
Bull. Aust. Math. Soc. 97 (2018), 382–385
doi:10.1017/S0004972718000035

A NOTE ON THE FUNDAMENTAL THEOREM OF ALGEBRA

MOHSEN ALIABADI

(Received 10 December 2017; accepted 31 December 2017; first published online 28 March 2018)

Abstract

The algebraic proof of the fundamental theorem of algebra uses two facts about real numbers. First, every
polynomial with odd degree and real coefficients has a real root. Second, every nonnegative real number
has a square root. Shipman [‘Improving the fundamental theorem of algebra’, Math. Intelligencer 29(4)
(2007), 9–14] showed that the assumption about odd degree polynomials is stronger than necessary; any
field in which polynomials of prime degree have roots is algebraically closed. In this paper, we give a
simpler proof of this result of Shipman.
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1. Introduction

The fundamental theorem of algebra, abbreviated here as FTA, states that the field
of complex numbers is algebraically closed. That is, every polynomial of degree n
with real or complex coefficients has exactly n zeros (counting multiplicities) in the
field of complex numbers. It is not possible to give a simple formula for the roots
of polynomials of degree greater than four. Abel proved that there is no formula for
the roots of a general fifth degree polynomial equation in terms of its coefficients that
uses only the operations of addition, subtraction, multiplication, division and taking
nth roots. That is, a fifth degree polynomial equation is not solvable by radicals.
Galois gave conditions under which polynomial equations can be solved by radicals,
originating what is now known as Galois theory.

Hundreds of proofs have been given for the FTA. There is a summary of the
known proofs in [4]; see also [1, 3] for some recent accounts. Shipman [6] provided
a new approach to the FTA. Not only did he improve the proof, but he also improved
the theorem itself. The algebraic view of the FTA is that under certain algebraic
hypotheses, a field of characteristic 0 must be algebraically closed. In [6], Shipman
gives the optimal conditions and generalises the theorem to characteristic p. His main
result is a necessary and sufficient (and straightforwardly computable) condition for a

c© 2018 Australian Mathematical Publishing Association Inc.

382

https://doi.org/10.1017/S0004972718000035 Published online by Cambridge University Press

http://orcid.org/0000-0003-3796-0761
https://doi.org/10.1017/S0004972718000035


[2] The fundamental theorem of algebra 383

finite set of ‘degree axioms’ (that all polynomials of the given degrees have roots)
to imply a further degree axiom in all fields. We give a simpler version of this
strengthened FTA to show that all fields in which prime degree polynomials have
roots are algebraically closed. Previous proofs only worked for characteristic 0 and
needed assumptions for polynomials of degree two and all odd degrees rather than just
prime degrees. Our main tools are the fundamental theorem of Galois theory and the
primitive element theorem.

2. The alternative proof

A field K is said to be perfect if either K has characteristic 0, or K has characteristic
p > 0 and every element of K is a pth power. The primitive element theorem states that
if K is perfect, then every finite extension of K has the form K(α) for some α (see, for
example, [5, Theorem 1.6.17]).

Throughout, K stands for a field for which all polynomials in K[x] of prime degree
have roots in K. Note that this condition implies that K is a perfect field because if
char K = p > 0, the polynomial xp − a has a root in K for any a ∈ K, and so K p = K.
Thus every finite extension of K has the form K(α), for some α.

The following two lemmas derive properties of the field K in case K is not
algebraically closed.

Lemma 2.1. Assume that K is not algebraically closed. Then, there exists a prime p
which divides the degree of any nonlinear irreducible polynomial p(x) ∈ K[x].

Proof. Assume to the contrary that there is no such prime. Let p(x) ∈ K[x] be a
nonlinear irreducible polynomial and assume that p1, . . . , pn are the prime divisors of
deg p(x). There exist nonlinear irreducible polynomials f1(x), f2(x), . . . , fn(x) ∈ K[x]
such that pi - deg fi(x) for 1 ≤ i ≤ n. Set F(x) = pk0 (x) f k1

1 (x) · · · f kn
n (x), where k0, . . . , kn

are nonnegative integers and will be determined later. Clearly,

gcd(deg p(x), deg f1(x), . . . , deg fn(x)) = 1

and deg F(x) = k0 deg p(x) +
∑n

i=1 ki deg fi(x).
Choose k0, . . . , kn so that deg F(x) is a prime number. Such a choice of k0, . . . , kn is

possible because of the fact that there are infinitely many primes and sums of integers
with gcd = 1 generate all sufficiently large integers. Since deg F(x) is prime, F(x) has
a root in K which is a contradiction. �

Lemma 2.2. Assume that K is not algebraically closed. Then K has no field extension
of prime degree.

Proof. Assume to the contrary that L is an extension of K with [L : K] = p, where p is
a prime. Then, there exists α ∈ L\K such that L = K(α). If m(x) ∈ K[x] is the minimal
polynomial of α, then deg m(x) = p and m(x) has a root in K which contradicts the fact
that m(x) is irreducible in K[x]. �
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In the following lemma, we provide a simple proof of the existence of a Sylow
p-subgroup of a finite group of order prm (the first Sylow theorem). We will also
show that p-groups have subgroups of index p. The main tool needed in the proof is
the orbit-stabiliser theorem (see, for example, [2, Theorem 11.4]). We will use these
results for finite groups in the proof of our main theorem to extract specific subgroups
of Galois groups of some extensions of K.

Lemma 2.3. Let G be a finite group of order prm, where p is prime, r is a positive
integer and gcd(m, p) = 1.

(i) G has at least one Sylow p-subgroup.
(ii) If m = 1, then G has a subgroup of order pr−1, that is, p-groups have subgroups

of index p.

Proof. (i) Let G act on subsets of G of size pr by left multiplication. The number
of such subsets is

(
prm
pr

)
, which is not divisible by p. Consequently, since the orbits

partition the set on which a group acts, there is at least one orbit S whose size is not
divisible by p. If P is the stabiliser of S , then by the orbit-stabiliser theorem, the size
of the orbit is [G : P] = |G|/|P| = prm/|P|. For this to fail to be divisible by p, we must
have pr | |P|, and therefore pr ≤ |P|. But for any fixed x ∈ S , the map of P into S given
by g→ gx is injective. (Indeed g belongs to the stabiliser of S , so that gS = S .) Thus
|P| ≤ |S | = pr. We conclude that |P| = pr, hence P is a Sylow p-subgroup.

(ii) By a similar argument, the number of subsets of G of size pr−1 is
(

pr

pr−1

)
which is

exactly divisible by p but not divisible by p2. Under the action of left multiplication
all orbits have size dividing pr and also have size at least p, therefore at least one orbit
has size exactly p (because p2 does not divide the number of subsets of G of size pr−1).
In an orbit of size p the subset containing the group identity has size pr−1 and is its
own stabiliser subgroup and the other subsets are its cosets. �

Now we are ready to prove our main theorem. For axiomatisation of algebraically
closed fields, this is the best possible result, as there are counterexamples if a single
prime is excluded (see [6, Theorem 3]). The theorem is a corollary of the more general
results in [6], but we use a different and simpler technique to prove it.

Theorem 2.4. K is algebraically closed.

Proof. Assume to the contrary that K is not algebraically closed. By Lemma 2.2, K
has no field extension of degree p, where p is the prime obtained in Lemma 2.1. Let L
be a Galois extension of K with [L : K] = prm, where r,m ∈ N and gcd(m, p) = 1. By
the fundamental theorem of Galois theory and Lemma 2.3, there is an intermediate
subfield L′ of K/L such that [L : L′] = pr, and so [L′ : K] = m. If m > 1, choose
α ∈ L′\K and assume that m(x) is the minimal polynomial of α over K. Then
deg m(x) | m. Since m(x) is irreducible, Lemma 2.1 implies that p | deg m(x). Therefore
p | m and this contradicts gcd(m, p) = 1. Thus, m = 1 and [L : K] = pr. Again, by
the fundamental theorem of Galois theory and Lemma 2.3, there is an intermediate
subfield L′ of K/L for which [L : L′] = pr−1. Then [L′ : K] = p. But this contradicts
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Lemma 2.2. Thus K has no Galois extension and since K is a perfect field, it must be
algebraically closed. �

Remark 2.5. Note that the primitive element theorem is only proven for fields of
characteristic 0. There are fields of characteristic p > 0, which have an extension of
degree p2 that cannot be generated by adjoining a single element, so we cannot always
find an element whose minimal polynomial has degree p2. However, this case cannot
occur in the proof of Theorem 2.4, because K is a perfect field. (All elements have pth
roots, which follows from the assumption that polynomials of degree p have roots.)
Perfect fields always have primitive elements.
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