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Abstract

We investigate island systems with continuous height functions and strongly laminar systems which are
laminar systems containing sets with disjoint boundaries. In the discrete case, we show that for a maximal
rectangular system of islandsH on an m by n rectangular grid we have dmin(m, n)/4e ≤ |H| ≤ dm/2edn/2e.
In the continuous case we show that under some conditions maximal strongly laminar systems H have
cardinality ℵ0 or 2ℵ0 and present examples with |H| = ℵ0.
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1. Introduction

The general notion of systems of islands was recently defined by Pach et al. [13].
Given a setΩ ⊆ Rn, S ⊆ P(Ω), and a height function h : Ω→ R, a set H ∈ S is called an
h-island in S if there is an open (in the relative topology) set G ⊆ Ω such that for cl H,
the closure of H, we have cl H ⊆G and for every x ∈G \ H we have h(x) < infH h. A
collectionH of sets in S is called a system of islands in S ifH is the set of all h-islands
in S for some height function h.

The original concept of systems of rectangular islands in a discrete sense was
introduced by Czédli [2] with motivations in coding theory (see Földes and Singhi [4]).
Czédli’s main result is the formula f (m, n) = b(mn + m + n − 1)/2c for the maximal
size of systems of islands on an m by n rectangular grid. His techniques involved weak
independence, a lattice theory concept that first appeared in Czédli et al. [3]. Baráth
et al. [1] found two elementary proofs, one using rooted binary trees, and another using
simple mathematical induction. Furthermore, they proved results similar to Czédli’s
on cylindrical (height m, circumference n), as well as on toroidal (m by n) grids, and
also in the case of n-dimensional hypercubes. They showed that the maximum sizes
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of rectangular systems of islands in these cases are c(m, n) = b(m + 1)n/2c, t(m, n) =

bmn/2c, and b(n) = 1 + 2n−1, respectively. A triangular analogue of rectangular island
systems appeared in Horváth et al. [6], and also in [10]; and brick island systems in
higher dimension were examined in Pluhár [14]. Both [6, 14] apply techniques similar
to those introduced in Czédli [2]. In [6] the maximum size of triangular systems
of islands is shown to be (n2 + 3n)/5 ≤ f (n) ≤ (3n2 + 9n + 2)/14, and in [14] it is
proved that the maximum size of systems of d-dimensional bricks on a d-dimensional
m1 × m2 × · · · × md table satisfies(

m1m2 · · · md +
∑

1≤ j1< j2<···< jd−1≤d

m j1 m j2 · · · m jd−1

)/
(2d−1) − 1

≤ f (m1, m2, . . . , md)

≤ (m1 + 1)(m2 + 1) · · · (md + 1)/(2d−1) − 1.

Island systems with square islands were investigated in Horváth et al. [5] and in [9].
The general concept of systems of islands by Pach et al. [13] includes all these

discrete island systems as well. For example, Czédli’s rectangular islands can be
obtained by letting Ω be the m by n rectangle with vertices at (0, 0), (m, 0), (m, n),
and (0, n) in the plane and by letting S be the set of rectangles with sides parallel to
the coordinate axes and vertices of integer coordinates. The connection to real islands
in a geographical sense can be made in an obvious manner, by letting S be the set of
closed and connected subsets of an open connected set Ω in the plane.

Pach et al. [13] consider laminar systems as well. A collection H of sets is
called laminar if for every pair of sets H1, H2 ∈ H , either H1 ⊆ H2 or H2 ⊆ H1 or
H1 ∩ H2 = ∅. A system of islands that are connected sets is always laminar (see [13]).
For discrete islands, being a system of islands is in essence equivalent to laminarity.
In general, this is not true as shown by Pach et al. [13]. They show, however, that
for bounded connected sets in Rn, a countable maximal laminar system H is also a
(maximal) system of islands if and only if the distance of any two disjoint sets in H
is positive. Pach et al. [13] also give a general condition under which the size of a
maximal laminar system is either countable or continuum, and exhibit an example
consisting of countably many circles in the plane that form a maximal system of
islands, answering a question in [11].

Additional recent investigations of island systems include [7] by Horváth, Šešelja,
and Tepavčević, where a link between islands and fuzzy relations is explored; and [12]
by Máder and Makay, who examine island systems with height functions that may
assume only a fixed set of finitely many values.

Continuity for a system of islands or laminar systems is relevant in two different
ways. First, one may consider the continuity of S, that is, when the sets in S are
allowed to change in some continuous manner. This was the focus of [11] and the paper
by Pach et al. [13]. Secondly, we may consider the continuity of the height function,
and this is the focus of the present paper. When the height function is continuous,
then it follows, in addition to laminarity, that the boundaries of the islands are disjoint.
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In this paper we investigate systems of islands with continuous height functions and
laminar systems with disjoint boundaries when the system S is discrete and when it is
continuous. Our main concern is the size of maximal systems, and we prove results
analogous to those given in [2, 8, 11, 13].

Standard notations will be used throughout the paper: for a set S , int S denotes the
interior, ∂ S denotes the boundary, and cl S denotes the closure of S .

2. Systems of islands and laminar systems

The following Lemma shows that systems of islands satisfy a property stronger than
laminarity (see Pach et al. [13, Proposition 5]).

L 2.1. Let Ω be a set in Rn, S ⊆ P(Ω) be a collection of subsets of Ω, and
h : Ω→ R be a height function. If H1 and H2 are h-islands in S such that H1 ∩ H2 = ∅

then we have cl H1 ∩ cl H2 = ∅.

P. Let us assume p ∈ cl H1 ∩ cl H2 and let cl Hi ⊆Gi ⊆ Ω be open sets such that
for all x ∈Gi \ Hi we have h(x) < infHi h (i = 1, 2). It follows that p belongs to both G1

and G2, and that there exist points p1 ∈ H1 ∩G2 and p2 ∈ H2 ∩G1. Since H1 and H2

are disjoint, we obtain p1 ∈G2 \ H2 and p2 ∈G1 \ H1. Then h(p1) < infH2 h ≤ h(p2)
and h(p2) < infH1 h ≤ h(p1), which is a contradiction. �

Next we show that if the height function h is continuous, the boundaries of h-islands
are pairwise disjoint.

P 2.2. Let Ω be a set in Rn, and S be a collection of connected sets in Ω. If
h : Ω→ R is a continuous height function, then every two distinct h-islands in S have
disjoint boundaries.

P. Let H1 and H2 be two distinct h-islands in S. The boundaries satisfy ∂ Hi ⊆

cl Hi (i = 1, 2). Therefore, the statement follows from Lemma 2.1 when H1 and H2 are
disjoint. Let H1 ⊂ H2, q ∈ H2 \ H1, and assume p ∈ ∂ H1 ∩ ∂ H2. Let cl Hi ⊆Gi ⊆ Ω

be open sets such that for all x ∈Gi \ Hi we have h(x) < infHi h (i = 1, 2). We can write
H2 = (H2 \ cl H1) ∪ (H2 ∩G1), and since H2 is connected, we have H2 \ cl H1 = ∅ or
H2 ∩G1 = ∅ or (H2 \ cl H1) ∩ (H2 ∩G1) , ∅.

Assume H2 \ cl H1 = ∅. We have q ∈ cl H1 implying q ∈G1. Thus infH2 h ≤ h(q) <
infH1 h. Let G be any open set containing p. Then there exist points u ∈ H1 ∩G and
v ∈ (Ω \ H2) ∩ (G ∩ G2) since p lies in the boundary of both H1 and H2. It follows
that h(u) ≥ infH1 h > infH2 h > h(v). Therefore, h is not continuous at p, which is a
contradiction.

The case H2 ∩G1 = ∅ is impossible since p lies in the boundary of H2 and G1 is an
open set containing p.

Assume there exists a point r in (H2 \ cl H1) ∩ (H2 ∩G1) = (H2 \ cl H1) ∩G1. We
have infH2 h ≤ h(r) < infH1 h and the same argument as in the first case shows that h
would not be continuous at p, which again is a contradiction. �
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Laminar systemsH with the property that every two distinct sets inH have disjoint
boundaries will be called strongly laminar. Thus, a continuous height function h
implies that the system of h-islands is strongly laminar. The reverse however is not
true.

E 2.3. If Ω = [0, 1], S is the set of closed intervals in [0, 1], and H is any
strongly laminar system that contains the intervals H0 = [ 1

2 , 1], and Hn = [0, n/(2n +

1)] (n = 1, 2, . . .) then H is not a set of h-islands in S for any continuous height
function h on Ω.

Note that 0 is not a boundary point of any of the Hn, and thus, {Hn | n = 0, 1, 2, . . .}
is indeed strongly laminar. If h is a height function so that all Hn are h-islands, then
there are open sets Gn such that h(x) < infHn h for any x ∈Gn \ Hn. Let x0 ∈G0 \ H0,
and pick yn ∈ (Gn \ Hn) ∩ [0, 1

2 ) for n = 1, 2, . . . . Then yn→
1
2 , and for sufficiently

large n, we have x0 ∈ Hn. It follows that h(yn) < h(x0) < h( 1
2 ) for n > n0, that is, h is not

continuous at 1
2 . �

The example for a collection of sets which is laminar and not an island system given
in Pach et al. [13] is in fact strongly laminar. Thus, strongly laminar systems may fail
to be systems of islands for any height functions, not just continuous ones.

On the other hand, for sets on a grid, island systems with continuous height
functions and strongly laminar systems are the same. If H is a strongly laminar
collection of rectangles on a grid, we could define h by first considering h0(x) = |{H ∈
H | x ∈ H}| and then setting h(x) = h0(x) for all x except when x is a point with distance
0 < d(x, H) < 1

2 for an island H. For these points we set h(x) = h0(x) + 1 − 2d(x, H).
Then h is continuous and the collection of rectangular h-islands on the grid isH .

The following is another basic property of islands with a continuous height function.

P 2.4. Let Ω be a set in Rn, and S be a collection of sets in Ω. Assume
h : Ω→ R is a continuous height function and H is an h-island in S. If p ∈ ∂ H then
h(p) = infH h, and thus, h is constant on ∂ H.

P. Let H ∈ S be an h-island and p ∈ ∂ H. There are sequences (qn) and (rn)
in H and Ω \ H, respectively, so that limn→∞ qn = limn→∞ rn = p. By the continuity
of h we have limn→∞ h(qn) = limn→∞ h(rn) = h(p). Since qn ∈ H for all n, we have
h(qn) ≥ infH h for all n, implying h(p) = limn→∞ h(qn) ≥ infH h. Let H ⊆G ⊆ Ω be
an open set with the property that h(x) < infH h for all x ∈G \ H. For sufficiently
large n, the points rn lie in G \ H, and hence, h(rn) < infH h for these n, implying
h(p) = limn→∞ h(rn) ≤ infH h. �

3. Maximal rectangular systems on a rectangular grid

In this section we examine the size of maximal rectangular island systems with
continuous height functions, or equivalently, strongly laminar rectangular systems,
on a rectangular grid. These results can be viewed as analogous to those given in
Czédli [2] and in [8]. For simplicity, we use an open rectangle for the sea while the
islands will be closed rectangles.
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T 3.1. Let Ω ⊆ R2 be the open rectangle (−1, m + 1) × (−1, n + 1), where m
and n are positive integers, and let S be the set of closed rectangles in Ω having sides
parallel to the coordinate axes and vertices with integer coordinates. Assume H is
a maximal rectangular system of islands in S with a continuous height function (or
equivalently, a maximal strongly laminar system in S). Then⌈min(m, n)

4

⌉
≤ |H| ≤

⌈m
2

⌉⌈n
2

⌉
,

and both the lower and upper bounds are sharp.

P. Let H be a maximal strongly laminar system in S. We establish the lower
bound first, proceeding by induction on mn.

The cases when either m ≤ 4 or n ≤ 4 are trivial: if, for example, m ≤ 4, let
H = [0, m] × [0, n] for m = 1, 2, and H = [1, m − 1] × [0, n] for m = 3, 4, and observe
thatH0 = {H} is a maximal strongly laminar system of rectangles in S.

Assume m ≥ 5 and n ≥ 5. Suppose the rectangle H0 = [0, m] × [0, n] belongs toH .
Then H0 =H \ {H0} is a maximal strongly laminar system in S0 = {H ∈ H | S ⊆ Ω0},
where Ω0 = (0, m) × (0, n). Using the inductive hypothesis, we can write

|H| = |H0| + 1 ≥
⌈min(m − 2, n − 2)

4

⌉
+ 1

=

⌈min(m, n)
4

−
1
2

⌉
+ 1 ≥

⌈min(m, n)
4

⌉
.

Now suppose H0 <H , and let H1, . . . , Hk be the set of maximal rectangles in H .
For each 1 ≤ i ≤ k we let Hi = {H ∈ H | H ⊆ Hi}. For each i, we replace Hi by H ′i as
follows. Let Hi be p × q. If min(p, q) ≤ 2 then we let H ′i =Hi. If min(p, q) > 2, and
say min(p, q) = p, we defineH ′i based on p mod 4: let Hi( j1, j2) denote the rectangle
that consists of the columns of Hi with indices j1 through j2. If p ≡ 0 mod 4, then

H ′i = {Hi(1, 1), Hi(4, 5), Hi(8, 9), . . . , Hi(p − 4, p − 3), Hi(p, p)};

if p ≡ 1 mod 4, then

H ′i = {Hi(1, 1), Hi(4, 5), Hi(8, 9), . . . , Hi(p − 5, p − 4), Hi(p − 1, p)};

if p ≡ 2 mod 4, then

H ′i = {Hi(1, 2), Hi(5, 6), . . . , Hi(p − 1, p)};

and if p ≡ 3 mod 4, then

H ′i = {Hi(1, 1), Hi(4, 5), Hi(8, 9), . . . , Hi(p − 3, p − 2), Hi(p, p)}.

Then, using the inductive hypothesis, |Hi| ≥ 1 + d(p − 2)/4e = dp/4e = |H ′i | when
p ≡ 1 or 2 mod 4, and |Hi| ≥ 1 + d(p − 2)/4e = dp/4e + 1 = |H ′i | when p ≡ 0 or 3
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mod 4. With H ′ =
⋃k

i=1 H
′
i it follows that |H ′| = |

⋃k
i=1 H

′
i | ≤ |H|. Note that the

collection of cells (1 × 1 rectangles in S) that have a nonempty intersection with at
least one island is the same for Hi and H ′i . Therefore, H ′ is a maximal strongly
laminar system in S consisting of rectangles with at least one side having length at
most 2. It is now sufficient to prove |H ′| ≥ dmin(m, n)/4e.

Let us assume, without loss of generality, that min(m, n) = m. For K ∈ H ′, let K+ be
the union of cells in S that have nonempty intersection with K. Then, by maximality
ofH ′, we obtain

⋃
H ′ = [0, m] × [0, n]. Hence, we can write

mn = |[0, m] × [0, n]| ≤
∑

K∈H ′
|K+| ≤

∑
K∈H ′

4n = 4n|H ′|,

where |H|, for a rectangle H, denotes the area of H. It then follows that min(m, n)/4 ≤
|H ′|, which is equivalent to dmin(m, n)/4e ≤ |H ′|.

To see that the lower bound is sharp we define a maximal strongly laminar system
H that consists of ‘strips’. Again, assume min(m, n) = m, and define Hi = [4(i −
1) + 1, 4(i − 1) + 3] × [0, n] for i = 1, . . . , b(m + 1)/4c. If m ≡ 0 or 3 mod 4 then
H = {Hi | i = 1, . . . , b(m + 1)/4c} is maximal and b(m + 1)/4c = dm/4e. If m ≡ 1 or 2
mod 4 then H = {Hi | i = 1, . . . , b(m + 1)/4c} ∪ {[m − 1, m] × [0, n]} is maximal and
b(m + 1)/4c + 1 = dm/4e.

Let us now turn to the upper bound. First we show that the upper bound
can be achieved using 1 × 1 rectangles: define K = {[2u, 2u + 1] × [2v, 2v + 1] | u =

0, . . . , dm/2e − 1; v = 0, . . . , dn/2e − 1}. Then K is (maximal) strongly laminar in S
and contains dm/2edn/2e rectangles. This will imply that the upper bound is sharp.

We assume now that H is a strongly laminar system in S (without assuming
maximality). Again, we proceed by induction on mn. The case mn = 1 is trivial, so
we let mn > 1. Assume H0 = [0, m] × [0, n] ∈ H . If m ≤ 2 or n ≤ 2 thenH = {H0} and
|H| = 1 ≤ dm/2edn/2e is trivial. If m > 2 and n > 2, we apply the inductive hypothesis
toH0 =H \ {H0} and Ω0 = (0, m) × (0, n) to obtain

|H| = 1 + |H0| ≤ 1 + d(m − 2)/2ed(n − 2)/2e

= 1 + (dm/2e − 1)(dn/2e − 1)

= dm/2edn/2e − dm/2e − dn/2e + 2 ≤ dm/2edn/2e.

Assume H0 <H . Let H1, . . . , Hk be the set of maximal rectangles inH . If 1 ≤ i ≤ k
and Hi is p × q then we replace Hi = {H ∈ H | H ⊆ Hi} by H ′i , where H ′i consists of
dp/2edq/2e one by one rectangles in Hi and forms a (strongly) laminar system in {H ∈
S | H ⊆ Hi}. By the inductive hypothesis, we have |Hi| ≤ dp/2edq/2e = |H ′i |. Thus, if
H ′ =

⋃k
i=1 H

′
i , then |H ′| ≥ |H| and we will be done if we show |H ′| ≤ dm/2edn/2e.

Without loss of generality, let m = max(m, n) ≥ 2. If m = 2 then |H ′| ≤ 1 =

dm/2edn/2e. Assume m > 2 and let H ∈ H ′ be in the next to last column of
H0 = [0, m] × [0, n]. Note that H can be shifted along its row to the last column
without violating laminarity. Hence, we can assume there are no rectangles in
column m − 1. WriteH =H (1) ∪H (2), whereH (1) = {H ∈ H | H ⊆ [0, m − 2] × [0, n]}
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and H (2) = {H ∈ H | H ⊆ [m − 1, m] × [0, n]} and note that H (1) and H (2) are
rectangular laminar systems on smaller rectangles, so we can apply the inductive
hypothesis:

|H ′| = |H (1)| + |H (2)|

≤ d(m − 2)/2edn/2e + d1/2edn/2e

= (dm/2e − 1)dn/2e + dn/2e = dm/2edn/2e.

This finishes the proof. �

It is easy to see that every integer between the lower and upper bounds will occur
as the size of a maximal strongly laminar rectangular system. Using the configuration
given in the proof for the upper bound as the initial step, we can ‘consolidate’ the 1 × 1
squares into strips, thereby decreasing the size of H by 1 at a time. Let us think of
the base rectangle as having (essentially) m columns and n rows, and assume without
loss of generality that min(m, n) = m. Replace the first k squares in column 1 by a
1 × (2k − 1) rectangle (1 × 2k when n = 2k), then we repeat this process in columns
3, 5, . . . , m (−1). In the second phase the 1 × n rectangles are consolidated into 2 × n
rectangles and/or shifted horizontally, again reducing the size of the maximal laminar
system by one at a time, until the configuration for the lower bound is reached.

4. Continuous systems

In this section we consider continuous collections S, and examine systems of
islands in S with a continuous height function and strongly laminar systems in S. We
do not define continuity of S formally; instead, we will use conditions that are relevant
and/or become interesting when the sets in S are allowed to change in a continuous
fashion. Typical examples include S being all subintervals of a given interval in R or
all rectangles in the plane or all convex sets in Rn.

The main concern regarding island systems and laminar systems in previous
investigations has been the size of (maximal) systems, and so is the case in this paper
as well as in this section. First we present a continuous height function with no islands.

E 4.1. Let Ω = R, and let S be the set of bounded closed intervals in R. Let the
height function h be the Weierstrass function, a function that is continuous everywhere
and differentiable nowhere, that is

h(x) = W(x) =

∞∑
k=0

ak cos(bkπx),

where 0 < a < 1, ab > 1 + 3π/2, and b > 1 is an odd integer. Then the set of h-islands
in S is empty.

We use the proof of the fact that W(x) is nowhere differentiable given in Thim [15],
where for any fixed x0 ∈ R, two sequences (yn) and (zn) are produced with the following
properties.
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(i) yn < x0 < zn for all n.
(ii) (W(yn) −W(x0))/(yn − x0) and (W(zn) −W(x0))/(zn − x0) have different signs

for all n.
(iii) limn→∞ |(W(yn) −W(x0))/(yn − x0)| = limn→∞ |(W(zn) −W(x0))/(zn − x0)| =∞.

It follows that there are infinite subsequences (ynk ) and (znk ) such that either (1)
W(ynk ) > W(x0) and W(znk ) > W(x0) for all k; or (2) W(ynk ) < W(x0) and W(znk ) <
W(x0) for all k. Let H = [x0, x1] be any closed interval in S and let G be an arbitrary
open set containing H. Assume case (1) and let k be such that ynk ∈G. Then
W(ynk ) > W(x0) ≥ infH W, so H cannot be an h-island in S. Assume case (2) and let
k be such that znk ∈ H. Then by the continuity of W there exists an l such that ynl ∈G
and W(ynl ) > W(znk ) ≥ infH W, again showing that H is not an h-island in S. �

A trivial example with no islands is given by letting h be any monotone function;
however, the Weierstrass function W is more versatile: it retains the ‘no W-island’
property for collections S that contain unbounded intervals and also when W is
restricted to any interval Ω on the real line. In addition, W can be used to obtain a
height function h for any given n ∈ N so that |{H | H is an h-island in S}| = n.

E 4.2. Let Ω = R, and let S be the set of bounded closed intervals in R. Set
Hi = [4i, 4i + 2] for i = 0, 1, . . . . For a given n ∈ N ∪ {∞}, define the height function
h to be h(x) = W(0) when x ∈

⋃
i<n Hi and h(x) = W(x) otherwise. Then the h-islands

are precisely the Hi (i < n).

This is immediate from the proof of the nondifferentiability of W(x) given in
Thim [15], and from the fact that W(x) attains its maximum if and only if x is an
even integer.

One of the main results in Pach et al. [13, Theorem 6] states that under some
mild assumptions, the cardinality of any maximal laminar system is countable or
continuum. The following theorem is a similar result for strong laminarity.

T 4.3. Let S be a system of subsets in Rn with finite Lebesgue measure
satisfying the following conditions:

(1) int(A) , ∅ for every A ∈ S;
(2) if A, B ∈ S and A * B, then λ(A \ B) > 0;
(3) if C ⊆ S is a chain, then

⋂
C ∈ S or λ(

⋂
C) = 0.

Then the cardinality of any maximal strongly laminar system in S is countable or
continuum.

P. Our proof is similar to that of [13, Theorem 6]. Assume H is a maximal
strongly laminar system in S. First we prove that the cardinality of every maximal
chain C ⊆H is countable or continuum. Define R = λ(C) = {λ(C) |C ∈ C}. Item (2)
implies that C and R have the same cardinality, so it is enough to show that R is
countable or has cardinality continuum.

We prove that if x is both a left and right limit point of R, then x ∈ R.
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[9] Systems of islands 393

Assume x < R. Let Cx = {C ∈ C | λ(C) > x}, and define C0 =
⋂
Cx. We show C0 ∈ H

which in fact will imply x ∈ R. Since C only contains sets with positive Lebesgue
measure, and x is a left limit point of R, we have λ(C0) > 0; hence, C0 ∈ S by (3).
Since C ∪ {C0} is a chain of sets in S, we need to show H ∪ {C0} is strongly laminar.
Suppose H ∩C0 , ∅ for some H ∈ H . Then H ∩C , ∅ for every C ∈ Cx. If for all such
C we have H ⊆C, then it follows that H ⊆C0. If for some C ∈ Cx we have C ⊆ H, then
we also have C0 ⊆ H. Therefore,H ∪ {C0} is laminar.

To show strong laminarity of H ∪ {C0}, let us assume for a contradiction, that
p ∈ ∂C0 ∩ ∂ H for some C0 , H ∈ H . We need to consider three cases. Assume
first H ∩C0 = ∅. Then there must exist a C ∈ Cx such that H *C. Since C ⊆ H is
not possible, we must have H ∩C = ∅. For any open set p ∈ U there exist q ∈ H ∩ U
and r ∈C0 ∩ U. Since q <C and r ∈C it follows that p ∈ ∂C, contradicting strong
laminarity ofH . Assume C0 ⊆ H. We can not have H ⊆C for all C ∈ Cx, so for some
C ∈ Cx we have C0 ⊆C ⊆ H. Again, let p ∈ U be any open set. There exist q, r ∈ U
such that q ∈C0 and r < H. It follows that q ∈C and r <C, implying p ∈ ∂C, which
contradicts strong laminarity ofH .

Now we assume H ⊆C0, and define Cx = {C ∈ C | λC < x}. Since x is a left limit
point of R and λ(H) > 0, there is a C ∈ Cx such that λ(C0 \C) < λ(H). It follows that
C ∩ H is nonempty, implying C ⊆ H or H ⊆C. The latter would imply H (C′ for
some C′ ∈ C and p ∈ ∂ H ∩ ∂C0 would yield p ∈ ∂C′, contradicting strong laminarity
of S. Assume C ⊆ H. If for any C′ ∈ Cx we had H ⊆C′, then the previous argument
could be applied, so we can assume C′ ⊆ H for all C′ ∈ Cx. It follows that H ∈ C and
λ(H) = x, contradicting our assumption.

For any x ∈ cl R \ R we have either (i) x = 0, or (ii) x is a right but not a left limit
point of R, or (iii) x is a left but not a right limit point of R. Define a mapping
φ : cl R \ R→ Q as follows: in case (i) let φ(0) = 0, in case (ii) let φ(x) = y < x so
that (x − 3(x − y), x) ∩ R = ∅, and in case (iii) let φ(x) = y > x so that (x, x + 3(y −
x)) ∩ R = ∅. Then φ is one-to-one, so cl R \ R is countable. Using the well-known
fact that any closed set in Rn is countable or has cardinality continuum, we obtain
R = cl R \ (cl R \ R) is countable or has cardinality continuum.

For r ∈ Rn define C(r) = {H ∈ H | r ∈ H}. Laminarity of H implies that C(r) is a
chain. Let C′(r) be a maximal chain inH containing C(r). Then, since by (1), every set
inS contains a point with rational coordinates, we haveH =

⋃
r∈Qn C(r) =

⋃
r∈Qn C′(r).

If each C′(r) in the union is countable, then H is countable; if there is a C′(r) in the
union with cardinality continuum, thenH has cardinality continuum. �

Since conditions (1)–(3) are the same as those in Pach et al. [13, Theorem 6], the
examples (Corollary 7, Proposition 8) for laminarity given in [13] can be used for
strong laminarity as well. Hence, we have the following corollary.

C 4.4.

(1) The cardinality of a maximal strongly laminar system of bounded closed convex
sets in Rn with nonempty interior is countable or continuum.
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(2) The cardinality of a maximal strongly laminar system of closed disks in Rn is
countable or continuum.

For continuous S, one can find examples H of (strongly) laminar systems with
|H| = 2ℵ0 easily; however, examples of maximal (strongly) laminar systems H with
|H| = ℵ0 are more elusive. Finding such an example was the primary motivation
in [11]. Pach et al. [13] produced a clever example of a countable maximal laminar
system of closed disks in R2, which in fact is also a maximal strongly laminar system.
Here we present an alternative method that can be applied to disks and other families
of sets as well to find countable maximal laminar and strongly laminar systems.

Given a set S ⊆ Ω and a system of sets S ⊆ P(Ω), we call a sequence (Kn)∞n=1 of
sets an S -sequence (in S), if (i) Kn ∈ S for all n ∈ N; (ii) Kn ⊆ S for all n ∈ N; and (iii)
cl Kn ⊆ int Kn+1 for all n ∈ N. Define κ(S ) = sup{λ(

⋃∞
n=1 Kn) | (Kn) is an S -sequence}.

If H is a strongly laminar system in S, we call a sequence (Kn)∞n=1 of sets in S an H-
sequence (in S), if for any H ∈ H either (Kn) is an H-sequence or (Kn) is an (Ω \ H)-
sequence. Note that if (Kn) is an H-sequence, then H ∪ {Kn | n ∈ N} is a strongly
laminar system in S. We also define κ(H) = sup{λ(

⋃∞
n=1 Kn) | (Kn) is anH-sequence}.

P 4.5. Let Ω be a subset of Rm and S ⊆ P(Ω) such that:

(1) int S , ∅ for any S ∈ S; and
(2) for any open set S ⊆ Ω there exists an S -sequence in S.

Let (Hn)∞n=0 be a sequence of strongly laminar systems in S that satisfy the following
conditions:

(a) Hn+1 =Hn ∪ {K
(n)
i | i ∈ N}, where (K(n)

i ) is an Hn-sequence such that
λ(

⋃∞
i=0 K(n)

i ) = κ(Hn); and
(b) limn→∞ κ(Hn) = 0.

ThenH =
⋃∞

n=0 Hn is a strongly laminar system in S, and if for any S ∈ S \ H the set
H ∪ {S } is a strongly laminar system in S, then either (α) there exists an H ∈ H0 such
that H ⊆ S ; or there is an n ∈ N such that either (β) K(n)

i ⊆ S ⊆ K(n)
i+1 for some i ∈ N, or

(γ) K(n)
i ⊆ S for all i ∈ N.

P. Strong laminarity of H follows from strong laminarity of Hn (n ∈ N). Let
H ∪ {S } be strongly laminar, where S ∈ S \ H , and assume H * S for all H ∈ H0.
Items (1), (2), (a) and (b) imply that there exists an n ∈ N such that H * S for all
H ∈ Hn−1 and H ⊆ S for some H ∈ Hn. It follows that K(n)

1 ⊆ S and if there is a largest
i with K(n)

i ⊆ S then we must have K(n)
i ⊆ S ⊆ K(n)

i+1, otherwise K(n)
i ⊆ S for all i ∈ N. �

Let S be the set of closed disks in R2. Conditions (1) and (2) of Proposition 4.5
are clearly satisfied. We may define H0 to be the set of disks Hi with center at the
origin and radius 1 + 1/2 + · · · + 1/i, and theHn so that item (a) of the proposition is
satisfied. To see the latter we prove the following claim.

Claim. Let S be a set in R2 with finite Lebesgue measure. Then there exists an open
disk D ⊆ S such that λ(D) = κ(S ).
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We have κ(S ) ≤ λ(S ) <∞. Hence, for each n ∈ N there exists an S -sequence
(K(n)

i )∞i=1 in S with λ(
⋃∞

i=1 K(n)
i ) > κ(S ) − 1/n. Pick K(n)

in
so that λ(K(n)

in
) > κ(S ) − 1/n.

Then, limn→∞ λ(K(n)
in

) = κ(S ), and if cn denotes the center of K(n)
in

, then the sequence
(cn)n must be bounded. Let (cnk )k be a convergent subsequence and let c = limk→∞ cnk .
Then it follows that the open disk D with center at c and Lebesgue measure κ(S ) is
contained in S . This proves the claim.

The boundaries of the circles in Hn partition R2 into sets such that only finitely
many of them have Lebesgue measure greater than or equal to ε for any ε > 0. Thus,
(K(n)

i )i in item (a) of Proposition 4.5 can be chosen by considering the largest open
disk D in any of the finitely many parts in Hn with Lebesgue measure greater than or
equal to κ(Hn). If D has center c and radius r = κ(Hn) then we define the K(n)

i to be
the closed disks with centers at c and radii ri that converge to r in a strictly increasing
fashion.

If we pick K(n)
1 so that λ(K(n)

1 ) = (1/2)κ(Hn) for every n ∈ N, then item (b) will be
satisfied as well. Indeed, it should be clear that with an = κ(Hn) = λ(

⋃∞
i=1 K(n)

i ), the
sequence (an) is decreasing. Also, since H is laminar, for m > n, either am ≤ (1/2)an

or (
⋃∞

i=1 K(m)
i ) ∩ (

⋃∞
i=1 K(n)

i ) = ∅. Hence, if an→ 0 (n→∞) is not true, then for some
λ0 > 0 and for some n0 ∈ N we must have λ0 < am ≤ an < 2λ0, therefore (

⋃∞
i=1 K(m)

i ) ∩
(
⋃∞

i=1 K(n)
i ) = ∅, for all m > n > n0. If i is large enough (that is π/(4i2) < λ0), the ring

Hi+1 \ Hi will not contain the K(n)
j for n > n0 and for j ∈ N. Thus, there is an index i0

such that K(n)
j ⊆ Hi0 for all n > n0 and for all j ∈ N, which would imply λ(Hi0 ) =∞.

Let H ′ be a maximal strongly laminar system in S containing H =
⋃∞

n=0 Hn.
(The existence of H ′ is guaranteed by Zorn’s lemma.) It is easy to see that for
any S ∈ H ′ \ H , only case (γ) of the proposition is possible. Furthermore, since
κ(S ) = λ(S ), there can be at most one such S for any fixed n. Therefore, H ′ \ H
is countable, and since H0 is countable, we obtain that H ′ is countable. As it turns
out, this construction leads to a system that is also maximal laminar (in addition to
being maximal strongly laminar).

The above argument can be repeated for various other collections of sets including
S = {all closed rectangles (with sides parallel to the coordinate axes)}.
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