(3) �∂xf = f2+ γ−(α+β+1)x
x(x−1) f + αβ

x(x−1) for any α,β,γ ∈ C∗.

Riccati equations also arise in the analysis of singularly perturbed second-order systems.

For example, the Riccati equation

(4) �∂xf = �f2+(1−x)f +x�

arises in the analysis of the system �∂xψ+

[
1 −�

x� x

]
ψ = 0. See [13].

Our methods also apply to the following nontrivial deformation of example (1):

(5) �∂xf = f2−x+xE(x,�) where E(x,�):=
∫ +∞
0

e−ξ/�

x+ξ dξ.

The sectorial domain S in this case is the open right half-plane. The function E is

holomorphic in � ∈ S, and it admits a locally uniform asymptotic expansion as � → 0 in

the right half-plane. Notice, however, that E is not holomorphic at � = 0, and it also has

nonisolated singularities along the negative real axis in Cx. Nevertheless, if U is the domain

given by {−2π/3< arg(x)<+2π/3} or by {0< arg(x)<+π} or {+π < arg(x)<+2π},
then our method yields canonical exact solutions on U.

§3. Formal perturbation theory

In this section, we analyze the Riccati equation from a purely formal perspective whereby

we ignore all analytic considerations in the �-variable.

Thus, we consider the formal Riccati equation

�∂xf̂ = âf̂2+ b̂f̂ + ĉ, (7)

where â, b̂, ĉ are arbitrary formal power series in � with holomorphic coefficients on some

domain X in Cx. By definition, a formal solution of (7) on a domain U ⊂ X is any formal

power series with holomorphic coefficients f̂ = f̂(x,�) that satisfies the formal equation (7).

3.1 Leading-order solutions

Consider the leading-order equation corresponding to (7):

a0f
2
0 + b0f0+ c0 = 0. (8)

It is a quadratic equation in the unknown variable f0, and we refer to its solutions as

leading-order solutions of the Riccati equation. Generically, they are locally holomorphic,

but may have poles and branch-point singularities.

The discriminant of (8),

D0:=b20−4a0c0, (9)

which we call the leading-order discriminant of the Riccati equation, is a holomorphic

function on X. We always assume that D0 is not identically zero. The zeros of D0 are called

turning points of the Riccati equation, and all other points in X are called regular points.

Locally, away from turning points, there is at least one holomorphic leading-order solution.

For reference, we state the following elementary lemma.
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Lemma 3.1 (Holomorphic leading-order solutions). Let U ⊂ X be any domain free of

turning points such that a univalued square-root branch
√
D0 of D0 can be chosen on U. Then

the leading-order equation (8) has at least one holomorphic solution on U. In addition, if a0
is nonvanishing on U, then (8) has two holomorphic solutions. Moreover, any holomorphic

solution is bounded on U whenever the coefficients a0, b0, c0 are bounded by
√
D0 on U.

We will always label the leading-order solutions as follows:

f±
0 :=

−b0±
√
D0

2a0
if a0 
≡ 0, (10a)

f+
0 :=− c0/b0 if a0 ≡ 0. (10b)

This choice of labels yields the following relations:

±
√
D0 = 2a0f

±
0 + b0 and

√
D0 = a0

(
f+
0 −f−

0

)
. (11)

Thus, if a0 is nonvanishing, then both f±
0 from (10a) are holomorphic functions on U. If a0

has zeros in U, then f+
0 from (10a) remains holomorphic on U, but f−

0 has poles where a0
has zeros. If a0 ≡ 0, then f+

0 from (10b) is a holomorphic function on U.

3.2 Existence and uniqueness of formal solutions

The following elementary theorem says that a formal Riccati equation (7) always has

at least one local solution away from turning points, and it is uniquely specified in the

leading-order.

Theorem 3.1 (Formal existence and uniqueness theorem). Consider the formal Riccati

equation (7). Assume that its leading-order discriminant D0 is not identically zero. Let

U⊂X be a domain free of turning points that supports a univalued square-root branch
√
D0.

(1) If a0 ≡ 0, then (7) has a unique formal solution f̂+ on U. Its leading-order term is f+
0

from (10b).

(2) If a0 
≡ 0 and nonvanishing on U, then (7) has exactly two distinct formal solutions f̂±
on U. Their leading-order terms f±

0 are given by (10a).

(3) If a0 
≡ 0 but has zeros in U, then (7) has a unique formal solution f̂+ on U. Its leading-

order term f+
0 is the unique holomorphic leading-order solution on U given by (10a).

Moreover, the coefficients f±
k of f̂± for k ≥ 1 are given by the following recursive formula:

f±
k =± 1√

D0

∂xf
±
k−1∓

1√
D0

(
k2,k3 �=k∑

k1+k2+k3=k

ak1f
±
k2
f±
k3
+

k2 �=k∑
k1+k2=k

bk1f
±
k2
+ ck

)
. (12)

Proof. We expand the formal Riccati equation (7) order-by-order in �:

�0
∣∣ 0 = a0f

2
0 + b0f0+ c0; (13)

�1
∣∣ ∂xf0 = (2a0f0+ b0)f1+a1f

2
0 + b1f0+ c1; (14)

�2
∣∣ ∂xf1 = (2a0f0+ b0)f2+a0f

2
1 +2a1f0f1+a2f

2
0 + b1f1+ b2f0+ c2; (15)

...
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�k
∣∣ ∂xfk−1 = (2a0f0+ b0)fk+

k2,k3 �=k∑
k1+k2+k3=k

ak1fk2fk3 +

k2 �=k∑
k1+k2=k

bk1fk2 + ck. (16)

...

Observe that these are no longer differential equations because the derivative term at each

order depends only on the solutions from previous orders. If we fix a leading-order solution

f±
0 , then the expression (2a0f

±
0 + b0), appearing as a factor in front of f±

k in each equation

(16), is simply ±
√
D0. From the assumption that D0 
≡ 0, it follows that at each order in

�, we can uniquely solve for f±
k . This establishes the formula (12), from which the other

statements readily follow.

Remark 3.1. In Theorem 3.1(3), the Riccati equation (7) also has a singular formal

solution f̂− on U whose leading-order term is the singular leading-order solution f−
0 on U.

The singularities of the coefficients of f̂− are poles occurring at the zeros of a0. We will exam-

ine in more detail the singularities of formal (and exact) solutions in a forthcoming paper.

Remark 3.2 (Formal discriminant). Since in the generic situation the Riccati equation

has precisely two formal solutions f̂+, f̂−, we can introduce a notion of discriminant for the

Riccati equation analogous to the discriminant of a quadratic equation by simply mimicking

the formula.

Thus, let U⊂X be a domain free of turning points that supports a univalued square-root

branch
√
D0, and suppose that a0 is nonvanishing on U. We define the formal discriminant

of the Riccati equation (7) by the following formula:

D̂:=â2
(
f̂+− f̂−

)(
f̂−− f̂+

)
. (17)

It is a formal power series with holomorphic coefficients on U, and its leading-order term

is precisely the leading-order discriminant D0. This quantity plays an important role in

addressing global questions in the WKB analysis that will be studied elsewhere.

3.3 Gevrey regularity of formal solutions

In this subsection, we prove the following general result about the regularity of formal

solutions, which generalizes Proposition A.1.1 in [1, p. 19] (see also [20, p. 252]), where

it is assumed that â = −1, b̂ = 0, and ĉ is an entire holomorphic function of x only (i.e.,

ĉ(x,�) = c0(x)).

Proposition 3.1 (Local Gevrey regularity of formal solutions). Consider a formal

Riccati equation (7) on X with leading-order discriminant D0 
≡ 0. Let U⊂X be any domain

free of turning points that supports a univalued square-root branch
√
D0, and let f̂ be a

formal solution on U. If the coefficients â, b̂, ĉ are locally uniformly Gevrey series on U,

then so is f̂ . In particular, the formal Borel transform φ̂(x,ξ):=B̂[ f̂ ](x,ξ) of f̂ is a locally

uniformly convergent power series in ξ.

Concretely, Proposition 3.1 says that if the coefficients ak, bk, ck of the power series â, b̂, ĉ

grow at most like k!, then the coefficients fk of any formal solution f̂ likewise grow at most

like k!. This is made precise in the following corollary.

Corollary 3.1 (At most factorial growth). Consider a formal Riccati equation (7) on

X with leading-order discriminant D0 
≡ 0. Let U⊂ X be any domain free of turning points

that supports a univalued square-root branch
√
D0, and let f̂ be a formal solution on U.
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Take any pair of nested compactly contained subsets U0 � U1 � U, and suppose that there

are real constants A,B > 0 such that∣∣ak(x)∣∣, ∣∣bk(x)∣∣, ∣∣ck(x)∣∣≤ABkk! (∀k ≥ 0,∀x ∈ U1). (18)

Then there are real constants C,M > 0 such that∣∣fk(x)∣∣≤ CMkk! (∀k ≥ 0,∀x ∈ U0). (19)

Proof of Proposition 3.1. Let DR ⊂U be any sufficiently small disk of some radius R> 0

on which â, b̂, ĉ are uniformly Gevrey and
√
D0 is bounded both above and below by a

nonzero constant. Thus, there are real constants A,B > 0, which give the following uniform

bounds: ∣∣ak(x)∣∣, ∣∣bk(x)∣∣, ∣∣ck(x)∣∣≤ABkk! and A−1 ≤
∣∣√D0(x)

∣∣≤A (20)

for all integers k ≥ 0 and all x ∈ DR. It will be convenient for us to assume without loss of

generality that A≥ 3 and R< 1. We will prove that f̂ is a uniformly Gevrey power series on

any compactly contained subset of DR. In fact, we will prove something a little bit stronger

as follows. For any r ∈ (0,R), denote by Dr ⊂ DR the concentric subdisk of radius r. Then

Proposition 3.1 follows from the following claim.

Claim 3.1. There exist real constants C,M > 0 such that, for any r ∈ (0,R),∣∣fk(x)∣∣≤ CMkδ−kk! (21)

for all integers k ≥ 0 and uniformly for all x ∈ Dr, where δ:=R− r. (The constants C,M

are independent of r,x,k, but may depend on R,A,B.) In particular, for any r ∈ (0,R), the

power series f̂ is Gevrey uniformly for all x ∈ Dr.

Proof. First, it is easy to find a constant C > 0 (independent of r) such that∣∣f0(x)∣∣≤ C (22)

uniformly for all x ∈ DR (see Lemma 3.1). Without loss of generality, assume that

C ≥A≥ 3. (23)

Then the bound (21) will be demonstrated in two main steps. First, we will recursively

construct a sequence (Mk)
∞
k=0 of positive real numbers such that, for all k ≥ 0 and all

r ∈ (0,R), we have the following uniform bound for all x ∈ Dr:∣∣fk(x)∣∣≤ CMkδ
−kk!. (24)

Then we will show that there is a constant M > 0 (independent of r) such that Mk ≤Mk

for all k.

Construction of (Mk)
∞
k=0. The bound (24) for k = 0 is just the bound (22) if we

put M0:=1. Now, we use induction on k and formula (12). Assume that we have already

constructed positive real numbers M0, . . . ,Mk−1 such that, for all i = 0, . . . ,k− 1, all r ∈
(0,R), and all x ∈ Dr, we have the bound∣∣fi(x)∣∣≤ CMiδ

−ii!. (25)

In order to derive an estimate for fk, we first need to estimate the derivative term ∂xfk−1,

for which we use Cauchy estimates as follows.
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Sub-Claim. For all r ∈ (0,R) and all x ∈ Dr,∣∣∂xfk−1(x)
∣∣≤ C2Mk−1δ

−kk!. (26)

Proof of Sub-Claim. For every r ∈ (0,R), define

δk:=δ
k

k+1
and rk:=R− δk.

Inequality (25) holds in particular for i= k−1, r = rk. So for all x ∈ Drk , we find∣∣fk−1(x)
∣∣≤ CMk−1δ

1−k
k (k−1)!≤ C2Mk−1δ

−kk! δ
k+1 .

Here, we have used the estimate (1+1/k)k−1 ≤ e≤C. Finally, notice that for every x ∈Dr,

the closed disk around x of radius rk − r = δ− δk = δ
k+1 is contained inside the disk Drk .

Therefore, Cauchy estimates imply (26).

Using (20), (23), (25), (26), and the fact that δ < 1, we can now estimate fk:

∣∣fk∣∣≤ C

(∣∣∂xfk−1

∣∣+ k2,k3 �=k∑
k1+k2+k3=k

∣∣ak1

∣∣ · ∣∣fk2

∣∣ · ∣∣fk3

∣∣+ k2 �=k∑
k1+k2=k

∣∣bk1

∣∣ · ∣∣fk2

∣∣+ ∣∣ck∣∣
)

≤ C

(
C2Mk−1δ

−kk!+ δ−kC3k!

k2,k3 �=k∑
k1+k2+k3=k

Bk1Mk2Mk3

+δ−kC2k!

k2 �=k∑
k1+k2=k

Bk1Mk2 +CBkk!

)

≤ C4

(
Mk−1+

k2,k3 �=k∑
k1+k2+k3=k

Bk1Mk2Mk3 +

k2 �=k∑
k1+k2=k

Bk1Mk2 +Bk

)
δ−kk!.

We can therefore define, for k ≥ 1,

Mk:=C3

(
Mk−1+

k2,k3 �=k∑
k1+k2+k3=k

Bk1Mk2Mk3 +

k2 �=k∑
k1+k2=k

Bk1Mk2 +Bk

)
. (27)

Construction of M . To see that Mk ≤ Mk for some M > 0, we argue as follows.

Consider the following power series in an abstract variable t :

p̂(t):=
∞∑
k=0

Mkt
k and q(t):=

∞∑
k=1

Bktk ∈ C[[t]].

Note that p̂(0) =M0 = 1 and q(0) = 0, and notice that q(t) is convergent. We will show that

p̂(t) is also convergent. The key is the observation that they satisfy the following algebraic

equation:

p̂(t)−1 = C3
(
tp̂(t)+ q(t)p̂(t)2+

(
p̂(t)−1

)2
+ q(t)p̂(t)+ q(t)

)
. (28)

This equation was found by trial and error, and it is straightforward to verify directly by

substituting the power series p̂(t), q(t) and comparing the coefficients of tk using the defining

formula (27) for Mk. Namely, the terms Mk−1 and Bk in (27) correspond, respectively, to
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the terms tp̂(t) and q(t) in (28), whereas the first and second sums correspond, respectively,

to q(t)p̂(t)2+
(
p̂(t)−1

)2
and q(t)p̂(t).

Now, consider the following holomorphic function in two complex variables (t,p):

F (t,p):=−p+1+C3
(
tp+ q(t)p2+(p−1)2+ q(t)p+ q(t)

)
.

It has the following properties:

F (0,1) = 0 and
∂F

∂p

∣∣∣∣
(t,p)=(0,1)

=−1 
= 0.

By the Holomorphic Implicit Function Theorem, there exists a unique holomorphic function

p(t) near t = 0 such that p(0) = 1 and F
(
t,p(t)

))
= 0. Thus, p̂(t) must be its convergent

Taylor series expansion at t = 0 and its coefficients grow at most exponentially: that is,

there is a constant M > 0 such that Mk ≤Mk. This completes the proof of the Claim and

hence of Proposition 3.1.

§4. WKB geometry

In this intermediate section, we introduce a coordinate transformation which plays a

central role in the construction of exact solutions in §5. It is used to determine regions in

Cx where the Borel–Laplace method can be applied to the Riccati equation.

The material of this section can essentially be found in [18, §§9–11] (see also [2, §3.4]).
These references use the language of foliations given by quadratic differentials on Riemann

surfaces. The relevant quadratic differential is D0(x)dx
2. The reader may be more familiar

with the set of critical leaves of this foliation, which is encountered in the literature under

various names including Stokes curves, Stokes graph, spectral network, geodesics, and critical

trajectories [3, 5, 6, 8, 11].

To keep the discussion a little more elementary, we state the relevant definitions and

facts by appealing directly to explicit formulas using the Liouville transformation (defined

below) commonly used in the WKB analysis of Schrödinger equations.

4.1 The Liouville transformation

Throughout this section, we remain in the background setting of §2.1. Recall the leading-
order discriminant D0 = b20 − 4a0c0, which is a holomorphic function on X, assumed not

identically zero. Fix a phase θ ∈ R/2πZ, a basepoint x0 ∈ X, and a univalued square-root

branch
√
D0 near x0 (i.e., either in a disk or a sectorial neighborhood of x0). Consider the

following local coordinate transformation near x0, called the Liouville transformation:

z =Φ(x):=

∫ x

x0

√
D0(t)dt. (29)

Let U⊂ X be any domain which is free of turning points, supports a univalued square-root

branch
√
D0 (e.g., U is simply connected), and contains x0 in the interior or on the boundary.

Then the Liouville transformation defines a (possibly multivalued) local biholomorphism

Φ : U−→Cz. Notice that turning points are precisely the locations in X where Φ fails to be

conformal.

Remark 4.1. The basepoint of integration x0 can in principle be chosen even on the

boundary of X or at infinity in Cx provided that the integral is well defined. Liouville
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transformations such as (29) are encountered in the analysis of the Schrödinger equation

�2∂2
xψ− q(x)ψ = 0 as described, for example, in Olver’s textbook [14, §6.1]. However, note

that our formula (29) in the special case of the Schrödinger equation reads

Φ(x) =

∫ x

x0

√
D0(t)dt= 2

∫ x

x0

√
q(t)dt, (30)

which differs from formula (1.05) in [14, §6.1] by a factor of 2.

4.2 WKB trajectories

Let x0 ∈ X be a regular point, and consider the Liouville transformation (29). A WKB

θ-trajectory through x0 is the real one-dimensional smooth curve Γθ on X locally determined

by the following equation:

Γθ = Γθ(x0) : Im
(
e−iθΦ(x)

)
= 0. (31)

A WKB θ-trajectory ±-ray (or simply a WKB ray if the context is clear) emanating from

x0 is the component Γ±
θ of Γθ given, respectively, by

Γ±
θ = Γ±

θ (x0) : ±Re
(
e−iθΦ(x)

)
≥ 0; (32)

WKB trajectories are regarded by definition as being maximal under inclusion. Explicitly,

(31) and (32) read

Im

(
e−iθ

∫ x

x0

√
D0(t)dt

)
= 0 and ±Re

(
e−iθ

∫ x

x0

√
D0(t)dt

)
≥ 0. (33)

The Liouville transformation Φ with basepoint x0 maps the WKB θ-trajectory Γθ(x0)

to a possibly infinite straight line segment (τ−e
iθ, τ+e

iθ)⊂ eiθR⊂ Cz containing the origin

0 =Φ(x0), that is, with τ− < 0< τ+. Maximality means that this line segment is the largest

possible image. The image of the WKB θ-trajectory ±-ray emanating from x0 is then,

respectively, the line segment [0, τ+e
iθ) or (τ−e

iθ,0].

All other nearby WKB θ-trajectories can be locally described by an equation of the form

Im
(
e−iθΦ(x)

)
= c for some c ∈R. That is, if U0 ⊂ X is a simply connected neighborhood of

x0 free of turning points, then any WKB θ-trajectory Γ′
θ intersecting U0 is locally given by

this equation with c= Ime−iθΦ(x′
0) for some x′

0 ∈U0. Its image in Cz under Φ is an interval

on the parallel line containing z′0:=Φ(x′
0):

z′0+eiθR:=
{
z = z′0+ ξ

∣∣ ξ ∈ eiθR
}
.

Our primary focus is infinite WKB rays Γ±
θ , defined as having |τ±| = ∞, respectively.

An infinite WKB trajectory is one with at least one infinite ray. A generic WKB trajectory

is one with both rays being infinite.

An infinite WKB trajectory may be a closed WKB trajectory if it is a simple closed curve

in the complement of the turning points. A closed WKB θ-trajectory has the property that

there is a nonzero time ω ∈ R such that Φ−1(eiθω) = Φ−1(0) (see [18, §9.2]). This only

happens when the Liouville transformation is analytically continued along the trajectory

to a multivalued function. We refer to the smallest possible positive such ω ∈ R+ as the

WKB trajectory period. It follows from general considerations (see [18, §9]) that if the WKB

θ-trajectory through x0 is a closed trajectory, then all nearby WKB θ-trajectories are also

closed with the same period.
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A nonclosed infinite WKB ray may tend to a single point, limit to a dense subset of

X, or escape X altogether. Formally, the limit of an infinite WKB ray Γ±
θ by definition,

respectively, is the limit set

Φ−1
(
[τeiθ,+∞· eiθ)

)
as τ →+∞ or Φ−1

(
(−∞·eiθ, τeiθ]

)
as τ →−∞.

Obviously, this definition is independent of the chosen basepoint x0 along the trajectory.

If the limit is a single point x∞ ∈ Cx, then this point (sometimes called an infinite critical

point) is necessarily a pole of D0 of order m≥ 2 (see [18, §10.2]). Given α ∈ {+,−}, it also
follows from general considerations that if the WKB θ-trajectory α-ray emanating from x0

tends to an infinite critical point, then x0 has a disk neighborhood U0 such that every WKB

θ-trajectory α-ray emanating from U0 tends to the same infinite critical point.

Finite WKB rays—those with finite τ+ or τ−—are inadmissible for our construction of

exact solutions in §5. As τ approaches τ+ or τ−, respectively, such a WKB trajectory either

tends to a turning point or escapes to the boundary of X in finite time. If it tends to a

single point on the boundary of X, this point is either a turning point or a simple pole

of the discriminant D0 (see [18, §10.2]). For this reason, turning points and simple poles

are sometimes collectively referred to as finite critical points. A singular WKB ray is one

that approaches a finite critical point. They are important in the global analysis of exact

solutions, which will be discussed in detail elsewhere.

A WKB θ-strip domain containing x0 is any domain neighborhood of x0 which is swept

out by generic WKB θ-trajectories. It necessarily has the form

Wθ =Wθ(x1, r):=Φ−1
(
Hθ

)
⊂ Cx,

where Hθ = Hθ(z1, r):=
{
z
∣∣∣ dist(z,z1+eiθR)< r

}
⊂ Cz,

(34)

for some r > 0 and some x1 = Φ−1(z1) ∈ X. Similarly, a WKB (θ,±)-half-strip domain

containing x0 is any domain neighborhood of x0 which is swept out by infinite WKB θ-

trajectory ±-rays. It necessarily has the form

W±
θ =W±

θ (x1, r):=Φ−1
(
H±

θ

)
⊂ Cx,

where H±
θ = H±

θ (z1, r):=
{
z
∣∣∣ dist(z,z1+eiθR±)< r

}
⊂ Cz.

(35)

Note that we obviously have Wθ = W−
θ ∪ W+

θ . The intersection W−
θ ∩ W+

θ =

Φ−1
(
{|z−z1|<r}

)
may be called a WKB disk around x1, and it is clearly independent of θ.

If the WKB θ-trajectory through x0 is not closed, then WKB θ-strip Wθ is a

simply connected domain conformally equivalent to the infinite strip Hθ via the Liouville

transformation Φ :Wθ
∼−→Hθ.

On the other hand, if the WKB θ-trajectory through x0 is closed, then Wθ is swept out

by closed WKB θ-trajectories, so Wθ has the topology of an annulus. In this case, Wθ is

sometimes called a WKB θ-ring domain. The Liouville transformation Φ is a multivalued

holomorphic function on Wθ, but the inverse Φ−1 : Hθ → Wθ is still necessarily a local

biholomorphism.

§5. Exact perturbation theory

We can now state and prove our main results. Throughout this section, we remain in the

background setting of §2.1. Namely, X is a domain in Cx and S⊂ C� is a sectorial domain
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with opening A. In addition, we assume that |A|= π so that A=Aθ:=(θ− π
2 , θ+

π
2 ) for some

θ ∈ R.

5.1 Existence and uniqueness of local exact solutions

The main result of this paper is the following theorem.

Theorem 5.1 (Main exact existence and uniqueness theorem). Consider the Riccati

equation

�∂xf = af2+ bf + c (36)

whose coefficients a,b,c are holomorphic functions of (x,�)∈X×S admitting locally uniform

asymptotic expansions â, b̂, ĉ as � → 0 along A. Assume that D0 = b20 − 4a0c0 
≡ 0. Fix a

regular point x0 ∈X, a square-root branch
√
D0 near x0, and a sign α∈ {+,−}. In addition,

we assume the following hypotheses:

(1) There is a WKB (θ,α)-half-strip domain W = Wα
θ ⊂ X containing x0; assume in

addition that a0 is nonvanishing on W if α=−.

(2) The asymptotic expansions of the coefficients a,b,c are valid with Gevrey bounds as

� → 0 along the closed arc Āθ = [θ− π
2 , θ+

π
2 ], with respect to the asymptotic scale√

D0, uniformly for all x ∈W:

a� â, b� b̂, c� ĉ as �→ 0 along Āθ, wrt
√
D0, unif. ∀x ∈W. (37)

Then the Riccati equation has a canonical local exact solution fθ
α near x0 which is

asymptotic to the formal solution f̂α as �→ 0 in the direction θ. Namely, for any compactly

contained domain U0 � W, there is a sectorial domain S0 ⊂ S with the same opening Aθ

such that the Riccati equation has a unique holomorphic solution fθ
α on U0×S0 which is

Gevrey asymptotic to f̂α as �→ 0 along the closed arc Āθ uniformly for all x ∈ U0:

fθ
α � f̂α as �→ 0 along Āθ, unif. ∀x ∈ U0. (38)

We will prove this theorem in §5.1.2. First, let us make some remarks.

Remark 5.1. (1) For the reader’s convenience, we recall here that hypothesis (2) in

Theorem 5.1 explicitly means that there are real constants A,B > 0 such that for all n≥ 0,

all x ∈W, and all sufficiently small � ∈ S,∣∣∣∣∣a(x,�)−
n−1∑
k=0

ak(x)�
k

∣∣∣∣∣≤
∣∣∣√D0(x)

∣∣∣ABnn!|�|n, (39)

and similarly for b and c. Likewise, the asymptotic condition (38) reads explicitly as follows:

there are real constants C,M > 0 such that for all n≥ 0, all x∈U0, and all sufficiently small

� ∈ S0, ∣∣∣∣∣fθ
α(x,�)−

n−1∑
k=0

fα
k (x)�

k

∣∣∣∣∣≤ CMnn!|�|n. (40)

(2) If all the hypotheses of Theorem 5.1 are satisfied for both signs α=+,−, then we obvi-

ously obtain a pair of distinct canonical exact solutions fθ
+,f

θ
− near x0. Let us also note that

the solution fθ
α obviously does not depend in any serious way on the chosen basepoint x0.
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(3) In many applications, including the exact WKB analysis of Schrödinger, the

coefficients of the Riccati equation (36) do not satisfy hypothesis (2) in Theorem 5.1

on the nose and we have to do an additional transformation in order to apply our theorem.

This is discussed in §5.4.
(4) The somewhat abstract general hypotheses of this theorem get significantly simplified

in many notable situations which are discussed in §6.
(5) The sectorial domain S0 in the conclusion of Theorem 5.1 can be chosen to be a Borel

disK
{
�
∣∣ Re(eiθ/�)> 1/d0

}
bisected by the direction θ of sufficiently small diameter d0 > 0.

We have the following immediate corollary of the uniqueness property of canonical exact

solutions.

Corollary 5.1 (Extension to larger domains). Let U⊂ X be a domain free of turning

points that supports a univalued square-root branch
√
D0. Fix a sign α ∈ {+,−} such that

the leading-order solution fα
0 is holomorphic on U. In addition, assume that hypotheses

(1)–(3) in Theorem 5.1 are satisfied for every point x0 ∈ U.

Then the Riccati equation (36) has a canonical exact solution fθ
α on U asymptotic to the

formal solution f̂α as �→ 0 in the direction θ. Namely, there is a domain U⊂ U×S and a

holomorphic solution fθ
α defined on U with the following property: for every point x0 ∈ U,

there is a neighborhood U0 ⊂ U of x0 and a sectorial domain S0 ⊂ S with the same opening

Aθ such that U0×S0 ⊂ U and fθ
α is the unique holomorphic solution on U0×S0 satisfying

(38). In particular, fθ
α is the unique solution on U with the following locally uniform Gevrey

asymptotics:

fθ
α � f̂α as �→ 0 along Āθ, loc.unif. ∀x ∈ U. (41)

In particular, the domain U⊂ X in Corollary 5.1 can be a union of WKB half-strips. In

fact, examining the proof of Theorem 5.1 more closely, it is readily seen that on any WKB

half-strip, we can state the asymptotic property of canonical exact solutions more precisely

as follows.

Proposition 5.1 (Asymptotics on WKB half-strips). Assume all the hypotheses of

Theorem 5.1. Then the canonical local exact solution fθ
α uniquely extends to an exact

solution on W with the following locally uniform Gevrey asymptotics:

fθ
α � f̂α as �→ 0 along Āθ, loc.unif. ∀x ∈W. (42)

In fact, even more is true. Let r > 0 be such that W = Wα
θ (x

′
0, r). For any r0 ∈ (0, r), let

W0:=Wα
θ (x

′
0, r0). Then there is a sectorial domain S0 ⊂ S with the same opening Aθ such

that the canonical exact solution fθ
α extends to a holomorphic solution on W0×S0 with the

following uniform Gevrey asymptotic property:

fθ
α � f̂α as �→ 0 along Āθ, unif. ∀x ∈W0. (43)

Proof. The fact that fθ
α extends to any W0 as stated follows immediately from the proof

of Theorem 5.1. The uniqueness part of the construction guarantees that all these extensions

coincide.

https://doi.org/10.1017/nmj.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.38


448 N. NIKOLAEV

5.1.1. Riccati equations on horizontal half-strips

The strategy of the proof of Theorem 5.1 is to use the Liouville transformation Φα to

transform the Riccati equation into one in standard form over a horizontal half-strip in

the z -space, and then apply the Borel–Laplace method. First, we give a general description

of this standard form of the Riccati equation and prove the corresponding version of the

exact existence and uniqueness theorem (Lemma 5.1). Then we will show that any Riccati

equation satisfying the assumptions of Theorem 5.1 can be put into this standard form,

thereby deducing our claims.

Let H+ ⊂ Cz be a horizontal half-strip around the positive real axis R+ ⊂ Cz of some

radius r > 0, and let S+ ⊂C� a Borel disk bisected by the positive real axis of some diameter

d > 0:

H+:=
{
z
∣∣ dist(z,R+)< r

}
and S+:=

{
�
∣∣ Re(1/�)> 1/d

}
. (44)

The opening of S+ is the semicircular arc A+:=(−π
2 ,+

π
2 ). Consider the following singularly

perturbed Riccati equation on H+×S+:

�∂zF = F +�
(
A2F

2+A1F +A0

)
, (45)

where Ai are holomorphic functions of (z,�) ∈ H+ × S+ which admit uniform Gevrey

asymptotic expansions as �→ 0 along the closed arc Ā+:

Ai � Âi, as �→ 0 along Ā+, unif. ∀z ∈ H+. (46)

Denote their leading-order parts by ai = ai(z). The corresponding leading-order equation is

simply F0 = 0. By Theorem 3.1(1), this Riccati equation has a unique formal solution F̂+

on H+, and its leading order part is F+
0 = 0 and its next-to-leading order part is F+

1 =−a0.

Lemma 5.1 (Main Lemma). For every r0 ∈ (0, r), there is d0 ∈ (0,d] such that the Riccati

equation (45) has a canonical exact solution F+ defined on

H+
0 ×S+0 :=

{
z
∣∣ dist(z,R+)< r0

}
×
{
�
∣∣ Re(1/�)> 1/d0

}
⊂ H+×S+. (47)

Namely, F+ is the unique holomorphic solution on H+
0 × S+0 , which admits the formal

solution F̂+ as its uniform Gevrey asymptotic expansion along Ā+:

F+(z,�)� F̂+(z,�) as �→ 0 along Ā+, unif. ∀z ∈ H+
0 . (48)

Moreover, it has the following properties.

(P1) The formal Borel transform

ϕ̂+(x,ξ) = B̂[ F̂+ ](x,ξ):=
∞∑

n=0

ϕ+
n (x)ξ

n where ϕ+
k (x):=

1
k!F

+
k+1(x)

converges uniformly on H+
0 .

(P2) For any ε ∈ (0, r − r0), let Ξ+:=
{
ξ
∣∣ dist(ξ,R+)< ε

}
. Then the analytic Borel

transform

ϕ+(z,ξ) =B+[F+ ](z,ξ):=
1

2πi

∮
F+(x,�)e

ξ/�d�

�2
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is uniformly convergent for all (z,ξ) ∈ H+
0 ×Ξ+. Here, the integral “

∮
” is done along

the boundary of any Borel disk S′+ � S+ of strictly smaller diameter d′ < d, traversed

anticlockwise.

(P3) The Laplace transform L+

[
ϕ+

]
(z,�) is uniformly convergent for all (z,�) ∈ H+

0 ×S+0
and satisfies F+(z,�) = L+

[
ϕ+

]
(z,�).

(P4) Therefore, F+ is the uniform Borel resummation of its asymptotic power series F̂+;

that is, F+(z,�) = S+

[
F̂+

]
(z,�) for all (z,�) ∈ H+

0 ×S+0 .

(P5) If the coefficients A0,A1,A2 are periodic in z with period ω ∈ C, then so is F+.

Proof. We use the Borel–Laplace method to construct the exact solution F+. Namely,

we first apply the Borel transform to obtain a first-order nonlinear PDE which is easy to

rewrite as an integral equation. Then most of the heavy lifting is constrained to solving this

integral equation, which we do via the method of successive approximations. The desired

solution F+ is then obtained by applying the Laplace transform.

Uniqueness.

Suppose F+,F
′
+ are two such exact solutions defined on H+

0 ×S+0 . Their difference F+−F ′
+

is a holomorphic function on H+
0 ×S+0 which is uniformly Gevrey asymptotic to 0 as �→ 0

along Ā+. By Nevanlinna’s theorem [9, Theorem 5.3.9], there can be only one holomorphic

function on S+0 (namely, the constant function 0), which is Gevrey asymptotic to 0 as �→ 0

along Ā+. Thus, F+−F ′
+ is must be the zero function.

Step 1: The analytic Borel transform.

It follows from Nevanlinna’s theorem [9, Theorem 5.3.9] that there is some tubular neigh-

borhood Ξ+:=
{
ξ
∣∣dist(ξ,R+)< ε

}
for some ε > 0 such that the analytic Borel transforms

αi(z,ξ):=B+[Ai ](z,ξ) are holomorphic functions on H+×Ξ+ ⊂C2
zξ with uniformly at most

exponential growth as |ξ|→+∞. Moreover, Ai(z,�)= ai(z)+L+[αi ] for all (z,ξ)∈H+×Ξ+.

Dividing (45) through by � and applying the analytic Borel transform B+, we obtain

the following PDE with convolution product:

∂zφ−∂ξφ= α0+a1φ+α1 ∗φ+a2ϕ∗φ+α2 ∗φ∗φ, (49)

where the unknown variables φ and F are related by φ=B+[F ] and F = L+[φ ].

Step 2: The integral equation.

The principal part of the PDE (49) has constant coefficients, so it is easy to rewrite it

as an equivalent integral equation as follows. Consider the holomorphic change of variables

T : (z,ξ) �−→ (w,t) = (z+ ξ,ξ). For any function α= α(z,ξ) of two variables, introduce the

following notation:

T ∗α(z,ξ):=α
(
T (z,ξ)

)
= α(z+ ξ,ξ) and T∗α(w,t):=α

(
T−1(w,t)

)
= α(w− t, t).

Note that T ∗T∗α = α. Under this change of coordinates, the differential operator ∂z − ∂ξ
transforms into −∂t, and so the left-hand side of (49) becomes −∂t

(
T∗φ). Integrating from

0 to t, and imposing the initial condition φ(z,0) = φ0(z):=a0(z), the left-hand side of the

PDE (49) becomes −T∗φ. Applying T ∗, we therefore obtain the following integral equation

for φ= φ(z,ξ):

φ= φ0−T ∗
∫ t

0

T∗
(
α0+a1φ+α1 ∗φ+a2φ∗φ+α2 ∗φ∗φ

)
du. (50)
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Introduce the following notation: for any function α= α(z,ξ) of two variables,

I+
[
α
]
(z,ξ):=−T ∗

∫ t

0

T∗αdu=−
∫ ξ

0

α(z+ ξ−u,u)du=

∫ ξ

0

α(z+ t,ξ− t)dt, (51)

where the integration path is the straight line segment connecting 0 to ξ. Then the integral

equation (50) can be written more succinctly as

φ= φ0+ I+

[
α0+a1φ+α1 ∗φ+a2φ∗φ+α2 ∗φ∗φ

]
. (52)

Step 3: Method of successive approximations.

To solve (52), we use the method of successive approximations. Consider a sequence of

functions {φn}∞n=0 defined recursively by φ0 = a0, φ1:=I+
[
α0+a1φ0

]
, and for n≥ 2 by the

following formula:

φn:=I+

⎡
⎢⎢⎣a1φn−1+α1 ∗φn−2+

∑
i,j≥0

i+j=n−2

a2φi ∗φj +
∑
i,j≥0

i+j=n−3

α2 ∗φi ∗φj

⎤
⎥⎥⎦ . (53)

Claim 5.1 (Main Claim). Let ε be so small that ε < r− r0. Then the infinite series

φ+(z,ξ):=
∞∑

n=0

φn(z,ξ) (54)

defines a holomorphic solution of the integral equation (52) on the domain

H+:=
{
(z,ξ) ∈ H+×Ξ+

∣∣ z+ ξ ∈ H+

}
with at most exponential growth at infinity in ξ; more precisely, it satisfies the following

uniform exponential bound: there are real constants A,K > 0 such that∣∣φ+(z,ξ)
∣∣≤AeK|ξ| ∀(z,ξ) ∈H+. (55)

In particular, φ+ is a well-defined holomorphic solution on H+
0 ×Ξ+ ⊂H+ where it satisfies

the exponential estimate above.

Assuming this claim, only one step remains in order to complete the proof of Lemma 5.1,

which is to take the Laplace transform of φ+.

Step 4: The Laplace transform.

Let

F+(z,�):=L+

[
φ+

]
(z,�) =

∫ +∞

0

e−ξ/�φ(z,ξ)dξ. (56)

This integral is uniformly convergent for all z ∈H+
0 provided that Re(�−1)>C2. Thus, if we

take d0 ∈ (0,d] strictly smaller than 1/C2, then formula (56) defines a holomorphic solution

of the Riccati equation (45) on the domain H+
0 × S+0 where S+0 :=

{
�
∣∣ Re(�−1)> 1/d0

}
.

Furthermore, Nevanlinna’s theorem implies that F+ admits a uniform Gevrey asymptotic

expansion on H+
0 as �→ 0 along Ā+, and this asymptotic expansion is necessarily the formal

solution F̂+.
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Proof of Claim 5.1.

If we assume for the moment that the series (54) is uniformly convergent on H+, it is easy

to check by direct substitution that it satisfies the integral equation (52). To demonstrate

uniform convergence of the series φ+, we first note the following exponential estimates on

the coefficients of (52): there are constants C,L > 0 such that for each i= 0,1,2 and for all

(z,ξ) ∈H+,

|ai| ≤ C and |αi| ≤ CeL|ξ|. (57)

We prove the Main Technical Claim by showing that there are constants A,M > 0 such

that for all n and for all (z,ξ) ∈H+,

∣∣φn(z,ξ)
∣∣≤AMn |ξ|n

n!
eL|ξ|. (58)

This is enough to deduce the uniform convergence of the infinite series φ+ as well as the

exponential estimate (55) by taking K:=M +L because

∣∣φ+(z,ξ)
∣∣≤ ∞∑

n=0

|φn| ≤
∞∑

n=0

AMn |ξ|n
n!

eL|ξ| =Ae(M+L)|ξ|.

To show (58), we will first recursively construct a sequence of positive real numbers

(Mn)
∞
n=0 such that for all n and for all (z,ξ) ∈H+,

∣∣φn(z,ξ)
∣∣≤Mn

|ξ|n
n!

eL|ξ|. (59)

We will then show that there are A,M > 0 such that Mn ≤AMn for all n.

Construction of M0,M1. We can take M0:=C because
∣∣φ0(z,ξ)

∣∣ = ∣∣a0(z)∣∣ ≤ C. We

can take M1:=C(1+C) because Lemma A.1 gives the estimate

∣∣φ1(z,ξ)
∣∣≤ ∫ ξ

0

|α0||du|+
∫ ξ

0

|a1||φ0||du| ≤ C(1+C)

∫ |ξ|

0

eLrdr ≤ C(1+C)|ξ|eL|ξ|.

Construction of Mn for n ≥ 2. We assume that the estimate (59) holds for

φ0, . . . ,φn−1 and derive an estimate for φn. Using Lemmas A.1–A.3, we obtain the following

bounds on the terms in the recursive formula (53):

∣∣∣I+[a1φn−1

]∣∣∣≤ CMn−1
|ξ|n
n!

eL|ξ|,∣∣∣I+[α1 ∗φn−2

]∣∣∣≤ CMn−2
|ξ|n
n!

eL|ξ|,∣∣∣I+[a2φi ∗φj

]∣∣∣≤ CMiMj
|ξ|n
n!

eL|ξ| if i+ j = n−2,∣∣∣I+[α2 ∗φi ∗φj

]∣∣∣≤ CMiMj
|ξ|n
n!

eL|ξ| if i+ j = n−3.
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Using these estimates in (53), we find∣∣φn

∣∣≤ ∣∣∣I+[a1φn−1

]∣∣∣+ ∣∣∣I+[α1 ∗φn−2

]∣∣∣
+

∑
i,j≥0

i+j=n−2

∣∣∣I+[a2φi ∗φj

]∣∣∣+ ∑
i,j≥0

i+j=n−3

∣∣∣I+[α2 ∗φi ∗φj

]∣∣∣

≤ C

⎛
⎜⎜⎝Mn−1+Mn−2+

∑
i,j≥0

i+j=n−2

MiMj +
∑
i,j≥0

i+j=n−3

MiMj

⎞
⎟⎟⎠ |ξ|n

n!
eL|ξ|.

We can therefore define, for all n≥ 2,

Mn:=C

⎛
⎜⎜⎝Mn−1+Mn−2+

∑
i,j≥0

i+j=n−2

MiMj +
∑
i,j≥0

i+j=n−3

MiMj

⎞
⎟⎟⎠ . (60)

Bounds on Mn. Consider the following power series in an abstract variable t :

p̂(t):=
∞∑

n=0

Mnt
n ∈ C[[t]].

We will show that p̂(t) is in fact a convergent power series. First, we observe that p̂(0) =

M0 = C and that p̂(t) satisfies the following algebraic equation:

p̂= C
(
1+ t+ p̂t+ p̂t2+ p̂2t2+ p̂2t3

)
, (61)

which can be seen by expanding and comparing the coefficients using the defining formula

(60) for Mn. Consider the holomorphic function G=G(p,t) of two variables, defined by

G(p,t):=−p+C
(
1+ t+pt+pt2+p2t2+p2t3

)
.

It has the following properties:

G(C,0) = 0,
∂G

∂p

∣∣∣∣
(p,t)=(C,0)

=−1 
= 0.

Thus, by the Holomorphic Implicit Function Theorem, there exists a function p(t),

holomorphic at t= 0, satisfying p(0) = C and G
(
p(t), t

)
= 0 for all t sufficiently close to 0.

Since p̂(0) =C and G
(
p̂(t), t

)
=0, the power series p̂(t) must be the Taylor expansion of p(t)

at t= 0. As a result, p̂(t) is in fact a convergent power series, which means its coefficients

grow at most exponentially: there are constants A,M > 0 such that Mn ≤ AMn for all n.

This completes the proof of Claim 5.1 and therefore of Lemma 5.1.

5.1.2. Proof of Theorem 5.1

We can now finish the proof of the main result in this paper.

Proof of Theorem 5.1. We immediately restrict our attention to a Borel disk in the

�-plane of some diameter d> 0 bisected by the direction θ; that is, without loss of generality,

assume that S =
{
�
∣∣ Re(eiθ/�)> 1/d

}
. Note that the rotation � �→ e−iθ� sends S to the

Borel disk S+ =
{
�
∣∣ Re(1/�)> 1/d

}
from (44).
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Next, let r > 0 be such that W:=Wα
θ =Wα

θ (x0;r) = Φ−1(H) is the WKB half-strip from

the hypothesis, where H:=Hα
θ = Hα

θ (0, r) =
{
z
∣∣ dist(z,eiθRα)< r

}
. Recall that Φ−1 : H→

W is a local biholomorphism. Put H+:=
{
z
∣∣ dist(z,R+)< r

}
and Φθ

α:=εαe
−iθΦ, so that

W= (Φθ
α)

−1(H+). Furthermore, Φθ
α transforms the differential operator εα√

D0
∂x into e−iθ∂z.

Consider now holomorphic functions of (x,�) ∈ W × S denoted by a∗,a∗∗, b∗, b∗∗,

c∗, c∗∗, obtained from a,b,c by removing the leading and the next-to-leading order terms,

respectively; that is, they are defined by the following relations:

a= a0+�a∗ and a∗ = a1+�a∗∗,

b= b0+�b∗ and b∗ = b1+�b∗∗,

c= c0+�c∗ and c∗ = c1+�c∗∗.

(62)

Recall that the leading and the next-to-leading orders fα
0 ,f

α
1 of the formal solution f̂α are

holomorphic functions on W that satisfy the following identities:

a0(f
α
0 )

2+ b0f
α
0 + c0 = 0 and εα

√
D0 = 2a0f

α
0 + b0,

∂xf
α
0 = εα

√
D0f

α
1 +a1(f

α
0 )

2+ b1f
α
0 + c1,

(63)

where ε± =±1. Using these expressions, a straightforward calculation shows that the change

of the unknown variable f �→ f̃ given by f = fα
0 +�(fα

1 + f̃) transforms the Riccati equation

(36) into the following Riccati equation on W×S:

εα
�√
D0

∂xf̃ − f̃ = �
(
ãf̃2+ b̃f̃ + c̃

)
, (64)

where

ã:=
εα√
D0

a, b̃:=
εα√
D0

(
b∗+2afα

1 +2a∗f
α
0

)
,

c̃:=
εα√
D0

(
−∂xf

α
1 +a(fα

1 )
2+

(
2a∗f

α
0 + b∗

)
fα
1 +

(
a∗∗(f

α
0 )

2+ b∗∗f
α
0 + c∗∗

))
.

(65)

Finally, transforming equation (64) by Φθ
α and applying a rotation � �→ e−iθ�, we obtain a

Riccati equation on H+×S+ of the form (45) where the coefficients A0,A1,A2 are given by

A2(z,�):=ã
(
x(z), eiθ�

)
, A1(z,�):=b̃

(
x(z), eiθ�

)
, A0(z,�):=c̃

(
x(z), eiθ�

)
, (66)

where x(z) = (Φθ
α)

−1(z) and the unknown variables f̃ and F are related by

F (z,�) = f̃
(
x(z), eiθ�

)
. (67)

Theorem 5.1 now follows from Lemma 5.1.

5.2 Borel summability of formal solutions

In this subsection, we translate Theorem 5.1 and its method of proof into the language of

Borel–Laplace theory. Namely, it follows directly from our construction that the canonical

exact solutions are the Borel resummation of the corresponding formal solutions. Let us

make this statement precise and explicit. The following theorem is a direct consequence of

the proof of Theorem 5.1.

Theorem 5.2 (Borel summability of formal solutions). Assume all the hypotheses of

Theorem 5.1. Then the local formal solution f̂α is Borel summable in the direction θ
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uniformly near x0. Namely, the canonical local exact solution fθ
α is the uniform Borel

resummation of f̂α in the direction θ: for all � ∈ S0 and uniformly for all x ∈ U0,

fθ
α(x,�) = fα

0 (x)+Sθ

[
f̂α
]
(x,�). (68)

A lot of information is packed into Theorem 5.2. Let us unpack it into the following series

of explicit statements, all of which are deduced immediately from the proof of Theorem 5.1.

Lemma 5.2. Assume all the hypotheses of Theorem 5.1, and let fθ
α be the canonical

exact solution defined on U0×S0.

(1) The formal Borel transform ϕ̂α of f̂α, given by

ϕ̂α(x,ξ) = B̂[ f̂α ](x,ξ) =

∞∑
n=0

ϕα
n(x)ξ

n where ϕα
k (x):=

1
k!f

α
k+1(x), (69)

is a uniformly convergent power series in ξ.

(2) In particular, the power series coefficients of the formal solution f̂α grow at most

factorially in k: there are real constants C,M > 0 such that∣∣fα
k (x)

∣∣≤ CMkk! (∀k ≥ 0,∀x ∈ U0). (70)

(3) There is some ε > 0 such that the analytic Borel transform ϕθ
α of fθ

α in the direction θ,

given by

ϕθ
α(x,ξ) =Bθ[f

θ
α ](x,ξ) =

1

2πi

∮
θ

fθ
α(x,�)e

ξ/�d�

�2
, (71)

is uniformly convergent for all (x,ξ) ∈ U0×Ξθ where

Ξθ:=
{
ξ ∈ Cξ

∣∣∣ dist(ξ,eiθR+)< ε
}
.

Here, the integral “
∮
θ
” is done anticlockwise along the boundary of any Borel disk Sθ ={

�
∣∣ Re(eiθ/�)> 1/d

}
� S of diameter d so small that its boundary (without the origin)

is contained in S. Furthermore, ϕθ
α defines the analytic continuation of the formal Borel

transform ϕ̂α along the ray eiθR+ ⊂Cξ. In particular, there are no singularities in the

Borel plane Cξ along the ray eiθR+.

(4) The Laplace transform of ϕθ
α in the direction θ, given by

Lθ

[
ϕθ
α

]
(x,�) =

∫
eiθR+

e−ξ/�ϕθ
α(x,ξ)dξ,

is uniformly convergent for all (x,�) ∈ U0×S0 and satisfies the following identity:

fθ
α(x,�) = fα

0 (x)+Lθ

[
ϕθ
α

]
(x,�). (72)

The fact that identity (68) holds uniformly for all x ∈ U0 means in particular that

operations such as differentiation and integration with respect to x can be exchanged with

the operation of Borel resummation. Thus, we have the following corollary.

Corollary 5.2. Assume all the hypotheses of Theorem 5.1, and let fθ
α be the canonical

exact solution defined on U0×S0. Then the formal power series on U0 given by the derivative
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∂xf̂α and the integral
∫ x

x′
0
f̂α from any basepoint x′

0 ∈ U0 are uniformly Borel summable on

U0, and the following identities hold uniformly for all x ∈ U0:

∂xf
θ
α(x,�) = ∂xf

α
0 (x)+Sθ

[
∂xf̂α

]
(x,�), (73)

∫ x

x′
0

fθ
α(t,�)dt=

∫ x

x′
0

fα
0 (t)dt+Sθ

[∫ x

x′
0

f̂αdt

]
(x,�). (74)

Thanks to the tighter control on the asymptotics of canonical exact solutions on

WKB half-strips, all of the above statements extend uniformly over strictly smaller WKB

halfstrips. Explicitly, we have the following corollary.

Proposition 5.2 (Uniform Borel summability on WKB half-strips). Assume all the

hypotheses of Theorem 5.1. Let r > 0 be such that W = Wα
θ (x0, r). For any r0 ∈ (0, r),

let W0:=Wα
θ (x0, r0). Then the formal solution f̂α is Borel summable in the direction θ

uniformly for all x∈W0. Furthermore, the formal power series given by the derivative ∂xf̂α
and the integral

∫ x

x′
0
f̂α from any basepoint x′

0 ∈ U0 are uniformly Borel summable on W0,

and identities (73) and (74) hold uniformly for all x ∈W0.

5.3 Explicit recursion for the Borel transform

The analytic Borel transform ϕθ
α can be given a reasonably explicit presentation as

follows. Define an integral operator I acting on holomorphic functions ϕ = ϕ(x,ξ) by the

following formula, wherever it makes sense:

I
[
ϕ
]
(x,ξ):=

∫ ξ

0

ϕ(xt, ξ− t)dt where xt:=Φ−1
(
Φ(x)+ t

)
. (75)

and the integration contour is the straight line segment from 0 to ξ ∈ C. In particular, for

any x ∈ U0 and any sufficiently small ξ ∈ eiθRα, the path {xt}ξt=0 is a segment of the WKB

(θ,α)-ray emanating from x.

Recall functions ã, b̃, c̃ defined by the identities (65). Their leading-order parts in � are,

respectively,

ã0 =
εα√
D0

a0, b̃0 =
εα√
D0

(
b1+2a0f

α
1 +2a1f

α
0

)
, c̃0 = fα

2 , (76)

where last identity was obtained by comparing with (15). Finally, denote their analytic

Borel transforms in direction θ as follows:

β0:=Bθ[ c̃ ],

β1:=Bθ[ b̃ ],

β2:=Bθ[ ã ],

so that

ã= ã0+Lθ[β2 ],

b̃= b̃0+Lθ[β1 ],

c̃= c̃0+Lθ[β0 ].

Proposition 5.3 (Recursive formula for the Borel transform). Assume all the hypothe-

ses of Theorem 5.1, and let r > 0 be such that W =Wα
θ (x0;r). For any r0 ∈ (0, r) and any

ε∈ (0, r−r0), let W0:=Wα
θ (x0;r0) and Ξθ:=

{
ξ
∣∣ dist(ξ,eiθR+)< ε

}
. Then the analytic Borel

transform ϕθ
α can be expressed more explicitly as follows: uniformly for all (x,ξ) ∈W0×Ξθ,

ϕθ
α(x,ξ) = fα

1 (x)+

∫ ξ

0

σθ
α(x,t)dt with σθ

α(x,ξ):=
∞∑
k=0

σk(x,ξ), (77)
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where σ0:=c̃0 = fα
2 , σ1:=I

[
β0+ b̃0σ0

]
, and for k ≥ 2,

σk:=I

⎡
⎢⎢⎣b̃0σk−1+β1 ∗σk−2+

∑
i,j≥0

i+j=k−2

ã0σi ∗σj +
∑
i,j≥0

i+j=k−3

β2 ∗σi ∗σj

⎤
⎥⎥⎦ . (78)

Proof. The proof is straightforward and amounts to transforming some of the main

constructions in the proof of Lemma 5.1 using the inverse Liouville transformation Φ back

to the x -variable. Let Φθ
α:=εαe

−iθΦ, and let H+ be the image of W under Φθ
α. Since Φ

−1 is a

local biholomorphism H+ →W, for a fixed x∈W and every t∈ [0, ξ], there is a unique point

xt:=Φ−1
(
Φ(x)+ t

)
∈W such that Φ(x)+ t=Φ(xt). Note in particular that, since Φ may be

multivalued on W, the point xt does not depend on the choice of branch of Φ(x). Thus, the

integral operator I from (75) is defined by using Φ to transform the integral operator I+
from (51) defined in the proof of Lemma 5.1. Likewise, the sequence {φk(z,ξ)}∞k=0 defined

in the proof of Lemma 5.1 by the recursive formula (53) transforms under Φ to give the

sequence σk(Φ
−1(z), ξ):=φk

(
z,e−iθξ

)
.

5.4 Monic Riccati equations

In many situations, such as those arising in the context of the exact WKB analysis

of second-order ODEs, the coefficients of the Riccati equation satisfy hypothesis (2) in

Theorem 5.1 only after an additional transformation.

Example 5.1. For example, consider the Riccati equation �∂xf = f2 − x, which is

encountered in the WKB analysis of the deformed Airy differential equation. The coefficients

are a= 1, b= 0, c=−x, and the leading-order discriminant D0 is 4x. In this case, a WKB

half-stripW is necessarily an unbounded domain, and the asymptotic condition (37) reduces

to requiring that c=−x is bounded on W by
√
D0 = 2

√
x, which is not the case. Therefore,

Theorem 5.1 cannot be applied to this Riccati equation directly.

However, this can be remedied by making a change of the unknown variable f �→ g given

by f =
√
D0g for x ∈W. It transforms the Riccati equation �∂xf = f2−x into

�∂xg = 2
√
xg2− 1

2�x
−1g+ 1

2

√
x. (79)

Notice that the leading-order discriminant of this Riccati equation remains D0 = 4x and

that its coefficients are now bounded at infinity by
√
D0 = 2

√
x. Therefore Theorem 5.1 can

be applied to (79).

More generally, this transformation is necessary when dealing with monic Riccati

equations, that is, whenever the coefficient A of the Riccati equation is identically 1. This

is always the case in the exact WKB analysis of second-order ODEs [12]. Spelled out, we

have the following version of our results.

Theorem 5.3 (Exact existence and uniqueness for monic equations). Consider the

following monic Riccati equation:

�∂xf = f2+pf + q, (80)

where p,q are holomorphic functions of (x,�)∈X×S which admit locally uniform asymptotic

expansions p̂, q̂ as �→ 0 along A. Assume that D0 = p20−4q0 
≡ 0. Fix a regular point x0 ∈X,
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a square-root branch
√
D0 near x0, and a sign α ∈ {+,−}. In addition, we assume the

following hypotheses:

(1) There is a WKB (θ,α)-half-strip domain W =Wα
θ ⊂ X containing x0.

(2) The asymptotic expansions of the coefficients p,q are valid with Gevrey bounds as �→ 0

along the closed arc Āθ = [θ− π
2 , θ+

π
2 ], with respect to the asymptotic scales

√
D0 and

D0, respectively, uniformly for all x ∈W:

p� p̂ as �→ 0 along Āθ, wrt
√

D0, unif. ∀x ∈W, (81)

q � q̂ as �→ 0 along Āθ, wrt D0, unif. ∀x ∈W. (82)

(3) The logarithmic derivative ∂x logD0 is bounded by D0 on W.

Then all the conclusions of Theorem 5.1, as well as Theorem 5.2, Lemma 5.2, and

Corollary 5.2 hold verbatim. Furthermore, all the conclusions of Proposition 5.1 hold

verbatim with the only exception that the asymptotic statement (43) must be replaced with

the following asymptotic statement with respect to the asymptotic scale
√
D0:

fθ
α � f̂α as �→ 0 along Āθ, wrt

√
D0, unif. ∀x ∈W0. (83)

Proof. The change of the unknown variable f �→ g given by f =
√
D0g transforms (80)

into

�∂xg =
√
D0g

2+
(
p−�∂x log

√
D0

)
g+ 1√

D0
q. (84)

This transformation is well defined for all x ∈ W because W necessarily supports the

univalued square-root branch
√
D0. Notice that the leading-order discriminant of this

Riccati equation remains D0. Note that ∂x log
√
D0 is bounded by

√
D0 if and only if

∂x logD0 is bounded by D0, as provided by hypothesis (3). Now, it is obvious that the

hypotheses of Theorem 5.3 imply that the Riccati equation (84) satisfies all the hypotheses

of Theorem 5.1. It yields the canonical local exact solution gθα near x0, and therefore the

canonical local exact solution fθ
α =

√
D0g

θ
α near x0.

Of course, a general Riccati equation (36) can always be put into the monic form (5.3)

via the change of the unknown variable f �→ g = af , which yields

�∂xg = g2+(b+�∂x loga)g+ac. (85)

If a is nowhere-vanishing, then this transformation makes sense globally on X.

Likewise, Corollary 5.1 is also true for the monic Riccati equation (5.3), though with

slightly simplified hypotheses as follows.

Corollary 5.3 (Extension to larger domains). Consider the Riccati equation (80) with

D0 
≡ 0. Fix a sign α ∈ {+,−}, and let U ⊂ X be a domain free of turning points that

supports a univalued square-root branch
√
D0. In addition, assume that hypotheses (1)–(3)

in Theorem 5.3 is satisfied for every point x0 ∈ U. Then the conclusions of Corollary 5.1

hold verbatim.

However, Propositions 5.2 and 5.3 are no longer true for the canonical exact solutions

of the monic Riccati equation (5.3). In this case, one needs either to factorize
√
D0 out of

fθ
α and apply these propositions to the regularized Riccati equation (84), or identify and

remove the principal part of fθ
α in the limit along the WKB rays. The latter procedure can
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458 N. NIKOLAEV

be explicitly formalized when the WKB rays limit to a pole of D0; this will be explained in

detail elsewhere.

Remark 5.2. The same trick as above can help us tackle more general situations as

follows. If χ= χ(x) is any holomorphic function, then the change of the unknown variable

f �→ g given by f = χg transforms the Riccati equation (36) into

�∂xg = a′g2+ b′g+ c′, (86)

where

a′:=χa b′:=b−�∂x logχ c′:=χ−1c. (87)

Note that since χ is independent of �, the leading-order discriminant remains unchanged:

D′
0 = (b′0)

2−4a′0c
′
0 = b20−4a0c0 =D0. In summary, we have the following proposition, which

in particular recovers Theorem 5.1 by taking χ= 1 and Theorem 5.3 by taking χ=
√
D0.

Proposition 5.4. Assume all the hypotheses of Theorem 5.1, except hypothesis (2) is

replaced with the following:

(2 ′) There is a nonvanishing holomorphic function χ = χ(x) on W such that a′, b′, c′

defined by (87) admit Gevrey asymptotics as �→ 0 along the closed arc Āθ = [θ− π
2 , θ+

π
2 ],

with respect to the asymptotic scale
√
D0, uniformly for all x ∈W:

a′ � â′, b′ � b̂′, c′ � ĉ′ as �→ 0 along Āθ, wrt χ, unif. ∀x ∈W. (88)

Then all the conclusions of Theorem 5.1, as well as Theorem 5.2, Lemma 5.2, and

Proposition 5.2, hold verbatim. Furthermore, all the conclusions of Proposition 5.1 hold

verbatim with the only exception that the asymptotic statement (43) must be replaced with

the following asymptotic statement with respect to the asymptotic scale χ:

fθ
α � f̂α as �→ 0 along Āθ, wrt χ, unif. ∀x ∈W0. (89)

5.5 Exact solutions in Wider sectors

The last general result we prove is about extending canonical exact solutions to sectors

with wider openings. However, we not address here the question of extending canonical

exact solutions to radially larger sectorial domains in C� or discussing the relationship

between unequal canonical exact solutions for different values of θ. These questions will be

examined in detail elsewhere.

Thus, suppose that π ≤ |A| ≤ 2π. Let Θ:=[θ−, θ+] be the closed arc such that A= (θ−−
π
2 , θ++ π

2 ); that is, θ±:=ϑ±∓ π
2 . See Figure 1a. This arc Θ is sometimes called the arc of

copolar directions of A. For every θ ∈Θ, let Aθ:=(θ− π
2 , θ+

π
2 )⊂ A be the semicircular arc

bisected by θ. See Figure 1b. Note that A= �θ∈ΘAθ.

Proposition 5.5. Consider the Riccati equation (36) whose coefficients a,b,c are

holomorphic functions of (x,�) ∈ X× S admitting locally uniform asymptotic expansions

â, b̂, ĉ as �→ 0 along A. Assume that the leading-order discriminant D0 = b20−4a0c0 is not

identically zero. Fix a regular point x0 ∈ X, a square-root branch
√
D0 near x0, and a sign

α ∈ {+,−}. Fix a regular point x0 ∈ X, a square-root branch
√
D0 near x0, and a sign

α ∈ {+,−}. In addition, assume that hypotheses (1) and (2) in Theorem 5.1 are satisfied

for every θ ∈Θ.
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Figure 1.

Then the Riccati equation (36) has a canonical local exact solution fΘ
α near x0 which is

asymptotic to the formal solution f̂α as � → 0 in every direction θ ∈ Θ. Namely, there is

a neighborhood U0 ⊂ X of x0 and a sectorial domain S0 ⊂ S with the same opening A such

that the Riccati equation (36) has a unique holomorphic solution fΘ
α on U0×S0 which is

Gevrey asymptotic to f̂α as �→ 0 along the closed arc Ā uniformly for all x ∈ U0:

fΘ
α � f̂α as �→ 0 along Ā, unif. ∀x ∈ U0. (90)

Proof. By Theorem 5.2 (or more specifically by part (4) of Lemma 5.2), for every θ ∈Θ,

the canonical exact solution in the direction θ exists and can be written as

fθ
α(x,�) = fα

0 (x)+Lθ

[
ϕθ
α

]
(x,�) = fα

0 (x)+

∫
eiθR+

e−ξ/�ϕθ
α(x,ξ)dξ,

where ϕθ
α is the analytic Borel transform of fθ

α in the direction θ. The explicit formula from

Proposition 5.3 reveals that these analytic Borel transforms ϕθ
α for each θ ∈ Θ together

define a holomorphic function ϕΘ
α on an ε-neighborhood ΞΘ =

{
ξ
∣∣ dist(ξ,ΣΘ)< ε

}
of the

sector ΣΘ:=
{
ξ
∣∣ arg(ξ) ∈Θ

}
for a sufficiently small ε > 0. Furthermore, ϕΘ

α has at most

exponential growth at infinity in ΞΘ, which means that Cauchy–Goursat’s theorem yields

the identity Lθ+

[
ϕ
θ+
α

]
= Lθ+

[
ϕΘ
α

]
= Lθ−

[
ϕΘ
α

]
= Lθ−

[
ϕ
θ−
α

]
.

§6. Examples and applications

The somewhat obscure technical hypotheses in Theorems 5.1 and 5.3 can be made more

transparent in a number of special situations which we describe in this section. We also

present the simplest explicit example in §6.2 where we construct a pair of canonical exact

solutions by following all the steps in the proof of the main theorem. Finally, in §6.3, we
give a very important application of our result in the context of the exact WKB analysis

of Schrödinger equations.

6.1 Equations with mildly deformed coefficients

6.1.1. Undeformed coefficients

The simplest yet ubiquitous situation is when the coefficients of the Riccati equation (36)

are independent of �, in which case the asymptotic hypotheses in Theorem 5.1 dramatically

simplify.
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Thus, let us consider both the general Riccati equation (36) as well as a monic Riccati

equation (80) on X×C� with �-independent coefficients a,b,c,p,q. Their leading-order

discriminants D0 are simply b2 − 4ac and p2 − 4q. The sectorial domain S can be taken

to be any half-plane bisected by some direction in C�.

Polynomial coefficients. The simplest case is when the coefficients are polynomials in x ;

that is, a,b,c,p,q ∈ C[x]. Then X= Cx and there are only finitely many turning points and

singular WKB trajectories. All singular WKB trajectories either connect a turning point to

infinity, or two turning points together. All WKB trajectories can be easily plotted using

a computer, or even by hand in simple examples. See §6.2 where we examine the simplest

example in detail.

The biggest advantage of this simple situation is that in order to check hypothesis (1) in

either Theorem 5.1 or 5.3 that a given regular point x0 is contained in a WKB half-strip,

it is sufficient to only examine the WKB ray emanating from x0 and check that it does not

hit a turning point. If so, this WKB ray is necessarily either a closed WKB trajectory (i.e.,

a simple closed curve in the complement of the turning points) or it escapes to infinity. In

either case, there is necessarily a WKB half-strip W containing x0. For instance, we can

take a small disk D centered at x0 which is compactly contained in the complement of all

singular WKB rays (for the same phase and sign), and let W be the union of all WKB

rays emanating from D. This disk D should be chosen small enough that W is compactly

contained in the complement of the turning points; it ensures in particular that hypothesis

(3) in Theorem 5.3 is satisfied.

If the WKB ray emanating from x0 is a closed WKB trajectory, then hypothesis (2) in

both theorems is automatic. On the other hand, if this WKB ray escapes to infinity, then

hypothesis (2) in Theorem 5.1 is equivalent to saying that the polynomials a,b,c are all

bounded at infinity by
√
D0, and hypothesis (2) in Theorem 5.3 is equivalent to saying

that p is bounded at infinity by
√
D0 and q is bounded at infinity by D0. As these are all

polynomials in x, hypothesis (2) in both theorems therefore boils down to a condition on

their degrees. In summary, we have the following.

Proposition 6.1. Consider either the general Riccati equation (36) or a monic Riccati

equation (80) on Cx×C� with polynomial �-independent coefficients a,b,c or p,q ∈ C[x].

Fix a regular point x0 ∈ Cx and a square-root branch
√
D0 near x0. Fix a sign α ∈ {+,−},

a phase θ ∈ R, and let S:=
{
�
∣∣ Re(e−iθ�)> 0

}
. Assume that

(1) the WKB (θ,α)-ray Γα
θ = Γα

θ (x0) emanating from x0 does not hit a turning point;

assume in addition that a0 is nonvanishing on Γα
θ if α=−.

If Γα
θ is a closed trajectory, then all the hypotheses of Theorem 5.1 or 5.3 are satisfied, and

therefore their conclusions hold verbatim. If, on the other hand, Γα
θ escapes to infinity, then

in addition we assume that either

(2) deg(a),deg(b),deg(c)≤ 1
2 deg(D0) or

deg(p)≤ 1
2 deg(D0) and deg(q)≤ deg(D0).

Then all the hypotheses of Theorem 5.1 or 5.3 are satisfied.

Rational coefficients. More generally, the coefficients a,b,c and p,q may be arbitrary

rational functions of x. Then X=Cx\{poles} and again there are only finitely many turning

points and singular WKB trajectories, all of which can be easily plotted using a computer.

All singular WKB trajectories end either on a turning point or a simple pole of D0.
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As in the polynomial scenario, checking hypothesis (1) in both theorems boils down to

examining a single WKB ray emanating from a regular point x0. If this ray does not hit

a turning point, it must be either a closed trajectory or limit to one of the poles x∞ of

D0 including possibly the one at infinity. This WKB ray is infinite if and only if the pole

order of D0 at x∞ is 2 or greater. Note that if ord(D0) ≥ 2 at x∞, then hypothesis (3)

in Theorem 5.3 is automatic. Finally, similar to the polynomial scenario, the asymptotic

hypothesis (2) in both theorems boils down to a boundedness condition near the pole x∞
on the coefficients by an appropriate power of D0. In summary, we have the following.

Proposition 6.2. Consider either the general Riccati equation (36) or a monic Riccati

equation (80) on Cx×C� with rational �-independent coefficients a,b,c or p,q ∈C(x). Fix a

sign α ∈ {+,−}, a phase θ ∈R, and let S:=
{
�
∣∣ Re(e−iθ�)> 0

}
. Fix a regular point x0 ∈ X

and a square-root branch
√
D0 near x0. Assume that

(1) the WKB (θ,α)-ray Γα
θ = Γα

θ (x0) emanating from x0 does not hit a turning point;

assume in addition that a0 is nonvanishing on Γα
θ if α=−.

If Γα
θ is a closed trajectory, then all the hypothesis of Theorem 5.1 or 5.3 are satisfied,

and therefore their conclusions hold verbatim. If, on the other hand, Γα
θ tends a pole x∞ ∈

Cx∪{∞} of D0 of order 2 or higher, then we also assume that either

(2) ord(a),ord(b),ord(c)≤ 1
2ord(D0) at x∞ or

ord(p)≤ 1
2ord(D0) and ord(q)≤ ord(D0) at x∞.

Then all the hypotheses of Theorem 5.1 or 5.3 are satisfied.

General meromorphic coefficients. When a,b,c or p,q are more general not necessarily

rational meromorphic functions, the WKB geometry is far more complicated to describe in

general. However, if the WKB ray Γα
θ (x0) is closed or limits to a second- or higher-order

pole of D0, then a general but simplified version of both theorems can be stated as follows.

Proposition 6.3. Consider either the general Riccati equation (36) or a monic Riccati

equation (80) on X×C� with �-independent coefficients a,b,c or p,q. Fix a sign α ∈ {+,−},
a phase θ ∈R, and let S:=

{
�
∣∣ Re(e−iθ�)> 0

}
. Fix a regular point x0 ∈X and a square-root

branch
√
D0 near x0. Then we make the following hypotheses:

(1) The WKB (θ,α)-ray Γα
θ = Γα

θ (x0) emanating from x0 does not hit a turning point but

instead limits to a pole x∞ ∈ ∂X of D0 of order 2 or greater. If α=−, we also assume

that a0 is nonvanishing on Γα
θ and x∞ is not an accumulation point of zeroes of a0.

(2) ord(a),ord(b),ord(c)≤ 1
2ord(D0) at x∞ or

ord(p)≤ 1
2ord(D0) and ord(q)≤ ord(D0) at x∞.

Then all the hypotheses of Theorems 5.1 or 5.3 are satisfied.

6.1.2. Polynomially deformed coefficients

The next simplest situation is when the equations coefficients depend on � at most

polynomially. Thus, let us consider both the general Riccati equation (36) and a monic

Riccati equation (80) on X×C� where functions a,b,c in (36) or p,q in (80) are at most

polynomials in � with holomorphic coefficients. The sectorial domain S can still be taken

to be a half-plane in C�.
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The WKB geometry is fully determined by the leading-order part of the equation, so

all the same considerations apply as explained in §6.1.1. The advantage of being given the

coefficients a,b,c or p,q as polynomials in � rather than more general functions of � is

that the assumptions on the �-asymptotics reduce to simple bounds on the �-polynomial

coefficients of a,b,c or p,q of the kind we have already seen. In summary, we have the

following.

Proposition 6.4. Consider either the general Riccati equation (36) or a monic Riccati

equation (80) on X×C� with coefficients a,b,c or p,q ∈ O(X)[�]. Fix a sign α ∈ {+,−}, a
phase θ ∈ R, and let S:=

{
�
∣∣ Re(e−iθ�)> 0

}
. Fix a regular point x0 ∈ X and a square-root

branch
√
D0 near x0. Assume hypothesis (1) from Proposition 6.3, and instead of hypothesis

(2), assume that

(2) ord(ak),ord(bk),ord(ck)≤ 1
2ord(D0) at x∞ for every k or

ord(pk)≤ 1
2ord(D0) and ord(qk)≤ ord(D0) at x∞ for every k.

Then all the hypotheses of Theorem 5.1 or 5.3 are satisfied.

6.2 The simplest explicit example: Deformed Airy

In this subsection, we illustrate the main constructions in this paper in the following

explicit example. Consider the following Riccati equation on the domain Cx×C�:

�∂xf = f2−x. (91)

Thus, in this example, a= 1, b= 0, c=−x, and X=Cx. Let us fix θ= 0, so we will search for

canonical exact solutions of (91) with prescribed asymptotics as �→ 0 along the positive

real axis R+ ⊂ C�. Then the sectorial domain S can be taken as the complement of the

negative real axis R− ⊂ C�.

This Riccati equation arises in the WKB analysis of the Airy differential equation

�2∂2
xψ(x,�) = xψ(x,�) upon considering the WKB ansatz ψ = exp

(
−
∫
f/�

)
(see [12] for

more details). For this Riccati equation, it is known that exact solutions exist (see, e.g., [8,

§2.2]). There, instead of solving the Riccati equation directly, the Borel–Laplace method

is applied to the Airy differential equation. Here, we take a different approach by solving

the Riccati equation directly. We have included this example because it is the simplest and

most explicit standard example that nicely illustrates most constructions encountered in

our paper.

6.2.1. Leading-order analysis.

Following §3.1, the leading-order equation (8) for the Riccati equation (91) is simply

f2
0 −x = 0. The leading-order discriminant given by formula (9) is D0(x) = 4x. There is a

single turning point at x= 0. Let
√
x be the principal square-root branch (i.e., positive on

the positive real axis) in the complement of a branch cut along, say, the negative real axis.

Label the two leading-order solutions as

f±
0 (x):=±

√
x so that

√
D0 = 2

√
x. (92)

The leading-order solutions f±
0 are holomorphic on any simply connected domain U⊂ C∗

x.

However, f±
0 are unbounded if U is unbounded: the coefficient c=−x of (91) is not bounded

by
√
D0 = 2

√
x, so not all the hypotheses of Lemma 3.1 are satisfied. This will be rectified

later by regularizing the coefficients following §5.4.
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6.2.2. Formal perturbation theory.

Now, we study the formal aspects of this Riccati equation following §3.2. By Theorem 3.1,

the Riccati equation (91) has a pair of formal solutions f̂± with leading-order terms f±
0 .

Their coefficients f±
k for k≥ 1 are given by the recursive formula (12), which in this example

reduces to

f±
k =± 1

2
√
x
∂xf

±
k−1∓ 1

2
√
x

i,j �=k∑
i+j=k

f±
i f±

j . (93)

The first few coefficients are

f±
0 =±

√
x, f±

1 =+1
4x

−1, f±
2 =∓ 5

32x
−5/2, f±

3 =+15
64x

−4, . . . . (94)

In fact, if we set d±0 =±1, it is easy to show by induction that for all k ≥ 1,

f±
k (x) = d±k x

−3k/2
√
x where d±k :=

1

2

⎛
⎝(2−3k/2)d±k−1−

i,j �=k∑
i+j=k

d±i d
±
j

⎞
⎠ . (95)

Note that all d±k are rational numbers.

6.2.3. The Liouville transformation and WKB trajectories.

Following §4, let us describe the geometry of WKB trajectories on Cx emerging from

this Riccati equation. For any basepoint x0 ∈ Cx, the Liouville transformation is given, on

the complement of the branch cut, by the simple formula

z =Φ(x) =

∫ x

x0

2
√
tdt= 4

3(x
3/2−x

3/2
0 ). (96)

It follows that, for example, the WKB (0,+)-ray emanating from any point x0 with

arg(x0) 
=±3π/2 is complete. If, on the other hand, arg(x0) =±3π/2, then the WKB (0,+)-

ray emanating from x0 hits the turning point in finite time. Likewise, the WKB (0,−)-ray

of every point x0 with arg(x0) 
= 0 is complete. See Figure. 2. We focus our attention now

on the domain

U:=
{
x
∣∣ 0< arg(x)<+3π/2

}
. (97)

Its image under the Liouville transformation Φ0(x):=
4
3x

3/2 is the upper half-plane

H =
{
z
∣∣ Im(z)> 0

}
. Clearly, the domain U is swept out by complete WKB trajectories

and every point is contained in a WKB strip. Thus, for example, let us take

x0:=
3
4e

iπ/3, so Φ0(x0) = i. Let U0 be the preimage under Φ0 of the horizontal strip

H0:=
{
z
∣∣ 1

2 < Im(z)< 3
2

}
. The Liouville transformation based at x0 is simply Φ = Φ0− i,

and the image of U0 is the WKB strip
{
z
∣∣ dist(z,R)< 1

2

}
. However, in this example, it is

more convenient to work with the Liouville transformation Φ0.

6.2.4. Regularizing the coefficients.

The first observation is that the Riccati equation (91) does not satisfy hypothesis (2)

of Theorem 5.1. This is because the rescaled coefficients a/
√
D0, b/

√
D0, and c/

√
D0 are,

respectively, 1
2x

−1/2,0, and −1
2x

+1/2, which are unbounded on U. This unboundedness is

caused by two separate problems: one is that x+1/2 is unbounded at infinity, and the other is
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Figure 2.

Pictured are the complex planes Cx (left) and Cz (right) with Φ being the Liouville transformation with

basepoint x0 = 0. In Cx, there is a turning point at the origin, indicated by a red circled cross. A few

complete WKB trajectories on Cx are drawn in green, with arrows indicating the orientation with respect

to the chosen square-root branch
√
D0 = 2

√
x, for which the branch cut is taken along the negative real

axis. There are two special trajectories, indicated in red, which are not complete: they flow into the

turning point in finite time. The domain U from (97) is shaded in blue.

that x−1/2 is unbounded near the turning point at the origin. The latter problem is remedied

by restricting to U0. In order to remedy the first problem and proceed according to our

method, it is necessary to regularize the coefficients of this Riccati equation as in §5.4.
If we make a change of the unknown variable f �→ g = x−1/2f over U, then the Riccati

equation (91) gets transformed into

�∂xg =
√
xg2− �

2xg−
√
x. (98)

This is equation (86) from §5.4 with

a′ =
√
x, b′ = 1

2�x
−1, c′ =−

√
x, χ=

√
x= 1

2

√
D.

The Riccati equation (98) now satisfies hypothesis (3’) from Proposition 5.4 with regular-

izing factor χ=
√
x.

The coefficients of the formal solutions ĝ± of (98) are given by g±k (x) = d±k x
−3k/2.

Explicitly, the first few coefficients are

g±0 =±1, g±1 =+1
4x

−3/2, g±2 =∓ 5
32x

−3, g±3 =+15
64x

−9/2, . . . .

We now follow the step-by-step procedure in the proof of Theorem 5.1 in §5.1.
Step 0: Preliminary transformation.

We begin by performing the preliminary transformations (one for each of ±) of the

unknown variable g �→ g̃ given by

g = g±0 +�
(
g±1 + g̃

)
= d±0 +�d±1 x

−3/2+�g̃ =±1+ 1
4�x

−3/2+�g̃. (99)

They transform the regularized Riccati equation (98) into a pair of Riccati equations

�

2
√
x
∂xg̃− g̃ = �

(
1
2 g̃

2−d±2 x
−3
)
= �

(
1
2 g̃

2± 5
32x

−3
)
. (100)
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This is equation (64) from §5.1 with ã= 1
2 , b̃= 0, and c̃=± 5

32x
−3. Applying the Liouville

transformation Φ0 to the Riccati equations (100), we get

�∂zF −F = �
(

1
2F

2−d±2
(
3z/4

)−2
)
= �

(
1
2F

2± 5
18z

−2
)
. (101)

The unknown variables g̃ and F are related by g̃(x,�) = F
(
4
3x

4/3,�
)
. Equation (101) is

equation (45) from §5.1 with A0 =± 5
18z

−2, A1 = 0, and A2 =
1
2 .

Step 1: The analytic Borel transform.

Since Ai are independent of �, it follows that their Borel transforms αi are zero, and so

the Borel transform of (101) is the following PDE:

∂zφ−∂ξφ= 1
2φ∗φ. (102)

This is equation (49) from §5.1 with α0 = α1 = α2 = 0, a0 = ± 5
18z

−2, a1 = 0, and a2 =
1
2 .

In this case, the tubular neighborhood Ξ+ can be taken arbitrarily large.

Step 2: The integral equation.

The PDE (102) is easy to transform into an integral equation:

φ(z,ξ) = φ±
0 (z)+

1

2

∫ ξ

0

φ∗φ(z+ t,ξ− t)dt, (103)

where φ(x,0) = φ±
0 (z):=a0(z) =± 5

18z
−2. This is equation (50) from §5.1.

Step 3: Method of successive approximations.

The integral equation (103) is solved by the method of successive approximations. This

method yields a sequence {φ±
n }

∞
n=0 of holomorphic functions given by φ±

0 = a0 = ± 5
18z

−2,

φ±
1 = 0, and for n≥ 2,

φ±
n =

1

2

∑
i+j=n−2

∫ ξ

0

φ±
i ∗φ±

j (z+ t,ξ− t)dt

=
1

2

∑
i+j=n−2

∫ ξ

0

∫ ξ−t

0

φ±
i (z+ t,ξ− t−y)φ±

j (z+ t,y)dydt.

This is equation (53) from §5.1. It is easy to see that φn = 0 for all n odd because φ1 = 0.

The first few even terms of this sequence are

φ±
0 =± 5

18z
−2;

φ±
2 = 1

12

(
± 5

18

)2 3z+2ξ
z3(z+ξ)2 ξ

2 ∼ 1
6

(
± 5

18

)2
z−3ξ as ξ →+∞;

φ±
4 = 1

48

(
± 5

18

)3 ξ4

z4(z+ξ)2 ∼ 1
48

(
± 5

18

)3
z−4ξ2 as ξ →+∞;

φ±
6 = 1

2

(
± 5

18

)4( ξ(16ξ5+810z5+1,650ξz4+915ξ2z3+70ξ3z2−8ξ4z)
4,320z5(z+ξ)2(2z+ξ) +log

(
z

z+ξ

)
7ξ2+27z2+28ξz
72z2(2z+ξ)2

)

∼ 1
270

(
± 5

18

)4
z−5ξ3 as ξ →+∞;

φ±
8 ∼ 7

35,640

(
± 5

18

)5
z−6ξ4 as ξ →+∞.

An exact expression for φ±
8 involves logarithms and dilogarithms; it is very long and not

very useful, occupying almost half of this page. However, the pattern is clear:

φ±
2n ∈O

(
Ln

n! z
−2
(
ξ/z2

)n)
as ξ →+∞,
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for some constant L> 0 independent of n and z. It follows that the solution to the integral

equation (103) satisfies

φ±(z,ξ) =
∞∑

n=0

φn(z,ξ) �
∞∑

n=0

1
n!z

−2
(
Lξ/z2

)n
= z−2eLξ/z2

as ξ →+∞.

This asymptotic inequality yields the exponential estimate (55) from §5.1 with A= 4 and

K = 0.

Step 4: Laplace transform.

Applying the Laplace transform to φ±, we obtain exact solutions F± of the two Riccati

equations (101):

F±(z,ξ):=

∫ +∞

0

e−ξ/�φ±(z,ξ)dξ.

It is evident from the asymptotic behavior of φ± as ξ → +∞ that this Laplace integral

is uniformly convergent for all z ∈ H0 and all � ∈ S0:={Re(1/�)> L}. Note that it is not

uniformly convergent for z ∈ H, because the constant A in the estimate for φ± grows like

|z|−2.

Finally, using the inverse Liouville transformation Φ−1
0 : z �→

(
3
4z
)2/3

to go back to the

x -variable, we obtain two exact solutions of the Riccati equation (98):

g±(x,�):=±1+ 1
4�x

−3/2+�

∫ +∞

0

e−ξ/�φ±
(
4
3x

3/2, ξ
)
dξ.

Transforming back to the original Riccati equation (91) via the identities (99) and f =

x−1/2g, we obtain two exact solutions of the original Riccati equation (91):

f±(x,�) =±
√
x+ 1

4x�+�
√
x

∫ +∞

0

e−ξ/�φ±
(
4
3x

3/2, ξ
)
dξ.

These are the two canonical exact solutions on U0.

6.3 Exact WKB solutions of Schrödinger equations

In this final subsection, we give an application of our existence and uniqueness result

to deduce existence and uniqueness of the so-called exact WKB solutions of the complex

one-dimensional stationary Schrödinger equation(
�2∂2

x− q(x,�)
)
ψ(x,�) = 0. (104)

We keep the discussion here very brief; the details can be found in [12]. The potential

function q(x,�) is defined on a domain in Cx×C� and usually assumed to have polynomial

or even constant dependence on �. In view of the work done in this article, we can assume

a much more general �-dependence, but for simplicity of presentation, let us suppose that

q is a polynomial in �:

q(x,�) = q0(x)+ q1(x)�+ · · ·+ qn(x)�
n.

The WKB method begins by searching for a solution in the form of the WKB ansatz :

ψ(x,�) = exp

(
−1

�

∫ x

x∗

f(t,�)dt

)
, (105)
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where x0 is a chosen basepoint, and f = f(x,�) is the unknown function to be solved

for. Substituting this expression back into the Schrödinger equation, we find that the WKB

ansatz (105) is a solution if the function f satisfies the singularly perturbed Riccati equation

�∂xf = f2− q. (106)

Locally in x, this Riccati equation has two formal solutions f̂± with locally holomorphic

leading-orders f±
0 = ±√

q0. They give rise to a pair of formal WKB solutions, which by

definition are the following formal expressions:

ψ̂±(x,�):=exp

(
−1

�

∫ x

x0

f̂±(t,�)dt

)
. (107)

An exact WKB solution is any analytic solution ψ(x,�) to the Schrödinger equation (104),

which is asymptotic as �→ 0 in the right half-plane to a formal WKB solution.

Theorem 6.1 (Local existence of exact WKB solutions). Consider a Schrödinger

equation (104) with potential q = q(x,�) which is a polynomial in � whose coefficients are

rational functions on Cx. We make the following two assumptions:

(1) Suppose that the poles of q have order at least 2 and that they are completely specified in

the leading-order term q0. More precisely, if D⊂Cx∪{∞} is the set of poles of q0, we

assume that every pole x∞ ∈D has order ord(q0)≥ 2; we assume furthermore that every

qk has no poles other than D and that for every x∞ ∈ D, we have ord(qi)≤ ord(q0).

(2) Fix a basepoint point x0 ∈Cx which is neither a pole nor a zero of q0, and assume that

the real one-dimensional curve

Γ(x0):=

{
x ∈ Cx

∣∣∣ Im( ∫ x

x0

√
q0(t)dt

)
= 0

}
(108)

limits at both ends into points of D (not necessarily distinct).

Then the Schrödinger equation (104) has a canonical local basis of exact WKB solutions

ψ± normalized at x0:

ψ±(x0,�) = 1 and ψ±(x,�)∼ ψ̂±(x,�) as �→ 0 in the right half-plane. (109)

Proof. We consider the corresponding Riccati equation (106). Its leading-order

discriminant is simply D0 = 4q0. The assumptions on the pole orders of q and the fact

that Γ(x0) flows into D at both ends imply that Γ(x0) is a generic WKB trajectory. Thus,

all the hypotheses of Theorem 5.3 (or more specifically of Proposition 6.4) are satisfied,

so (106) has a canonical pair of exact solutions f± defined for x near x0 and asymptotic

to f̂± as �→ 0 in the right half-plane. The exact WKB solutions ψ± are then defined as

ψ±(x,�):=exp
(
−�−1

∫ x

x0
f±(t,�)dt

)
. They form a basis of solutions near x0 because the

Wronskian of ψ+ and ψ− evaluated at x= x0 is f+(x0,�)−f−(x0,�) 
= 0.

Appendix A. Some useful elementary estimates

Here, we collect some elementary estimates that are used in the proof of Lemma 5.1.

Their proofs are straightforward.
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Lemma A.1. For any R≥ 0, any L≥ 0, and any nonnegative integer n,∫ R

0

rn

n!
eLrdr ≤ Rn+1

(n+1)!
eLR.

Lemma A.2. For any R≥ 0, and any integers m,n≥ 0,∫ R

0

(R− r)mrndr =
m!n!

(m+n+1)!
Rm+n+1.

Lemma A.3. Let i, j be nonnegative integers, and let fi(ξ),fj(ξ) be holomorphic

functions on a tubular neighborhood Ξ+:=
{
ξ
∣∣ dist(ξ,R+)< ε

}
of the positive real axis

R+ ⊂ Cξ for some ε > 0. If there are constants Mi,Mj ,L≥ 0 such that

∣∣fi(ξ)∣∣≤Mi
|ξ|i
i!

eL|ξ| and
∣∣fj(ξ)∣∣≤Mj

|ξ|j
j!

eL|ξ| ∀ξ ∈ Ξ+,

then their convolution product satisfies the following bound:

∣∣fi ∗fj(ξ)∣∣≤MiMj
|ξ|i+j+1

(i+ j+1)!
eL|ξ| ∀ξ ∈ Ξ+.
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