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GLACIER SLIDING DOWN AN INCLINED WAVY BED

By L. W. MoRLAND
(School of Mathematics and Physics, University of East Anglia, Norwich NR4 7TJ, England)

Apstract. The treatments by Nye and Kamb of glacier sliding over a wavy bed with small slope,
which assume the ice to be approximated by a Newtonian fluid of high viscosity, are complemented by the
inclusion of the glacier depth and the inclination of the bed to the horizontal. The driving force of the
motion, gravity, 1s therefore present in the flow equations and defines immediately the mean drag on the
bed. A geothermal heat flux is also included in order to estimate its possible effect on the flow. A complex
variable method is used to determine the velocity and temperature fields to second order in the bed slope.
These fields satisfy the zero shear traction and pressure-melting-regelation conditions to the same order on
the actual bed profile. It is the balance of the second-order term which determines explicitly the (zero order)
basal-sliding velocity and surface velocity in terms of the geometry and physical properties of both ice and
bed. An explicit solution is illustrated for a sinusoidal bed, and a simple criterion for the onset of cavitation
is obtained,

RisuMmE. Glissement d’un glacier sur un lit incliné ondulé. l.es théories de Nye et Kamb pour le glissement
d’un glacier sur un lit ondulé a faible pente, assimilant la glace & un fluide newtonien i haute viscosité, sont
complétées par la prise en compte de "épaisseur du glacier et de Pinclinaison du lit sur 'horizontale. La
force qui provoque le mouvement, la gravité, est done présente dans les équations de 'écoulement et définit
immédiatement le frottement moyen sur le lit. On introduit également un flux de chaleur géothermique
pour estimer son effet possible sur I’écoulement. Une méthode a variable complexe est utilisée pour déter-
miner les champs de vitesse et de température jusqu’au second ordre dans la pente du lit, qui satisfassent les
conditions d’un cisaillement nul et de pression-fusion -congélation jusqu'a cet ordre sur le profil réel du iit.
C’est le terme du second ordre qui détermine explicitement le glissement au fond (voisin de zéro), la vitesse
et la vitesse en surface d’apreés les propositions géométriques et physiques du lit et de la glace. Une solution
explicite est donnée en exemple pour un lit sinusoidal et on obtient un critére simple pour le déclenchement
de la cavitation.

ZUSAMMENFASSUNG. Glelschergleiten iiber ein geneigtes, gewelltes Bett. Nye's und Kamb’s Behandlung des
Gletschergleitens tiber ein gewelltes Bett geringer Neigung unter der Annahme, das Eis sei annihernd eine
Newtonsche Flissigkeit hoher Viskositit, wird durch die Einbeziehung der Eisdicke und der Neigung des
Bettes gegen die Horizontale erginzt. Die Schwerkraft als Triebkraft der Bewegung geht daher in die
Fliessgleichungen ein und bestimmt unmittelbar den mittleren Schub auf das Bett. Weiter wird ein geo-
thermischer Warmefluss eingefiithrt, um seinen méoglichen Einfluss auf das Fliessen abschiatzen zu kénnen.
Zur Bestimmung der Geschwindigkeits- und Temperaturfelder bis zur 2 Ordnung der Bettneigung, welche
die Bedingungen fiir das Verschwinden des Scherzuges und fiir Regelation unter Druckschmelze bis zu dieser
Ordnung auf dem tatsichlichen Bettprofil erfiillen, wird eine komplexe Variationsmethode herangezogen.
Die Ausgewdgenheit der Glieder 2 Ordnung ist es, die explizit die basale Gleitgeschwindigkeit (nullter
Ordnung) und die.Oberflichengeschwindigkeit als Funktion der geometrischen und physikalischen Eigen-
schaften von Eis und Bett bestimmt. Eine explizite Losung qird fiir ein sinusférmiges Bett vorgelegt; dabei
ergibt sich ein einfaches Kriterium fiir das Einsetzen der Kavitation.

1. INTRODUCTION

The overall motion of a temperate glacier consists of a relative deformation or flow
through the ice mass together with basal sliding over the bed (which may make a significant
contribution to the observed surface velocity). The internal flow is governed by the constitu-
tive response of the ice whereas basal sliding depends on conditions at the ice-bed interface.
Specifically it is the presence of a thin water layer, caused by pressure melting and refreezing
as the ice flows over undulations, which “lubricates” the bed and allows slip to occur.

The regelation mechanism was proposed first by Weertman (1957) who modelled the bed
as a regular array of rectangular obstacles. The latent heat released by freezing on the low-
pressure down-stream face is conducted through the obstacle to melt the ice on the high-
pressure up-stream face. An energy argument and an assumed value for the shear stress at the
bed then lead to a basal-sliding velocity due to pressure-melting which is expressed in terms
of the obstacle and spacing lengths. An estimate of the creep-rate is made by using Glen’s
law for the ice response and by making further assumptions about the stresses on the obstacle.
Next, an expression for the sliding velocity due to a creep process is inferred.
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The two estimates of sliding velocity, one based on regelation and the other on creep,
decrease and increase with the length scale of the obstacle, respectively. Weertman proposes,
therefore, that since all length scales will exist in practice, sliding is controlled by the length
giving the same velocity for both mechanisms. Equating the two expressions gives the sliding
velocity in terms of the drag and a roughness parameter—a ratio of obstacle length to spacing.
The theory is extended in a similar manner (Weertman, 1964) to account for cavitation on
the down-stream faces. Later, Weertman (1971) defends this simple ‘“‘semi-quantitative”
theory against the criticisms of Nye (1969, 1970) and Kamb (1970). However, the theory of
Weertman relies crucially on estimates of stress and a sliding velocity deduced from an
inferred mean creep rate. There is also the difficulty of relating obstacle size and spacing to a
more general bed profile; further, there is no demonstration that a flow field with the required
features exists. A more elaborate treatment in the same spirit is proposed by Lliboutry (1968)
who considers a sinusoidal bed profile, accounts for cavitation, and discusses various basal
friction laws, in other words, the relationships between the mean drag, the normal pressure,
and the sliding velocity.

Nye (1969, 1970) and Kamb (1970) focus upon the need for an exact flow and heat
conduction solution which satisfies the regelation conditions at the ice—bed interface. Ior this
purpose Nye assumes that the ice response can be approximated as a Newtonian (incom-
pressible) fluid of high viscosity and that the bed profile is periodic with small slope. Because
of this the Reynolds number is very low, inertia terms are negligible, and slow steady viscous
flow is assumed. Further, the water layer thickness is negligible compared with the length
scale of the undulations, so the layer is treated as a surface distribution of heat sources (sinks)
which coincide with the bed surface and which give rise to the latent heat of freezing (melting).
The interface conditions are linearized to define a half-space problem for the ice flow after
ignoring the upper glacier surface and introducing a small slope parameter e. This problem
is treated by Fourier analysis, first for a plane flow and then for three-dimensional flow.
Second-order expressions in € are obtained for the flow field over a sinusoidal bed. Expressions
for the mean drag are deduced and the results are extended by the statistical analysis of a
general bed profile. The solution assumes that no cavitation occurs. Kamb (1970) obtains
the same linear solution, demonstrating that the ice motion may be neglected in the heat
conduction, but uses this as a starting point for an approximate treatment when the ice
satisfies the more realistic non-linear Glen law.

The present paper complements the solution of Nye and Kamb for Newtonian plane flow
(small bed slope) by incorporating explicitly the depth £ of the glacier and the inclination
a of a (mean) bed line to the horizontal, both parameters assumed uniform over the length
scale of interest. Thus, gravity (which is the driving force for the glacier motion) is included
in the balance equations for slow viscous flow, and a flow solution is determined without
the need to introduce an artificial shear stress at some distance from the bed (Nye, 1969).
Furthermore, the solution satisfies an upper-surface condition of normal atmospheric pressure
pu within the approximate expansion scheme. It is supposed that there is no net longitudinal
stress gradient, only a periodic variation induced by the bed undulation, and that the flow
is steady, that is, no rigid body acceleration of order g sin « parallel to the bed occurs; this is
consistent with normal flow conditions. The mean drag on the bed is therefore

T = pgh sin «, (1)

where p is the ice density.

Since shear stress in a thin water layer at the bed is negligible compared with 7, one
boundary condition on the bed is that of zero tangential traction. This is an idealized condi-
tion which assumes that neither draining nor pinching-out of the water layer occur, and
that there is no cavitation so that the ice boundary is everywhere the bed surface. The drag
is the longitudinal resultant of the pressure acting over the undulations. The other bed
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conditions link the ice flow and heat conduction through the pressure-melting and regelation
relations. For completeness a uniform geothermal heat flux acting normal to the bed is
included at large distances from the bed, so that its effect on the flow can be estimated for
levels which are observed typically. The effect is shown to be small. The flow solution
determines explicitly the basal sliding velocity Uy, and surface velocity Us, in terms of A, «,
and the bed geometry for given ice and bed properties. An illustration for a sinusoidal bed
profile shows that Uy is very sensitive to the wavelength of the undulation. The variations
of Uy with seasonal changes of melt water (Lliboutry, 1968) cannot be described by this model
of the bed conditions.

The small parameter e <1 is chosen as the maximum bed slope (relative to the inclined
bed line), and for mathematical completeness the bed profile is extended periodically to
infinity. Dimensionless coordinates are introduced through a length scale A defined so as to
make the maximum amplitude of the dimensionless bed profile unity from a given bed line.
The profile is assumed to be sufficiently differentiable for expansion procedures to a required
order in e. The coefficients of leading terms are restricted to order unity by this choice of
coordinates. It is assumed that A/h is sufficiently small for the upper surface conditions to be
satisfied to the required order in e. In fact, the perturbation in the flow from a basic laminar
flow is found to decay exponentially with height so that this is not a strong restriction. The
approach here is to seek half-plane solutions to the perturbation flow equations in the ice and
the heat conduction equations in the ice and bed which satisfy, to the required order in ¢, the
boundary conditions on the actual bed surface. That is, the bed surface conditions are
not applied on the boundary of a half-plane as in the earlier solutions, which can therefore be
correct only in the leading term of the expansions.

A complex variable method is used and solutions to order €2 obtained explicitly, though the
expansions given determine valid solutions to order €3 with a further iteration. The evaluations
are elementary for a profile which can be adequately modelled by a low-order truncated
Fourier series, and the solution is illustrated for a sinusoidal bed. A simple cavitation criterion
is found which depends only on % and . T'o an order of the first power of e, the velocity-field

fo},

Fig. 1. Glacier flow over a wavy bed.
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perturbation agrees with the solution of Nye (1969). However, whereas the present ¢* terms
arc bounded, Nye has an unbounded term due to the artificial shear stress at infinity which is
introduced to drive the motion. The determination of a parameter to order one, which in
turn determines the basal sliding velocity, occurs in the balance of order € terms, so it is
essential to construct a consistent expansion scheme to order 2. Furthermore, with classical
boundary conditions of zero velocity there are no bounded half-plane solutions for low which
are non-trivial (Langlois, 1964), so the present solution verifies that the present boundary
conditions define a well-posed flow problem.

2. BED PROFILE AND BOUNDARY CONDITIONS

Figure 1 displays the idealized flow problem. Coordinates (x, ) are chosen along a bed
line and normal to the bed respectively, with the x-axis inclined at angle « to the horizontal.
The glacier flows in the x-direction, U is the surface velocity at y = k, and Uy is the basal
sliding velocity defined as the x-velocity in a flow continued onto y = 0. The bed profile

is given by
b = f(x), (2)

where f(x) is smooth, sufficiently differentiable for subsequent expansions, and supposed to
extend periodically as x — 4 co. This allows a well-posed mathematical problem; a different
profile distant from the region of interest will not affect the local flow field. If f(x) can be
described adequately by a low-order truncated Fourier series the later solution is easily
evaluated. Following Nye (1969, 1970) and Kamb (1970) it is assumed that the bed slope is
everywhere small; thus,

€ = |f, (x)imux < I. (3)
Now we introduce the dimensionless coordinates (X, ¥°) with a length scale A:
o= AX,
= AL, (4)
in which the bed profile becomes
Ty = f(AX)[A = F(X). (5)
We then choose
A = faile;
where
Jm = |f(x)|max (6)
Thus
F(X) = f(AX)] fm,
[F(X)| <1, (7)
F(X)] <1

That is, the length scale A is defined so that the contributions of F(X) and F’(X) to the expan-
sion coefficients are necessarily of order unity. The only restriction on the amplitude fm is
Equation (6) with the strong inequality represented by Equation (3). My approach is to seek
flow solutions in the half-plane » > o (¥ = o) which give correct values on the surface
¥ = Y, to a required order in e. Strictly, ¥y should lie inside the half-plane 1, = o as
shown, but half-plane heat conduction solutions for the bed must be evaluated on 1%, and
hence continued outside their domain if ¥ > 0. The smoothness conditions on f(x) required
for the expansion procedure allow such extensions, so the bed line y = o can be set anywhere
in the vicinity of the bed surface. However, changing the bed line y = o for a given profile
shape changes fim and the scale length A, so that it must be confirmed that this scale change
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leaves the physical solution invariant. The change is equivalent to a uniform shift of the profile
in the y-direction (either direction), so consider

v =f(x)+efm (e = 0(1)), (8)
Ae 7
T - %_1—6 max = E X O(I)’ (9)
Fe(X) = AAF(AX]Ac) +cfé. (10)
Thus
FAX) = FOXD) B (X) = 2P (XN .o (1)

and if w(x) is any physical variable represented by
W(X) = w(AX) We(X) = w(A:X), (12)
on the two scales, then
We(X) = WRXIN)  We(X) = (el )W (AX]). (13)
It will be seen that the subsequent solution is invariant under the transformations shown in
Equations (11) and (13), and, by Equation (g), any order of magnitude statement concerning
A applies also to Ac.
An alternative coordinate transformation
X=x ¥ = r—rniXx), (14)
proposed by Nye (1970) to make the bed surface 7" == o requires

and - (15)
% ~ ax 1'(X) 57 = 5100 57

so continuing beyond the leading terms gives differential equations of a more complicated
form and the biharmonic feature of the theory is lost. Expansion about ¥ = o of solutions
of the original equations is therefore the more appropriate approach.

It is assumed that the regelation process takes place everywhere on the surface producing
a continuous thin water layer. The possible shear stress in such a water layer is negligible
compared with 7 so that one boundary condition for the ice at the bed surface is

¥ = Ky s =0, (16)

where (s, n) denotes the local tangent and normal (inward to the ice) coordinates at a point
on the bed surface, with the s-tangent direction inclined at angle 6 to the bed line y = o.
The condition represented by Equation (16) is an idealization which requires that the water
layer is nowhere ‘“‘pinched-out” or drained away, and which assumes that the ice surface
remains in contact with the surface layer; that is, no appreciable cavitation occurs. In terms
of the stress tensor o,

¥—= Fys ts = cos 20 ozy+4 sin 20 (oyy—0zz), (17)
where
tan 0 = f'(x) = eF'(X). (18)
The bed surface is everywhere at the pressure-melting point. Let p, be a mean pressure

level for the bed, and (po, T,) a pressure-melting point. Then, for temperatures 7 close to
T, there is a linear relation between temperature and pressure-melting point for ice

T— Tn = _C(P_Po): (19)
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where € = 0.7x 1077 °Cm? N-' (Nye, 1969). Kamb (1970) points out that the hydrostatic
pressure p is the correct stress in Equation (1g). Thus, if T is the temperature in the ice and
S the temperature in the bed, temperature continuity at the bed surface gives

¥ = T S—To=T=T,= —C(p—po). (20)
If T4 is the normal component of ice velocity on the bed surface (directed into the ice so
that a positive value denotes local freezing and a negative value indicates melting), then
there is a surface distribution of heat sources with density per unit length of bed LV, unit
length normal to the plane, where L is the latent heat (Nye, 1969) and L = 2.8x 108 ] m~3.
Let N = n/A be the normal coordinate in (X, V') coordinates, then the ice and bed tempera-
ture fields satisfy the surface flux condition
T A .
¥ = Tb: 7k1—?’7\?+kbﬁ\f: /\LI/n, (2])
where ki, ky, are the thermal conductivities of the ice and bed respectively. ki = 2.0
J m~=1s71 °C~" and ky = rk; where r has a range from 1 to 2 for typical bed rocks; the value
r = 1.6 appropriate to granite is used in a later calculation.
The stress in the ice is given in terms of the two velocity components Vg, Vy, by the
constitutive law, so Equations (16), (20) and (21) are four bed surface conditions for Iz, 17,

T, S. On the glacier surface
Vil k/A Oyy = —pa, Ozy = 0, (22)
where p; is atmospheric pressure. Strictly, the free-surface condition (Equation (22)) is

compatible with the restriction y = & only if V; = o there, but it will be shown that this is
valid to any order in € under the weak restriction
Alh = 0(1), (23)
since the solution gives exponential decay in ¥ for I"y. The flow is represented as the sum of a
laminar flow satisfying Equation (22) exactly, but not Equation (16), and a perturbation
which is not assumed to be small near the bed, only at y = A, so that Equation (22) is satisfied
to the required order. The perturbation is constructed as a half-plane solution and Equation
(23) is the requirement. Similarly, the ice and bed are treated as half-planes for the heat
conduction solutions satisfying Equations (20) and (21) on the bed surface. A geothermal
heat flux @ normal to the bed is included by the conditions
T =~ —E Y as ¥ — o0,
ki
(24)
AQ

Sy ——7Y as ¥ —- —oo.
kn

A typical value for @ of 4 x 1072 J m~2 s~1 (Paterson, 1969) is used for later estimates.

3. FLow EQUATIONS !
The ice is assumed to be an incompressible Newtonian fluid of high viscosity u. A value
for p of gx 102 N m~2s (Nye, 1969) is used in the calculations. Thus

eV By
= =

ox 9y

(25)

oV, oVy £ Fu, S
Oz = —pt2p——  oyy= —pt2p &y AN T )

https://doi.org/10.3189/50022143000013733 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013733

GLACIER FLOW DOWN A SLOPE 453

Momentum balance for slow viscous plane flow under gravity requires that

COzx C(Ogy

x 5 + pg sin =0,
(26)
FO’;;'U P‘O'yy 1
Px 5 — pg COs 2 =0.
Let
VelUs = 1—x(1—AY[R)2+ u, VylUs = 0, (27)
where
_ pgsin a h?
= T (28)
and also
U,
p = po—pgcosa AT+ P, (29)
where
po = pa-tpg cos a h, (30)
=1, 29y, 20C0 »
ki A
A CU, L
= 7,29y, 26CT
kp A

In these equations u and v are dimensionless velocity components (with unit Us) while P is a
dimensionless pressure (with unit 2pUg/A) superposed on a laminar flow which balances the
body force (gravity) and which satisfies the upper surface condition (Equation (22)), p, is
the overburden pressure on a bed line ¥ = o in the laminar flow. 7 and § are dimensionless
temperatures (with unit 2uCUg/A) in the ice and bed superposed on a uniform flux field
satisfying Equation (24). They satisfy the steady heat conduction equations in their respective
domains ‘
V2T =0, V2§=o. (32)

Here the ice motion is neglected (Kamb, 1g70) and V2 is the two-dimensional Laplacian in
(X, ¥) coordinates. Thus, absorbing constants into 7,:

T =0 as ¥ — oo,
1 (33)
S —>o as ¥ — — oo,
and Equation (20) can be written as the two relations
P s T = —P+Bh, (34)
Y= Yu: T8 = DF,, (35)
where
K Q A\?2
= sin o (cos Ex-i_,ogkl(]) (?1)
and (36)
ptt & W iy
r sina pgkiC \ h
D = oif @ = o or if the two conductivities are equal, thatis, r = kp/k; = 1. With the values
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given earlier, @/(pgkiC) = 31.66, and to a good approximation the cos « term in B can be

neglected and
r—l 32k [A\?
D= —— B, B = (Z) : (37)

sin &
This reduction is not appropriate if @ is appreciably smaller than the adopted value, when the
full expressions given by Equations (36) must be used. The flux condition, Equation (21),

becomes
eT o8 ANz Py
Y= i Mﬁ?’ﬁv: = (A_,) "175, (38)
where
kiC
Ay? = 4“T = 0.006 0 m?, (39)

for the adopted values. A value for A, of 0.077 m is equivalent to the Nye (1969) value for
ky' (in his notation). By Equation (27)

Y= ¥y: E— coqﬂ—qinﬁlxﬂ +2 éT— 322"2—%:1‘ (40)
= Yh: T ¥ COS s l K e Ty—x |3 b [ . 4
The flow formulae (Equations (25)-(29)) reduce to
oP ¢P
ViP =0, =14V, =1V, (41)

which are the equations for slow viscous plane flow for a velocity field (u, v) and pressure P
in the absence of body force and in the case where the viscosity is 0.5 (Langlois, 1964). The
dimensionless stress Z with unit 2uUg/A is given by

A Ou A ov

Rl TEe  Bw S Pty

5 A A2Y cu ¢
w=r\gl—\z) Trieztar)

Thus there exist analytic functions é(z), $(z) of the complex variable z = X+i in
h > Y = ¥y such that

Ezz = =
(42)

v—iu = $(2)+ 24’ (2) +4(2), (43)

P = 21m {¢'(2)}, (44)

Lyy—Zzz = —2Im {2¢"(2) +¢'(2)}, (45)

A A
2o =x ()| -(3) 7] +Retzw @ 0 (46)
Similarly, from Equation (g2), there exist analytic functions yi(z), xb(z) with

Y>> Yy: T = Re {x(2)},

and (47)
Y < Yy § = Re {xn(z)}.

4. FLow soLuTION

Now let u, », T extend smoothly in ¥ > o onto ¥ = o (if ¥ > o anywhere) and to
infinity, and let S extend smoothly in ¥ < 0 onto 1" = o and to infinity, so that u, v, T
and the stress components are half-plane fields given by the Equations (43)-(47). Define
boundary values on ¥ = o such that
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u(X,0) = U(X),
(X, 0) = V(X),
TE'(X, 0) = O(X), (48)
S(X,0) = Q(X).

Note that U, I, @, Q are not values of the field variables on the bed surface, but are introduced
to allow simple Cauchy integral representations of ¢, ¢, xi. xp. It is assumed that they vanish
or have sinusoidal behaviour as X — 4-c0. Also, we prescribe infinity conditions

¥ >0; é,yand x; — o asz->oo,}

and

(49)

Y < o: Xp — 0 as z — o,

to be consistent with Equation (33) and the requirement in Equation (22). Then, Equations

(43) and (47), subject to Equations (48) and (49), give (Muskhelishvili, 1954):

L[ V() —il)

) = o [ e r>o, (50)
#O =5 ﬂ‘-)!—“ﬂ de— b3, T o, (51
o) = f a r>o, (52)
xo(d) = — M, r<o. (59

Once U, V, @, Q are determined, Equations (50)-(53) and (43)-(47) give the physical field
variables.
The following results are used repeatedly (Muskhelishvili, 1954). If

f—dt Y>oo0r¥Y<o, (54)

and W(t) is differentiable and bounded at infinity, then

Wt
P'(2) = tT(z}dt’ Y>oor?l <o, (55)
with extension to higher derivatives, and
cdh A s
S=iv(e), (0@} = 0. (56)

If W(t) is continuous and vanishes or behaves sinusoidally at infinity,

W
(D(z)—>:l:t ) di+miW(X) as¥— {7, (57)

— 0
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where [ denotes the Cauchy principal value. Also

A

R K0) ) dH[W] ;
;{tht_H[H](X), i = H[W"], (58)
where H[W'] is the Hilbert transform of W(¢) (Erdélyi, 1954), with the inversion theorem
H[H[W]] = —W. (59)
Note the particular results
H[1] = o, H [sin kt] = cos kX, H [cos kt] = —sin kX, (60)
i =
1 [ sin kt .
;f s dt = exp (IkX—kT)
o “\k >0, ¥ = o, (61)

1 cos kt . S LT
wf 2 dt = iexp (IkXA—KY)

= e
which are the only evaluations required when F(X) is a truncated Fourier series, and which
show the exponential decay in ¥. The first expression of Equation (60) does not have the
required conditions at infinity to satisfy the inversion theorem (Equation (59)).

The bed surface conditions (Equations (16), (34), (35), and (38)) can now be expressed
in terms of Equations (43)—(47) and (50)-(53) ; that is, in terms of U/, V', © and . However,
assuming sufficient smoothness, the value of each quantity on 1" = ¥ (X) can first be approxi-
mated by a truncated Taylor series in ¥ about 7" = o to the required order in ¢ at cach &,
and then the formulae used to evaluate quantities on ¥ = o. If we adopt this process, and
omit the lengthy but straightforward algebra using Equations (54)-(58), the bed surface
conditions become

«(AR){1 — (AJh)eF—2¢(F")2}+ H[U'| —{FH[ V"] +2(FU’)'}+ e{—2(F')H[U'] +
L F2V" —3F2H[U"]+2FF' V' — 4FF'H[U")}+0(eU, €V) = o, (62)

O+ eFH[©'] — 1e2F20" 4 0(30)
— BFLH[V'| 4+ U’ +F{H[U" —V"}— }2FHH[V "]+ U"}+0(eU, V),  (63)

O— QL eFH[O +Q]—4eF{0"— Q")+ 0(e30, Q) = DF, (64)

(1—1e(F") 2+ O(e)H—H[ O +rQ+eF(0"—rQ") +§iFH[ 0" Q"]+
10(e30, Q)+ {eF'+ 0(e) {0 —r Q'+ eFH[0"+7Q"]+0(€30, £3Q)}
— 2(AA) [V —e(1—k)F'—e(FU)' +e{— 4(F")*V+FF'V' —2FF H[U') +
L4 F2V" —F2H[U"]}+ O(&U, &V, ex(A/h). (65)

The argument X is omitted throughout. If we anticipate the conclusions that U, I, ® and £
are O(e) or smaller, and that x(A/k) is O(e?) or smaller, then Equations (62)—(65) contain
explicitly the terms required to derive expansions of U, ¥, ©@ and Q to O(e); that is, an
approximation neglecting terms O(e*) compared with a leading term O(e). Thus, for a
smooth bed, the error may be only 1% for ¢ & 0.2. Here terms to O(e?) only are derived
explicitly. It is supposed that B and D are order unity in the balance, but later calculation
with the adopted physical parameters shows that these geothermal flux terms contribute
little to the O(e€) terms.
Consider the balance for A = O(A), that is

w = (A/A) = O(1). (66)
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Alternative balances for smaller and larger w have been obtained explicitly, and have been
shown to be appropriate limits of the solution based on Equation (66). Let

K(AM) == 7’(|+Y15+}’;€3+ acem, )

U= Ust U Ut ..., f
with similar expressions for I, © and (), and compare coefficients of €, €', €2 in Equations
(62)—(65). The leading term of Equation (62) gives

'}’n"E_H[LrnI] = 0, (68)

(67)

and by Equations (59) and (60),
Yo = O, Lrn =0, (69)
since a non-zero constant U, leads to finite ¢(.J) and () as ¥ — oo, which violates Equation

(49). By Equations (64), (65) and (63) in turn,

Q.= H[F, ],
and eliminating ®, using Equations (58) and (59),
Vo' —2w?V,y/(1+r) = 0. (71)
Both solutions of Equation (71) are unbounded at one limit, X + o0, so

o — 05 j

j (72)
§i= B =wn

With Equations (69) and (72), the € term of Equation (62) is analogous to Equation (68),
giving

Q, = 0,
(1+1)H[ O] = 2wV, (70)

Y1 =0, Uy =0 (73)
Now Equations (64), (63) and (65) give
Q, = O,—DF,
} (74)
®, = BF4+H[V/],
1" @1, = —@(1—k)F'+ (B—{rD[(1 +r))H[F"), (75)
where
202 1+1r = @ — (A[A,)3, (76)
and
M2 = A2(1+r)f2 = 2p(ki+kp)C/L = 0.007 8 m2, (77)

for the adopted values (r = 1.6). Ay = 0.088 m is the Kamb (1970) definition of the critical
length scale. Both complementary functions of Equation (75) are unbounded at one limit,
X » 4 oo, and I, is given by the bounded particular integral, simply a repeated quadraturc
once F' and H[F'] are known,

Now the €2 term of Equation (62) gives

w—FHiV,"] = —BU; ] (78)
H[U,'] and H[},"] are periodic, but the product FH[I',"] is in general the sum of a constant
term I' and a periodic term M'(X), so the solution of Equation (78) is

vo=T, U/ = —H[W]. (79)
This is demonstrated clearly by the subsequent sinusoidal bed calculation. Thus,
kAlh = I'er+40(e3). (80)
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By Equation (75) I’ contains a term (1 —«), so an explicit relationship between «, A/h and 2
is obtained for a given F(X), and in turn we obtain expressions for Us and Uy/Us where by
Equations (27) and (69):
Up/Us = 1—xk. (81)

The basal sliding velocity Uy, is defined as the term of order unity in I’z on ' = o. It will be
shown in Figure g that the terms in B and D do not contribute to I', and hence do not affect
Us and Uy, and furthermore that o << « << 1 as expected. It should be noted that the second-
order velocity term U, and the basal sliding velocity (of order unity) are determined together
in an O(e?) balance.

Finally, to complete the second-order expansions, using Equations (64), (63) and (65),

Q, = 0,4+ FH[0,'+Q,] }

0, = H[V,]+U,—FV,"—FH[0,]
v, —aV, = H{U," | —H[{FV,"}'] -H[{FH[0,]}'] +
+{r/ (1 +HFH O, + Q1Y ] —{1/(1+n)H{F(0, —rQ/))}.  (83)
The latter has a particular integral for 7', which is bounded and periodic. The product
terms in Equation (82) allow constants to appear in ©, and ,. These represent second-order
corrections to T, in the values of Tand S on ¥ - 0. Recall that T, was defined as the melting
temperature corresponding to pressure f,.

(82)

5. SINUSOIDAL BED PROFILE
The solution is now given explicitly for

f(x) = asin kx

€ = ka
A= 1k ) (84)
F(X) = sin X,

with F(X) = cos X covered by the shift X — X+=/2. The contributions of the harmonics
in a truncated Fourier series will be indicated. Only the Hilbert transforms (Equation (60))
are required. We set

3

B— e D = A1 —r)@?, (85)
as a result of which, Equation (75) becomes
V' —a&V; = —(1—x)@? (cos X+ 4 sin X), (86)
with the bounded particular integral
A — (i‘_)—ji—)-a-f (cos X+ A sin X). (87)
Hence
FH[1""] rgﬂ{l—cosg)ﬁ'—.-l sin 2.X}, (88)
2(@2+1) '
so that
KA 1 —k)®?
= L 0(e), (89)

and

2

(

o, — ﬁ% ook %+ sin 57, (90)
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Thus «, and hence Uy and Us, are independent of 4 for F(X) = sin X. This applies for any
combination a sin X-+-b cos X which becomes a sine function with a phase shift. If further
harmonics are added, the cross products between different harmonics arising in FH[V,"]
contribute no constant terms, so A cannot enter into Equation (8g). The restriction of
Equation (23) is met provided that « > O(e?) for @ = O(1), thus implying an upper bound
to @ (see Equation (g1)).

From Equations (28) and (81) and the leading term of Equation (8g),

Un 2(@2+1)A 2(@241) A
S = = e T we f* o)
_ pgsina a1 Ak
Uy = P = (92)
For a fixed ratio of /e?, the minimum value of U), is given by:
2 A, pg sin «
(U’b)mill = == 3 (9"‘)

pe?
and this occurs when A = A,. So, for A smaller or larger than },, the basal sliding velocity
increases. Figure 2 shows the variation of U/}, (in Sl-units) with log (A/A,) for the physical

r3

10°U,e?
h sina

-1 0 logm[l/i_] +1

Fig. 2. Variation of basal sliding velocity U\, with bed scale N (Sl-units).
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data given earlier. At fixed values of A, Uy increases with h/e?. IFigure 3 shows the variation
of Uy Us with log (A/A,) for different values of ke2. For example, he2 = 4 appliesforh = 100m
and € = 0.2, while hez = o.1 applies for £ = 10m and ¢ = o0.1. However, the Newtonian
approximation could have a serious effect on any quantitative predictions of Uy and Us,
whereas the main purpose was to show that a flow field, which determines Uy and which is
compatible with the gravity drive, pressure-melting, and regelation boundary conditions,
exists. Alternatively, given [y, [« and A, Equations (g1) and (g2) determine the bed para-
meters € and A

710
b

=
~
| =4

NN

he?=01

he?=04

05

8 0 CTEY,

Fig. 3. Variation of the ratio of basal sliding velocity to surface celocity with bed seale A jor different values of he? (SI-units).

Substitution of the above expressions indicates that the right-hand side of Equation (83)
is zero, and hence the bounded solution is

I, =o. (94)
The temperature terms are now given by Equations (74) and (82). The velocity components
of the bed line are, to second order,
O A 0 B i o X
f=.¢ 1@+ {cos 2 X+ sin 2X},
(95)
(1—r)@?
@241
Using the estimates contained in Equations (37), (39), (85) and (89),
0.54€* [ 2d 0.54¢€ .
(u‘ﬂ—}— 1) = ksin o (96)
Taking the extreme values # = 10m, a = 0.04 and ¢ = 0.2, the maximum value of A is
0.05, so that the contribution made by the geothermal flux is small. We may recall that B
and hence 4, are even smaller if @ = o, by Equation (36).

I"'=¢ {cos X+ A sin X}.

A ] =
hosin &
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The substitution of Equation (g5) into Equations (50) and (51) and the use of Equation
(61) gives, to second order,

e = en?(1—x)(1—14)

8(@2+1)

{4clz_€iczlz}

Y, ; (97)

€@ (1 —k)(1—1
‘1’5'(3) e 8((52—'—1)

which determine the velocity and stress fields through Equations (43)-(46) and Equations

(27)—(30), and which show the exponential decay in ¥. In particular

{4e'2teie?t®}—2d'(2)

P_eu‘)z(l—x) Ly P Asin X B [ o R A eas oY 8
7m{2(‘ (cos X+ sin X)+ee2Y (sin 2X—A cos 2X)}. (98)

We may note that
2uls @*(1—«) _Pg sin ah

% a2 =& ¢ (99)

and hence the pressure field becomes

A lan . 5 s
b — pa+pghcos l—-;?-‘ = e Y[2cos X tee YsinaX]|,. (100)
when A is neglected.
On the bed surface
2 tan

bu —Pu+pghc05a{1—1— a[rns X+O(e)]+()(e)}, (1o1)

and since the present solution is valid only when the ice boundary coincides with the bed
surface (that is, no cavitation occurs) we require py, = o which implies that

lana-‘:ggi(l L) (102)

" pgh cos

The factor (1+4pu/(pgh cos «)) is approximately equal to one for & = 100 m, and even for a
thin glacier # = 10 m (Equation (102)) only allows « < e. So, cavitation is predicted for
moderate bed inclination. Kamb (1970) infers an instability criterion of « > e from an
argument involving the value of the absolute bed slope, but this appears to be invalid unless
the resisting “pressure drag” is eliminated from the lee flanks of the undulations by “total
cavitation” there. While Equation (102) shows that cavitation does occur for « > ¢ (for a
sinusoidal bed on the Newtonian approximation), it is still reasonable to expect that pressure
over the contact section of lee flanks will be sufficient to provide the necessary drag, but a full
solution which incorporates cavitation is needed in order to confirm this.

6. CONCLUDING REMARKS

We now see that slow viscous plane flow over an inclined wavy bed has a bounded solution
consistent, at least to the order of €2, with the perturbation on the laminar flow decaying
rapidly with height. This is in contrast to calculations of half-plane flow which are subjected
to the classical zero velocity condition at the bed-line. The inclusion of gravity in the momen-
tum balance provides the driving mechanism and also defines the mean drag directly.
Thus, the unbounded terms arising from the artificial driving shear stress of Nye do not arise.
The terms in € agree with the first-order expansions of Nye and Kamb, but, whereas Nye
derives a relationship between the mean drag and the basal sliding velocity from the first-
order solution, the present solution shows how the surface and basal velocities are governed
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by the second-order balance and are given directly. It is shown that a uniform geothermal
flux does not influence the basal-sliding velocity, and makes only a small contribution to the
flow field.

The application of boundary conditions to the bed surface instead of the half-plane
boundary allows direct expansions beyond the first power in e. The balance equations
have been given up to terms in €3 so that a solution for moderate slopes (e ~o0.2) could be
obtained. In the dimensionless expansion analysis, coefficients should remain of order unity
if the higher derivatives of the bed profile are also small. However, the complex variable
method of conformal mapping offers a direct approach to the problem of flow over a hump of
finite slope.

ACKNOWLEDGEMENT

This investigation was pursued in connection with a Natural Environment Research
Council Grant GR3/2680 “Flow of glaciers over deformable materials” which I hold jointly
with Dr G. S. Boulton of the School of Environmental Sciences, University of East Anglia.

MS. received 20 September 1975 and in revised form 8 Fanuary 1976

REFERENCES

Erdélyi, A., ed. 1954. Tables of integral transforms. Vol. 2. Based, in part, on notes left by Harry Bateman. New York,
etc., McGraw-Hill Book Co., Inc.

Kamb, W. B. 1g70. Sliding motion of glaciers: theory and observation. Reviews of Geophysics and Space Physics,
Vol. 8, No. 4, p. 673-728.

Langlois, W. E. 1964. Slow viscous flow. New York, Macmillan.

Lliboutry, L. A. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. Journal of
Glaciology, Vol. 7, No. 49, p. 21-58.

Mouskhelishvili, N. 1. 1954. Nekotoryye osnovnyye zadachi matematicheskoy teorii uprugosti; osnovnyye uravneniya, ploskaya
teoriya uprugosti, kruchemiye i izgib. Izdaniye 4. Moscow, Izdatel’stvo Akademii Nauk SSSR. [English transla-
tion: Some basic problems of the mathematical theory of elasticity. Translated from the Russian by j. R. M. Radok.
Groningen, Noordhoff, 1963.]

Nye, J. F. 1969. A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation.

" Proceedings of the Royal Society of London, Ser. A, Vol. 311, No. 1506, p. 445-67.

Nye, J. F. 1970. Glacier sliding without cavitation in a linear viscous approximation. Proceedings of the Royal
Society of London, Ser. A, Vol. 315, No. 1522, p. 381—403.

Paterson, W. 5. B. 196q. The physics of glaciers. Oxford, etc., Pergamon Press. (The Commonwealth and Inter-
national Library. Geophysics Division.)

Weertman, J. 1957. On the sliding of glaciers. Fournal of Glaciology, Vol. 3, No. 21, p. 33-38.

Weertman, |. 1964. The theory of glacier sliding. Fournal of Glaciology, Vol. 5, No. 39, p. 287-303.

Weertman, J. 1971. In defense of a simple model of glacier sliding. Fournal of Geophysical Research, Vol. 76, No. 26,

p- 6485-87.

https://doi.org/10.3189/50022143000013733 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013733

