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This paper considers optimal admission and routing control in multi-class service sys-
tems in which customers can either receive quality regular service which is subject to
congestion or can receive congestion-free but less desirable service at an alternative ser-
vice station, which we call the self-service station. We formulate the problem within the
Markov decision process framework and focus on characterizing the structure of dynamic
optimal policies which maximize the expected long-run rewards. For this, value function
and sample path arguments are used. The congestion sensitivity of customers is modeled
with class-independent holding costs at the regular service station. The results show how
the admission rewards of customer classes affect their priorities at the regular and self-
service stations. We explore that the priority for regular service may not only depend on
regular service admission rewards of classes but also on the difference between regular and
self-service admission rewards. We show that optimal policies have monotonicity proper-
ties, regarding the optimal decisions of individual customer classes such that they divide
the state space into three connected regions per class.

Keywords: admission control, congestion, Markov decision processes, revenue management,
routing control

1. INTRODUCTION

This paper focuses on the challenge of service providers to cope with dynamic and varying
customer demands with their limited resources. The service providers have to find effective
control mechanisms to manage their revenues, or customer satisfaction, to make the best
use of their service capacities. Most commonly, in the literature these service systems are
modeled as multi-class queueing systems and admission or/and dynamic routing controls
are studied, within the queueing systems formulations, for contributing to the management
of dynamic demands from distinguished customers.

Admission control of multi-class queueing systems for revenue management is inten-
sively studied. Miller [21] proved the optimality of the trunk reservation policy for a
multi-class loss queueing system in which the rewards that customer classes pay for being
admitted to the system are orderable and the service rates of customers are not dependent
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on their classes. In this policy, acceptance decisions on individual customer classes have
threshold structures, with respect to the number of customers in the system; if customer
class i is accepted when there are n customers in the system, then class i should also be
accepted when the system is less crowded. Moreover, the so-called trunks reserved per cus-
tomer class depend on the admission rewards; if customer class i offers reward ri which is
greater than rj , the admission reward that class j offers, then at any congestion level that
class j is accepted, for sure class i must be also admitted to the system. After Miller’s result,
the optimality of trunk reservation policies in various other multi-class single-station queue-
ing models are shown [8,9,13,14]. Feinberg and Yang [9] focused on the trunk reservation
optimality for an M/M/c/N queue. Later, Fan-Orzechowski and Feinberg [8] extended this,
by proving the optimality of randomized trunk reservation policies for an M/M/c/N model
with constraints on the blocking probabilities of customer classes. The admission control
studies which consider class-dependent service rates have focused on providing heuristic
policies. The most common approaches of these studies include Linear Programming (LP)
techniques [18] and asymptotic analyses [13].

In many service systems, waiting times of customers for being served are important
service quality indicators, which can affect the revenues, or customer satisfaction levels,
that service systems can achieve. For instance, waiting times can affect customer behavior
in choosing among different service providers, and thus for a specific service provider, waiting
times can be a determinant of the demand intensity of their system. The effects of system
congestion on customer behavior in a queueing system are considered earliest by Naor [22],
for an M/M/1 queue. Knudsen [15] and Stidham [27] considered an M/M/k and a GI/M/1
queues, respectively, by extending results by Naor [22]. These studies do not consider that
customers can be of different types, for the brevity of their discussion in explaining how the
potentials of systems to obtain admission rewards are lost when customers behave greedily
based on congestion levels.

Koçaǧa and Ward [16] considered congestion-related costs through the abandonment
of customers in their single-class multi-server model for controlling the admission decisions
of arriving customers. Atar and Lev-Ari [2] studied the admission control in a single-server
model with retrials. In their model, holding costs are used as means to incorporate conges-
tion sensitivity of customers. We note that congestion sensitivity of customers is a recognized
issue in call centers. Ata and Peng [1] studied the callback option to mitigate congestion in
call centers. In this study, arriving customers are routed to an offline queue to be called back
later when they accept the callback offer; otherwise, they are routed to the online queue in
which customers incur congestion-related waiting time costs. Feinberg and Yang [10] con-
sidered congestion effects through class-dependent holding costs in the admission control
problem of a multi-class queue model. Feinberg and Yang [10], being inspired by Miller [21],
used a continuous-time Markov decision process formulation and relative bias functions in
their policy iteration algorithm for obtaining the optimal policy of an M/M/c/N queue
with class and congestion-dependent admission rewards. Authors of this study focused on
extending trunk reservation properties to their model.

Similarly, we also consider a service system in which admission rewards of customer
classes are dependent on the congestion levels they experience in the system. However, dif-
ferently, we assume that congestion-sensitive customers have an alternative service station,
in which they can commence their services immediately without waiting. In this paper, we
have two stations which work in parallel in the service system. Our model is inspired from
systems, in which customers can either get quality regular service at a station supplied with
professionals, say the regular station, or can serve themselves at the self-service station, in
an unsupervised fashion. There are several examples of such service systems in practice.
For instance, in many service stations, thanks to the availability of online tools, self-help
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desks (or self-check out points) are available for customers. For a more concrete example,
let us consider the education sector. These days, online learning is assisting the teacher-led
instruction in many schools with flexible educational models such as personalized learn-
ing. In these schools, learners may opt for learning by themselves, in a self-service fashion,
instead of waiting for teacher assistance.

In these types of service systems, it is most likely that the regular service station will be
costlier to operate than the self-service, such that the system is more likely to have a lower
capacity at the regular station than at the self-service station. One can imagine that in such
systems, customers would prefer the regular station for getting quality professional-assisted
services. However, since the preference for the regular station will be prevalent for many
customers and also since the capacity of the regular station would not be high due to costs,
the congestion is likely to become an issue at the regular station. As a result, the preference
of customers for regular service might decrease in favor of self-service, as the regular service
station gets crowded.

For incorporating the congestion effects for the regular station, our model includes a
finite buffer for this station such that there are holding costs incurred from the customers
present at the station. With the holding costs, it is assumed that both the time spent waiting
for service at the buffer and being served degrade the rewards obtained from customer
admissions. Considering the nature of self-service, in which each self-server can only serve
a single customer at a time, the self-service station is modeled as a loss network. In some
service systems, there might also be a waiting room for using self-servers (e.g., self-checkouts
in supermarkets). In this study, we assume that waiting for service is more relevant for the
regular service station and thus only consider a waiting room for this station. With the
introduction of the self-service station, the routing decisions can also be controlled. In this
paper, for every customer class we dynamically, as a function of the state of the system,
decide on whether we are going to admit the class into the system or not, and if we are
accepting, then to which of the stations we should route for the maximization of long-run
expected rewards. The problem of admission and routing control in such a service system
is illustrated in Figure 1.

Dynamic routing control is also intensively studied. Compared with the dynamic admis-
sion control literature, congestion-related costs such as holding costs are much commonly
considered in the control of routing arriving customers. In some cases, admission and routing
controls are simultaneously considered. Bertsimas and Chryssikou [5] provided approximate
LPs to extract heuristic admission and routing policies. Chong et al. [6] studied both routing
and admission control for a two-class two-station system with class priorities. For systems
with many service stations and/or customer classes, the use of asymptotic analysis is com-
mon in the literature to provide efficient routing policies. Bassamboo et al. [4] studied the
optimal admission and routing control in the stochastic fluid approximation for a multi-class
service system with multiple service pools. Dai and Tezcan [7] presented an asymptotically
optimal routing policy under a heavy traffic regime for a parallel server system. Atar et al.
[3] studied the routing control problem in the diffusion models of multi-class many-server
queueing systems. Ward and Armony [28] considered routing control under the heavy traf-
fic regime for multi-class systems with heterogeneous servers. For single-class systems with
parallel servers with holding costs, there are many results on the optimal dynamic routing
policies in the literature. For these systems, commonly the route-to-least-workload policy
is explored [11,12,29].

The slow server problem, which considers a supporting slower server that can be
switched on or off depending on the number of customers waiting in the common buffer of
the system, is also relevant to the problem described in this paper, if we consider that self-
servers are slower than regular ones [19,23]. If we only have a single customer class with no
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Figure 1. Illustrating the admission and routing control problem in the service system
with the regular and self-service stations, for customer classes 1, 2, . . . ,m with arrival rates
λ1, λ2, . . . , λm.

rejection option, then the routing decision to slower self-servers can be seen as the switching
on decision of the slow server problem. Lin and Kumar [19] considered the threshold type
policy which switches the slow server on when the queue length exceeds a threshold. Nobel
and Tijms [23] additionally considered setup costs involving the switching the slow server
on and off and focused on a two-level hysteric switching rule which switches the slow server
on if the queue length exceeds an upper threshold and switches it off if the queue length
becomes lower than a lower threshold. There are also studies on the slow server problem
which considered the waiting option for getting service at the fast server. Rubinovitch [25]
considered a model with a slow and a fast server with a buffer in front of the fast server
for letting customers to greedily choose between the immediate service at the slow server
or queueing up for the busy fast server.

We formulate the admission and routing control problem in this system as a Markov
decision process and focus on characterizing the properties of the optimal policy. We make
use of a discrete-time Markov decision process formulation (following [20,26]) to investi-
gate the structure of optimal policies. For this, value function and sample path arguments
are used intensively. The paper investigates inter-class and intra-class properties of the
optimal stationary policies. In the inter-class properties, the focus is on the priorities
of customer classes for receiving service at both stations. In the intra-class properties,
we focus on characterizing monotonicity properties of the optimal policies with respect
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to the number of customers present at stations, or say the remaining capacity levels at
stations.

The remainder of the paper is organized as follows. Section 2 presents the Markov
decision process formulation. Section 3 presents the properties of optimal policies. Lastly,
we conclude the paper with Section 4.

2. MODEL FORMULATION

We consider that a set of customer classes i ∈ I = {1, . . . , m} with distinguished charac-
teristics arrive to a service system with two parallel service stations which we refer to as
regular and self-service stations. Each class i ∈ I arrives according to a Poisson process
with rate λi. The arriving customers can be routed to one of the two service stations,
or can be rejected, dynamically. It is assumed that all servers in stations are exponential
and service times are independent of customer classes. Let μR and μS denote the service
rates, and cR and cS denote the number of servers at regular and self-service stations,
respectively. The self-service station is considered as an M/M/cS/cS loss network and
the regular station is considered to have a buffer with capacity B = N − cR throughout
the paper. Let nR ∈ S1 = {0, 1, . . . , N} and nS ∈ S2 = {0, 1, . . . , cS} denote the state, the
number of customers present, at regular and self-service stations, respectively. We consider
that the non-negative reward that customer class i pays for regular service RR

i is not less
than the non-negative reward that the class would pay for self-service RS

i . It is assumed
that customers pay the admission rewards upon entry. Let μR(nR) and μS(nS) denote
effective service rates, when there are nR and nS customers present at the regular and self-
service stations, respectively. Although regular service is preferred by customers, it might
involve holding costs. Let H(nR) denote the holding cost rate that the system incurs for
having nR customers at the regular station. In this study, we restrict to linear holding
costs; we let h denote the unit time holding cost rate per customer at the regular station,
so H(nR) = hnR.

We can consider S = S1 × S2 as the state space of the system which observes the
number of customers present at both stations. On this state space, we formulate a Markov
decision process. Let us focus on stationary policies and let Π denote the set of such policies.
Interevent times are exponentially distributed and their rates are always bounded above by
Λ :=

∑
i λi + μR(N) + μS(cS). Thus, we can apply uniformization (see [20,26]) and consider

an equivalent decision process in discrete time. We let, without loss of generality, the uni-
formization constant Λ be equal to 1. Let vπ

T,α(s) denote the finite T -horizon α-discounted
total expected reward under policy π ∈ Π for the process starting at state s ∈ S. We
define

vπ
T,α(s) := E

[
T−1∑
t=0

αtr(Sπ
t , Aπ

t )|Sπ
0 = s

]
, (1)

where Sπ
t denotes the state at the beginning of tth period, Aπ

t denotes the action picked
by policy π for it and r(Sπ

t , Aπ
t ) denotes the corresponding net reward collected result-

ing from this at state Sπ
t (the sum of admission rewards resulting from the action picked

minus the holding costs incurred during tth period). vπ
T,α(s) is well-defined for each initial

state s and T , as the reward obtained at any state is bounded above by
∑

i λiR
R
i . We let

vT,α(s) = supπ∈Π vπ
T,α(s) denote the optimal finite T -horizon α-discounted total expected

reward obtained from the process which starts at state s.
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We next define the infinite-horizon α-discounted total expected reward under policy
π ∈ Π, for the process starting at state s

vπ
α(s) := lim

T→∞
vπ

T,α(s) = E

[ ∞∑
t=0

αtr(Sπ
t , Aπ

t )|Sπ
0 = s

]
(2)

and

vπ(s) := lim
T→∞

1
T

vπ
T,1(s), (3)

for its long-run average reward counterpart. Note that for any policy π, long-run average
reward vπ(s) is independent of initial state s, as the Markov chain induced by any stationary
policy π on our finite state space S is unichain. Next, we denote optimal expected rewards;
let vα(s) = supπ∈Π vπ

α(s) denote the α-discounted total expected reward obtained by an
optimal policy for the process which starts at state s and let v = supπ∈Π vπ(s) denote the
optimal long-run average reward.

By Theorem 6.2.6 of Puterman [24], we write the optimality equations vα(s) = Tαvα(s)
for s = (nR, nS), where

Tαvα(nR, nS) = Rαvα(nR, nS) + αμR(nR)vα((nR − 1)+, nS) + αμS(nS)vα(nR, (nS − 1)+)

+ α{μR(N) − μR(nR) + μR(cS) − μS(nS)}vα(nR, nS). (4)

Here, we let Rαvα(nR, nS) be

− H(nR) +
∑

i

λi max{1{nR<N}(R
R
i + αvα(nR + 1, nS)),

1{nS<cS}(R
S
i + αvα(nR, nS + 1)), αvα(nR, nS)}. (5)

The three choices in Rαvα(nR, nS)(s), for each customer class i at state s, correspond to
their routing to the regular and self-service stations and to their rejection, respectively.

By letting v0,α = 0, we write the optimality equations for the finite-horizon counterpart
as

vT+1,α(s) = TαvT,α(s). (6)

For the long-run average reward case, we let y(s) denote the relative value function
such that

y(s) − y(s
′
) = lim

T→∞
vT,1(s) − vT,1(s

′
) (7)

and then, we write the optimality equation

v + y(s) = T1y(s). (8)

This equation has a feasible solution for our finite state and action space unichain Markov
decision process with bounded rewards by Theorem 8.4.3 of Puterman [24].

3. CHARACTERIZATION OF THE OPTIMAL POLICY

We characterize the properties of the optimal policy in this section.
In some single-station multi-class networks with static admission rewards and no holding

costs, in which customer rewards can be ordered strictly, trunk reservation policies are
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optimal (see [21]). In these policies, acceptance decisions of customer classes are directly
related to their admission rewards. On contrary, in our system with two stations, optimal
acceptance and routing decisions of different classes are affected by not only regular station
admission rewards RR

i s, but also by the involved holding costs H(nR) and by the self-service
admission rewards RS

i s.

3.1. Basic Properties

Let us begin by exploring some basic properties of the value functions.

Lemma 3.1: For any α ∈ [0, 1), we have that (i) vα(nR, nS) − vα(nR + 1, nS) ≥ 0, ∀nR <
N , ∀nS and (ii) vα(nR, nS) − vα(nR, nS + 1) ≥ 0,∀nR,∀nS < cS. Similarly, for the long-
run average case, if v and y are the solutions of the optimality equation (8), then the above
statements will hold with vα replaced by y.

Proof: We use sample path arguments to show these results. Let us consider property (i)
for vα only, for a specific α ∈ [0, 1). For y, or for property (ii), a similar proof will follow.
Consider a process which starts at state (nR + 1, nS) and follows an optimal policy π∗, let
us call this Process 1. On the other hand, consider another process which starts at (nR, nS)
and uses a (potentially) suboptimal policy π which imitates π∗, let us call this Process 2.

We suppose that these two processes are defined on the same probability space and thus
move in parallel, observe the same arrival and service completion transitions simultaneously,
whenever it is possible. However, some events can not be observed in both processes. Firstly,
Process 1 can observe a service completion which Process 2 can not. Secondly, when Process
1 reaches a state in which there is no capacity left at both stations, the follower Process
2 would be at a state where there is still one more spot in the regular station. So, in this
situation, if an arrival occurs, Process 1 has to reject this arrival, although Process 2 can
admit the arrival to the regular station. We call these events coupling events such that after
their occurrences, both processes transition into the same state, and behave identically
thereafter.

Let δ be a random variable denoting the difference in the (net) reward obtained
by Process 2 from that of Process 1, until one of the coupling events occurs.
We have E(δ) = vπ

α(nR, nS) − vα(nR + 1, nS). Since E(δ) = vπ
α(nR, nS) − vα(nR + 1, nS) ≤

vα(nR, nS) − vα(nR + 1, nS), it is sufficient that we show E(δ) ≥ 0 to have vα(nR, nS) −
vα(nR + 1, nS) ≥ 0. The admission events occurring before coupling provide the same
rewards to both processes (RR

i s and RS
i s for each class i). We need to also consider the

holding costs for the congestion at the regular station. Since until coupling occurs Process
1 always experiences a regular station which is at least as crowded as the one in Process 2,
the net rewards collected by Process 2 would be at least as large as the net rewards which
could be obtained by Process 1 for any sample path. This implies that δ ≥ 0 pathwise, thus
E(δ) ≥ 0. �

Lemma 3.1 tells us that the service system benefits from more idle servers, or say spots
in both of the stations, under the α-discounted total expected or long-run average reward
optimalities. This is already intuitive.

We can additionally show that having idle servers or spots at the regular station is more
beneficial than having them at the self-service station. This is possible because RR

i ≥ RS
i

for any class i.
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Lemma 3.2: For any α ∈ [0, 1), we have that vα(nR, nS + 1) − vα(nR + 1, nS) ≥ 0, ∀nR <
N , ∀nS < cS. Similarly, for the long-run average case, if v and y are the solutions of the
optimality equation (8), then the above statement will hold with vα replaced by y.

Proof: We again use sample path arguments. Let us consider this for vα, for a specific α ∈
[0, 1). For y, a similar proof will follow. Consider a process which starts at state (nR + 1, nS)
and follows an optimal policy π∗, let us call this Process 1. On the other hand, consider
another process which starts at (nR, nS + 1) and uses a (potentially) suboptimal policy
π by imitating π∗, let us call this Process 2. We again make the assumption that both
processes are defined on the same probability space; they observe the same arrival and
service completion events, whenever possible.

Let δ be a random variable denoting the difference in the (net) reward obtained by Pro-
cess 2 from that of Process 1, until a coupling event occurs. We have E(δ) = vπ

α(nR, nS +
1) − vα(nR + 1, nS). Again it is sufficient to show that E(δ) ≥ 0 to have that vα(nR, nS +
1) − vα(nR + 1, nS) ≥ 0 as vπ

α(nR, nS + 1) − vα(nR + 1, nS) ≤ vα(nR, nS + 1) − vα(nR +
1, nS).

Events occurring before coupling provide the same admission rewards to both processes.
Also note that until coupling occurs Process 1 always experiences a regular station which
is at least as crowded as the one in Process 2, thus incurring larger holding costs. The first
coupling event could be the service completion event at the regular station for Process 2
and the service completion event at the self-service station for Process 1. In this event, there
are no admission rewards realized in both processes. The second possible coupling event can
occur when Process 1 is at a state in which there are no spots left to admit a customer to
the regular station, and on the contrary, Process 2 has still one spot left. In this situation,
Process 1 can admit an arriving customer to the self-service, but Process 2 can obtain a
larger reward by admitting the customer to the regular station instead as RR

i ≥ RS
i for each

class i and couple with Process 1 as a result. Thirdly, we can consider a situation in which
Process 2 can no longer admit customers to the self-service, but Process 1 still can, with its
single remaining idle server. If π∗ chooses to admit an arriving customer to the self-service
in such a situation, then Process 2 can admit the same customer to the regular station and
can obtain a larger admission reward. So, whichever coupling event occurs first, we have
that δ ≥ 0 pathwise. Thus, we will have E(δ) ≥ 0. �

3.2. Inter-Class Properties

Firstly, from the optimality equations (4)–(8), we can directly infer the following result.

Proposition 3.3: In an α-discounted (α ∈ [0, 1)) total expected reward optimal policy
(finite- or infinite-horizon formulations), or in a long-run average reward optimal policy, if
class i is routed to the regular (self-service) station at state (nR, nS) with reward RR

i (RS
i ),

then any class j with reward RR
j ≥ RR

i (RS
j ≥ RS

i ) and RS
j ≤ RS

i (RR
j ≤ RR

i ) is also routed
to the regular service (self-service) at state (nR, nS) in the optimal policy.

3.2.1. Highest priority for service In multi-class single-station systems with state-
independent rewards, we can usually talk about a customer class with the highest priority
to receive service. For instance, if we only have the regular station with h = 0, by using the
result by Miller [21], we can say that any class j with RR

j = maxi RR
i is among the customer

classes with highest service priority (for receiving service whenever there is capacity at the
service station).
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For the case that h = 0 in our network with two stations, we have the following value
function properties which indicate that priority for regular service is related to regular
service rewards RR

i s and also on the difference between regular and self-service admission
rewards.

Lemma 3.4: If h = 0, for any α ∈ [0, 1), we have that vα(nR, nS) − vα(nR + 1, nS) ≤
maxi RR

i , ∀nR < N , ∀nS. Similarly, for the long-run average case, if v and y are the solu-
tions of the optimality equation (8), then the above statement will hold with vα replaced by
y.

Proof: Let us show this for vα, for a specific α ∈ [0, 1), with sample path arguments.
Consider a process which starts at state (nR, nS) and follows an optimal policy π∗, let us
call this Process 1. On the other hand, consider another process which starts at (nR + 1, nS)
and follows a (potentially) suboptimal policy π by imitating π∗, let us call this Process 2.
We again make the assumption that both processes are defined on the same probability
space.

Events occurring before coupling provide the same admission rewards to both processes.
Firstly, Process 2 can observe a service completion which Process 1 can not. After this event,
both processes will couple, without changing the rewards obtained, in any of them. Secondly,
when Process 2 reaches a state in which there is no capacity left at both stations, Process
1 would be at a state where there is still one more spot in the regular station. When
an arrival from class i occurs in this situation, Process 1 can obtain RR

i while Process
2 will obtain no rewards, before they couple. This disadvantage of Process 2 can be at
most maxi RR

i . That is why in any of these coupling cases, we will have that the (net)
reward obtained by Process 2 will be at most maxi RR

i less than of Process 1 pathwise, then
we also have vα(nR, nS) − vπ

α(nR + 1, nS) ≤ maxi RR
i . Since vα(nR, nS) − vα(nR + 1, nS) ≤

vα(nR, nS) − vπ
α(nR + 1, nS), this is sufficient to confirm the lemma. �

Lemma 3.5: If h = 0, for any α ∈ [0, 1), we have that vα(nR, nS + 1) − vα(nR + 1, nS) ≤
maxi RR

i − RS
i , ∀nR < N , ∀nS < cS. Similarly, for the long-run average case, if v and y

are the solutions of the optimality equation (8), then the above statement will hold with vα

replaced by y.

Proof: Let us show this for vα, for a specific α ∈ [0, 1), by using sample path arguments.
Consider a process which starts at state (nR, nS + 1) and follows an optimal policy π∗, let us
call this Process 1. On the other hand, consider another process which starts at (nR + 1, nS)
and follows a (potentially) suboptimal policy π by imitating π∗, let us call this Process 2.
We assume that both processes are constructed in the same probability space.

Again events occurring before coupling provide the same admission rewards to both
processes. The first coupling event could be the service completion event at the regular
station for Process 2 and the service completion event at the self-service station for Process
1. In this event, there are no admission rewards realized in both processes. The second
possible coupling event can occur when Process 2 is at a state in which there are no spots
left to admit a customer to the regular station, and on the contrary, Process 1 has still one
spot left. At this event, Process 2 can admit the arriving customer to the self-service, but
Process 1 can obtain a larger reward by admitting the customer to the regular station. In
this situation, considering arrivals from all possible customer classes, in any arrival coupling
event, the advantage of the reward obtained by Process 1 over Process 2 can be at most
maxi RR

i − RS
i . Thirdly, we can consider a situation in which Process 1 can no longer admit

customers to the self-service, but Process 2 has still one free server at the station. In this case,
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when π∗ admits an arriving customer to the regular service, we let Process 2 to admit the
customer to the self-service station for coupling. So, in any of these coupling cases, we will
have that the (net) reward obtained by Process 2 will be at most maxi RR

i − RS
i less than

of Process 1 pathwise, then we also have vα(nR, nS + 1) − vπ
α(nR + 1, nS) ≤ maxi RR

i − RS
i .

Since vα(nR, nS + 1) − vα(nR + 1, nS) ≤ vα(nR, nS + 1) − vπ
α(nR + 1, nS), this is sufficient

to confirm the lemma. �

With these two lemmas, we can show the following.

Proposition 3.6: When the regular station is free of holding costs (h = 0), if for any
customer class j we have that RR

j = maxi RR
i and RS

j = mini RS
i , then this class is routed

to the regular station at any state s = (nR, nS) whenever nR < N , in an α-discounted (α ∈
[0, 1)) total expected or long-run average reward optimal policy.

Proof: We show this for α-discounted (α ∈ [0, 1)) total expected reward optimality. Class
j is, preferably, routed to the regular station, than to be rejected, at any state s =
(nR, nS), nR < N when RR

j + αvα(nR + 1, nS) > αvα(nR, nS). With Lemma 3.4, this holds
for class j always. Moreover, this class is, preferably, routed to the regular, than to the self-
service station, at any state s = (nR, nS), nR < N,nS < cS when RR

j + αvα(nR + 1, nS) >

RS
j + αvα(nR, nS + 1). With Lemma 3.5, this holds for class j always. �

For the self-service station, which is modeled as a loss network and in which there are
no holding costs involved, we have the following value function property.

Lemma 3.7: For any α ∈ [0, 1), we have that vα(nR, nS) − vα(nR, nS + 1) ≤ maxi RS
i ,

∀nS < cS, ∀nR. Similarly, for the long-run average case, if v and y are the solutions of
the optimality equation (8), then the above statement will hold with vα replaced by y.

Proof: We again use sample path arguments. Let us show this for vα, for a specific α ∈
[0, 1). Consider a process which starts at state (nR, nS) and follows an optimal policy π∗,
let us call this Process 1. On the other hand, consider another process which starts in
(nR, nS + 1) and uses a (potentially) suboptimal policy π which imitates π∗, let us call
this Process 2. We again make the assumption that both processes are constructed in the
same probability space. Again events occurring before coupling provide the same admission
rewards to both processes. Also, before coupling, both processes incur the same holding
costs.

Firstly, Process 2 can observe a service completion which Process 1 can not. After
this event, both processes will couple, without changing the rewards obtained, in any of
them. Secondly, when Process 2 reaches a state in which there is no capacity left at both
stations, Process 1 would be at a state where there is still one more spot in the self-service
station. When an arrival from class i occurs in this situation, Process 1 can obtain RS

i

more rewards than Process 1, before they couple. This disadvantage of Process 2 can be
at most maxi RS

i . That is why in any of these coupling cases, we will have that the (net)
reward obtained by Process 2 will be at most maxi RS

i less than of Process 1 pathwise, then
we also have vα(nR, nS) − vπ

α(nR, nS + 1) ≤ maxi RS
i . Since vα(nR, nS) − vα(nR, nS + 1) ≤

vα(nR, nS) − vπ
α(nR, nS + 1), this is sufficient to confirm the lemma. �

Proposition 3.8: Under an α-discounted (α ∈ [0, 1)) total expected or long-run aver-
age reward optimal policy, at any state s = (nR, nS) with nS < cS, any class j with
RS

j = maxi RS
i is not rejected.
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Proof: We show this for α-discounted (α ∈ [0, 1)) total expected reward optimality. Class
j is, preferably, routed to the self-service station, than to be rejected, at any state s =
(nR, nS), nR < N,nS < cS when RS

j + αvα(nR, nS + 1) > αvα(nR, nS). With Lemma 3.7,
this holds for class j always. �

3.3. Intra-Class Properties

In this section, we show the monotonicity properties of the optimal policy, regarding the
optimal admission and routing decisions of individual customer classes as functions of the
state of the system, or say the free capacities of the stations. Value function arguments are
used for this.

The following lemma is useful to infer the monotonicity properties of the optimal policy.
In naming these value function properties, we adapt the terminology by Koole [17].

Lemma 3.9: For any α ∈ [0, 1), we have that

(i) (Convexity in nS) vα(nR, nS) − vα(nR, nS + 1) ≤ vα(nR, nS + 1) − vα(nR, nS + 2),
∀nS ≤ cS − 2, ∀nR

(ii) (Supermodularity) vα(nR, nS) − vα(nR, nS + 1) ≤ vα(nR + 1, nS) − vα(nR + 1, nS +
1), ∀nS ≤ cS − 1, ∀nR ≤ N − 1

(iii) (Superconvexity-1) vα(nR + 1, nS) − vα(nR + 1, nS + 1) ≤ vα(nR, nS + 1) − vα(nR,
nS + 2), ∀nS ≤ cS − 2, ∀nR ≤ N − 1

(iv) (Superconvexity-2) vα(nR, nS + 1) − vα(nR + 1, nS + 1) ≤ vα(nR + 1, nS) − vα(nR +
2, nS), ∀nS ≤ cS − 1, ∀nR ≤ N − 2

(v) (Convexity in nR) vα(nR, nS) − vα(nR + 1, nS) ≤ vα(nR + 1, nS) − vα(nR + 2, nS),
∀nR ≤ N − 2, ∀nS

Similarly, for the long-run average case, if v and y are the solutions of the optimality
equation (8), then the above statements will hold with vα replaced by y.

The proof of the lemma can be found in the Appendix.
When we consider an α-discounted total expected or the long-run average reward opti-

mality, these properties suggest the following. Property (i) tells that more capacity at the
self-service station means that more customers can be admitted to the station. Property (ii)
can be interpreted as more capacity at the self-service (regular) station means that more
customers can be admitted to the regular (self-service) station. Property (iii) shows that
more capacity at the self-service station has more potential to increase admissions to the
self-service than to the regular service station. Likewise, property (iv) shows the counterpart
of this for the regular service station. Lastly, property (v) indicates that more capacity at
the regular service station means that more customers can be admitted to the station.

The following propositions imply that α-discounted total expected or long-run average
reward optimal policies have monotonicity properties.

Proposition 3.10: Under an α-discounted (α ∈ [0, 1)) total expected or long-run average
reward optimal policy, if any class j is routed to the self-service station at any state s =
(nR, nS), nS < cS, then class j is routed to the self-service station also at state (nR, nS − 1).

Proof: We show this for α-discounted total expected reward optimality. Class j is, prefer-
ably, routed to the self-service station, than being rejected, at any state s = (nR, nS), nR <
N,nS < cS when RS

j + αvα(nR, nS + 1) > αvα(nR, nS). With property (i) of Lemma 3.9, we
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have αvα(nR, nS) − αvα(nR, nS + 1) ≥ αvα(nR, nS − 1) − αvα(nR, nS), which shows that
RS

j > αvα(nR, nS − 1) − αvα(nR, nS). This confirms that class j will not be rejected from
the self-service station at state (nR, nS − 1). Moreover, class j is routed to the self-
service station, than to the regular service station at state s = (nR, nS), nR < N,nS < cS

when αvα(nR, nS + 1) − αvα(nR + 1, nS) > RR
j − RS

j . With property (iii) of Lemma 3.9,
αvα(nR, nS) − αvα(nR + 1, nS − 1) ≥ αvα(nR, nS + 1) − αvα(nR + 1, nS) (note that nS −
1 ≤ cS − 2). So, we have αvα(nR, nS) − αvα(nR + 1, nS − 1) > RR

j − RS
j , which confirms

the advantage of routing the class j to the self-service over the regular service at state
(nR, nS − 1). �

Proposition 3.11: Under an α-discounted (α ∈ [0, 1)) total expected or long-run average
reward optimal policy, if any class j is routed to the regular service station at any state
s = (nR, nS), nR < N , then class j is routed to the regular service station also at state
(nR − 1, nS).

Proof: We show this for α-discounted total expected reward optimality. We can prove this
with the help of properties (iv) and (v) of Lemma 3.9, in a similar fashion that we describe
in the proof of Proposition 3.10. �

In our model, we also control admission decisions such that we have the option to
reject customers. The following property presents the monotonicity of rejection decisions of
customer classes.

Proposition 3.12: Under an α-discounted (α ∈ [0, 1)) total expected or long-run average
reward optimal policy, if any class j is rejected at any state s = (nR, nS), then class j is
rejected also at states (nR + 1, nS) and (nR, nS + 1).

Proof: We show this for α-discounted total expected reward optimality. Let us show
this for any state s = (nR, nS) with nR < N,nS < cS (in which both of the routing
options are feasible). At state s = (nR, nS), nR < N,nS < cS class j is rejected when
RR

i + αvα(nR + 1, nS) < αvα(nR, nS) and RS
i + αvα(nR, nS + 1) < αvα(nR, nS). First, let

us show that class j is rejected also at state (nR + 1, nS). By property (v) of Lemma 3.9,
αvα(nR, nS) − αvα(nR + 1, nS) ≤ αvα(nR + 1, nS) − αvα(nR + 2, nS). So, we have RR

j <

αvα(nR + 1, nS) − αvα(nR + 2, nS), which shows that class j is rejected from the regu-
lar service station at state (nR + 1, nS). By property (ii) of Lemma 3.9, αvα(nR, nS) −
αvα(nR, nS + 1) ≤ αvα(nR + 1, nS) − αvα(nR + 1, nS + 1). With this, we have that RS

j <

αvα(nR + 1, nS) − αvα(nR + 1, nS + 1), which confirms that class j is rejected also from
the self-service station at state (nR + 1, nS). For showing that class j is rejected from the
self-service and regular service stations also at state (nR, nS + 1), we can use properties (i)
and (ii) of Lemma 3.9 in a similar fashion. �

These monotonicity properties imply that the discounted total expected or long-run
average reward optimal policies divide the state space into three connected regions for any
customer class such that in each region either the class is routed to the regular service or
self-service stations, or it is rejected. For illustrating this, we present Figure 2 for a system
with two classes. In obtaining this figure, we let λ1 = λ2 = 3, μR = 1, μS = 0.5, h = 2,
cR = 3, cS = 10, B = 5 and consider long-run average reward optimal policies.

Policies in Figure 2(a) and (b) correspond to the scenario that we have RR
1 = 15 and

RS
1 = 2 for the first customer class and RR

2 = 13 and RS
1 = 3 for the second customer class.

Figure 2(a) and (b) presents the optimal admission and routing decisions of the first and
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Figure 2. Long-run average reward optimal policies of a two class system with
λ1 = λ2 = 3, μR = 1, μS = 0.5, h = 2, cR = 3, cS = 10, B = 5 under two different admission
reward scenarios. (a) Class 1: RR

1 = 15, RS
1 = 2. (b) Class 2: RR

2 = 13, RS
2 = 3. (c) Class 1:

RR
1 = 15, RS

1 = 6. (d) Class 2: RR
2 = 13, RS

2 = 3.

second customer classes, respectively, for this scenario. We observe that the first class is
accepted to the regular station more than the second class. Note that the regular service
admission reward of the first class is higher than of the second class (RR

1 > RR
2 ) and also

the reward difference RR
1 − RS

1 is higher than RR
2 − RS

2 . For the systems with h = 0, we
have the result in Proposition 3.6 which confirms the regular service priority of the class
who has the highest regular service admission reward and the lowest self-service admission
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reward. For the system in this figure with h = 2, we are able to observe the regular service
priority of such a customer class.

In order to illustrate how the optimal policies change with respect to the admission
rewards of customers, we then look at Figure 2(c) and (d). Differently from the setting in
Figure 2(a) and (b), we have RS

1 = 6, instead of RS
1 = 2. Figure 2(c) and (d) presents the

optimal admission and routing decisions of the first and second customer classes, respec-
tively, for this different scenario. In this scenario, we still have that the first class has the
highest regular service admission reward. However, this time the difference between the
regular service and self-service admission rewards is higher for the second customer class.
We can observe from the figure how this increase in the self-service admission reward of the
first customer class reduces the priority of the first customer class for the regular service
and at the same time increases the regular service priority of the second class.

4. CONCLUSIONS

This paper focuses on the optimal dynamic admission and routing control problem for the
revenue management in a specific service system setting. In this setting, we imagine that
customers arriving are not identical with respect to their rewards for service and they are
sensitive to congestion. For modeling these differences, we consider customer classes. We get
inspiration from service systems in which customers have the option to receive congestion-
free services, for instance by self-serving their own demands through self-help desks, instead
of opting for regular service, which, as we imagine, is provided by professionals. We argue
that in such systems, the regular service can entail congestion-related costs due to high
demands by customers and/or low staff levels. For studying the optimal admission and
routing control of such systems, a queueing model with two parallel stations with multi-
servers is devised. The congestion-free self-service station is represented with a loss network.
For the regular service station, a finite buffer where customers incur holding costs is used.
The focus of this paper is on the discounted total expected and long-run average reward
optimal policies. We use Markov decision process formulations to characterize the structure
of optimal policies and show the well-structuredness of optimal policies, through value
function and sample path arguments.
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APPENDIX

A.1. Proof of Lemma 3.9

We show this lemma on the α-discounted finite-horizon formulation vT,α, by using induction on T
(the number of remaining time periods). We can then reason that the lemma will hold for vα or y.

Let us start by showing the following.

Lemma A.1: For any T ≥ 1 and α ∈ [0, 1), we have that

(i) vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT+1,α(nR, nS) − vT+1,α(nR, nS + 1)

(ii) vT,α(nR, nS) − vT,α(nR + 1, nS) ≤ vT+1,α(nR, nS) − vT+1,α(nR + 1, nS)

Proof: This lemma can be shown using sample path arguments. Here, we do it for the first
statement. Construct two processes on the same probability space. Let Process 1 start at state
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(nR, nS) and let Process 2 start at state (nR + 1, nS). If these processes couple somewhere in the
first T periods, then the difference in the rewards obtained by two processes will be the same if both
processes have T or T + 1 periods remaining. If not, then Process 1 will obtain as many rewards
as Process 2 in the first T periods, and in the last remaining period, there is no chance that the
advantage of Process 1 over Process 2 will decrease. �

Now it is sufficient to show the following statements, to prove Lemma 3.9. For any T ≥ 1 and
α ∈ [0, 1), we have that

(I) vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT,α(nR, nS + 1) − vT,α(nR, nS + 2), ∀nS ≤ cS − 2,

∀nR

(II) vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1), ∀nS ≤ cS −
1, ∀nR ≤ N − 1

(III) vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1) ≤ vT,α(nR, nS + 1) − vT,α(nR, nS + 2),

∀nS ≤ cS − 2, ∀nR ≤ N − 1

(IV) vT,α(nR, nS + 1) − vT,α(nR + 1, nS + 1) ≤ vT,α(nR + 1, nS) − vT,α(nR + 2, nS),

∀nS ≤ cS − 1, ∀nR ≤ N − 2

(V) vT,α(nR, nS) − vT,α(nR + 1, nS) ≤ vT,α(nR + 1, nS) − vT,α(nR + 2, nS),

∀nS , ∀nR ≤ N − 2

Proving Statement (I): This is the convexity property of the value functions with respect
to the number of customers in the self-service station. We show this by induction on the value
functions. We can show the initial induction step by letting v0,α(. . .) = 0. Then, assuming that (I)
holds for some T and α ∈ [0, 1) and we need to show that (I) also holds for T + 1 and α ∈ [0, 1).

We know that

vT+1,α(nR, nS) − vT+1,α(nR, nS + 1) = RαvT,α(nR, nS) − RαvT,α(nR, nS + 1)

+ αμR(nR)[vT,α(nR − 1, nS) − vT,α(nR − 1, nS + 1)]

+ αμS(nS)[vT,α(nR, nS − 1) − vT,α(nR, nS)]

+ α(μS(cS − (nS + 1)) + μR(N) − μR(nR))

× [vT,α(nR, nS) − vT,α(nR, nS + 1)] (A.1)

where RαvT,α(nR, nS) − RαvT,α(nR, nS + 1) is

∑
i

λi[max[RR
i + αvT,α(nR + 1, nS), RS

i + αvT,α(nR, nS + 1), α(nR, nS)]

− max[RR
i + αvT,α(nR + 1, nS + 1), RS

i + αvT,α(nR, nS + 2), α(nR, nS + 1)]]. (A.2)

Note that the holding costs (h(nR)) cancel out in RαvT,α(nR, nS) − RαvT,α(nR, nS + 1).
We show this statement by proving that each term in brackets in Eq. (A.1) is bounded above

by vT+1,α(nR, nS + 1) − vT+1,α(nR, nS + 2). Then, we can be sure that the statement will hold
as the coefficients of these terms sum up to 1.

Let us first look into the three parts of (A.1) that do not relate to the rewards.

(a) vT,α(nR − 1, nS) − vT,α(nR − 1, nS + 1) ≤ vT,α(nR, nS) − vT,α(nR, nS + 1) by the induc-

tion hypothesis of statement (II), and vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT,α(nR, nS +

1) − vT,α(nR, nS + 2), by the induction hypothesis of statement (I) and we know

that vT,α(nR, nS + 1) − vT,α(nR, nS + 2) ≤ vT+1,α(nR, nS + 1) − vT+1,α(nR, nS + 2) by
Lemma A.1.
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(b) vT,α(nR, nS − 1) − vT,α(nR, nS) ≤ vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT,α(nR, nS + 1) −
vT,α(nR, nS + 2), by the induction hypothesis of statement (I) and vT,α(nR, nS + 1) −
vT,α(nR, nS + 2) ≤ vT+1,α(nR, nS + 1) − vT+1,α(nR, nS + 2) by Lemma A.1.

(c) vT,α(nR, nS) − vT,α(nR, nS + 1) ≤ vT,α(nR, nS + 1) − vT,α(nR, nS + 2), by the induction

hypothesis of statement (I) and vT,α(nR, nS + 1) − vT,α(nR, nS + 2) ≤ vT+1,α(nR, nS +

1) − vT+1,α(nR, nS + 2) by Lemma A.1.

Now, we check the reward differences. RαvT,α(nR, nS) − RαvT,α(nR, nS + 1) is affected by the
admission and routing choices made. We look into all possible combinations of these decisions. We
show that, for any arbitrary customer class i, Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) = max[RR

i +

αvT,α(nR + 1, nS), RS
i + αvT,α(nR, nS + 1), α(nR, nS)] − max[RR

i + αvT,α(nR + 1, nS + 1), RS
i +

αvT,α(nR, nS + 2), α(nR, nS + 1)] is bounded above by vT+1,α(nR, nS + 1) − vT+1,α(nR,

nS + 2).

(a) Consider that it is optimal to route class i to the regular station at both (nR, nS)
and (nR, nS + 1) states. Then, we know that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS +

1) = α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)]. By using the induction hypothesis

of statement (III), α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR, nS + 1) −
vT,α(nR, nS + 2)]. We know that with Lemma A.1 that α[vT,α(nR, nS + 1) −
vT,α(nR, nS + 2)] ≤ vT+1,α(nR, nS + 1) − vT,α(nR, nS + 2).

(b) Consider that it is optimal to route class i to the regular station at (nR, nS) but to the
self-service station at (nR, nS + 1). We know that, as it is not optimal to route class i to
the regular station at (nR, nS + 1), Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) ≤ α[vT,α(nR +

1, nS) − vT,α(nR + 1, nS + 1)]. For the rest, we can follow (d).

(c) Similarly, for the case that it is optimal to route class i to the regular station at (nR, nS)
but to reject at (nR, nS + 1), we can infer that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) ≤

α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] and follow the lines in (d).

(d) Consider that it is optimal to route class i to the self-service station at both (nR, nS) and
(nR, nS + 1) states. Thus, Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) = α[vT,α(nR, nS + 1) −

vT,α(nR, nS + 2)]. With Lemma A.1, we can show that α[vT,α(nR, nS + 1) − vT,α(nR, nS +

2)] ≤ vT+1,α(nR, nS + 1) − vT,α(nR, nS + 2).

(e) Consider that it is optimal to route class i to the self-service station at (nR, nS) but
to the regular station at (nR, nS + 1). As it is not optimal to route class i to the self-
service station at (nR, nS + 1), Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) ≤ α[vT,α(nR, nS +

1) − vT,α(nR, nS + 2)]. Then, we can follow (h) to show the rest.

(f) Consider that it is optimal to route class i to the self-service station at (nR, nS) but to
reject at (nR, nS + 1). We can follow the arguments in (i).

(g) Consider that it is optimal to reject class i at both (nR, nS) and (nR, nS +
1) states. Then, Ri

αvT,α(nR, nS) − Ri
αvT,α(nR, nS + 1) = α[vT,α(nR, nS) − vT,α(nR, nS +

1)]. With the induction hypothesis of statement (I), α[vT,α(nR, nS) − vT,α(nR, nS + 1)] ≤
α[vT,α(nR, nS + 1) − vT,α(nR, nS + 2)]. Then, Lemma A.1 completes the proof.

The case that class i is rejected at state (nR, nS) but routed to the self-service station at
state (nR, nS + 1) is impossible due to the induction hypothesis of statement (I). Likewise, it is
also impossible that class i is rejected at state (nR, nS) but routed to the regular station at state
(nR, nS + 1), due to the induction hypothesis of statement (II).

Proving Statement (II): This is the supermodularity property of the value functions. We
show this with induction on T by sample path arguments. Consider four processes on the same
probability space such that all have T + 1 periods remaining. Let Process 1 and Process 4 start at
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(nR, nS) and (nR + 1, nS + 1), respectively, and assume that both processes use an optimal policy
π∗. On the other hand, let Process 2 and Process 3 start at states (nR, nS + 1) and (nR + 1, nS),
respectively, and let them follow (potentially) suboptimal policies. However, we let that these
policies will only deviate from the optimal policy π∗ during the first time period.

We let Rk and R∗
k be the random variables denoting the (net) rewards obtained by the policies

that Process k ∈ {1, 2, 3, 4} follows and the rewards that could be obtained if Process k was follow-
ing an optimal policy instead, respectively. In order to show that E(R∗

1) − E(R∗
2) ≤ E(R∗

3) − E(R∗
4),

it is sufficient to show E(R∗
1) − E(R2) ≤ E(R3) − E(R∗

4) as E(R∗
1) − E(R∗

2) ≤ E(R∗
1) − E(R2) ≤

E(R3) − E(R∗
4) ≤ E(R∗

3) − E(R∗
4).

We now condition on the possible events that might occur in the first time period, by using
the fact that after this event, we have T periods left in the horizon. The first event partitions
the state space. By using the law of total expectation, it suffices to show that E(R∗

1 − R2|An) ≤
E(R3 − R∗

4|An) for any transition event An. We skip writing the holding costs incurred at the states
(during the first time period) as they cancel out in E(R∗

1 − R2|An) and E(R3 − R∗
4|An) irrespective

of the transition events (Ans).
First focus on arrival events. Let class i be an arbitrary customer class whose arrival we observe

in the first time period. Let A1 denote this arrival event. As we do not know the decisions that
the optimal policy π∗ will take after observing this event at states (nR, nS) and (nR + 1, nS + 1),
below we consider all possible scenarios for the decisions that the optimal policy can take at these
states.

Scenario 1 for A1: Assume that the optimal policy routes the arrived cus-
tomer of class i to the regular station at both (nR, nS) and (nR + 1, nS + 1) states.
Let us consider that Process 2 and Process 3 also route this class to the regu-
lar station. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR + 1, nS) − RR

i − αvT,α(nR + 1, nS + 1)) =

α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)]. By the induction hypothesis of statement (II), we

know that α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS +

1)], where α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS + 1)] = (RR
i + αvT,α(nR + 2, nS) − RR

i − αvT,α

(nR + 2, nS + 1)) = E(R3 − R∗
4|A1).

Scenario 2 for A1: Assume that the optimal policy routes the arrived cus-
tomer of class i to the regular station at (nR, nS) and to the self-service at
(nR + 1, nS + 1). Let Process 2 and Process 3 mimic Process 1 and Process 4,
respectively. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR + 1, nS) − RR

i − αvT,α(nR + 1, nS + 1)) =

α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)]. By the induction hypothesis of statement (I),

we know that α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR + 1, nS + 1) − vT,α(nR +

1, nS + 2)], where α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)] = (RS
i + αvT,α(nR + 1, nS +

1) − RS
i − αvT,α(nR + 1, nS + 2)) = E(R3 − R∗

4|A1).
Scenario 3 for A1: Assume that the optimal policy routes the arrived customer of class i to

the regular station at (nR, nS) and rejects at (nR + 1, nS + 1). Let Process 2 and Process 3 mimic
Process 1 and Process 4, respectively. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR + 1, nS) − RR

i −
αvT,α(nR + 1, nS + 1)) = α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] = E(R3 − R∗

4|A1).
Scenario 4 for A1: Assume that the optimal policy routes the arrived customer of

class i to the self-service station at both (nR, nS) and (nR + 1, nS + 1) states. Let us
consider that also Process 2 and Process 3 route this class to the self-service station.
Then, E(R∗

1 − R2|A1) = (RS
i + αvT,α(nR, nS + 1) − RS

i − αvT,α(nR, nS + 2)) = α[vT,α(nR, nS +

1) − vT,α(nR, nS + 2)] ≤ (RS
i + αvT,α(nR + 1, nS + 1) − RS

i − αvT,α(nR + 1, nS + 2)) = E(R3 −
R∗

4|A1), as by the induction hypothesis of statement (I).
Scenario 5 for A1: Assume that the optimal policy routes the arrived customer of class i to the

self-service station at (nR, nS) and to the regular station at (nR + 1, nS + 1). Let Process 2 to mimic
Process 4 and Process 3 to mimic Process 1. Then, E(R∗

1 − R2|A1) = (RS
i + αvT,α(nR, nS + 1) −

RR
i − αvT,α(nR + 1, nS + 1)) ≤ (RS

i + αvT,α(nR + 1, nS + 1) − RR
i − αvT,α(nR + 2, nS + 1)) by

the induction hypothesis of statement (II), where (RS
i + αvT,α(nR + 1, nS + 1) − RR

i −
αvT,α(nR + 2, nS + 1)) = E(R3 − R∗

4|A1).
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Scenario 6 for A1: Assume that the optimal policy routes the arrived customer of class i
to the self-service station at (nR, nS) and rejects at (nR + 1, nS + 1). Let Process 2 to mimic
Process 4 and Process 3 to mimic Process 1. Then, E(R∗

1 − R2|A1) = (RS
i + αvT,α(nR, nS + 1) −

αvT,α(nR, nS + 1)) = RS
i = E(R3 − R∗

4|A1).
Scenario 7 for A1: Assume that the optimal policy rejects class i at both

(nR, nS) and (nR + 1, nS + 1) states. Then, let Process 2 and Process 3 reject as well.
Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS) − αvT,α(nR, nS + 1) ≤ αvT,α(nR + 1, nS) − αvT,α(nR +

1, nS + 1) = E(R3 − R∗
4|A1), by the induction hypothesis of statement (II).

We realize that it is impossible that an optimal policy rejects class i at (nR, nS) but accepts
either to the self-service or regular stations at (nR + 1, nS + 1), by the induction hypothesis.

In all decision scenarios possible after observing event A1, we see that we can confirm E(R∗
1 −

R2|A1) ≤ E(R3 − R∗
4|A1).

Now, we focus on the service completion events. It is possible that these types of events occur
in the first time period. The effect of service completion events are not related to the decisions of
the optimal policy; however, this time we need to consider scenarios for the states of the systems,
due to the fact that we have a bounded state space.

Let us first consider the service completion event from the regular service station. Let A2

denote this event.
Scenario 1 for A2: First, let us consider the case that nR > 0 such that all pro-

cesses can observe this event. Then, E(R∗
1 − R2|A2) = αvT,α(nR − 1, nS) − αvT,α(nR − 1, nS +

1) ≤ αvT,α(nR, nS) − αvT,α(nR, nS + 1) by the induction hypothesis of statement (II), where

αvT,α(nR, nS) − αvT,α(nR, nS + 1) = E(R3 − R∗
4|A2).

Scenario 2 for A2: Now consider that nR = 0 such that we can observe this event only in Process
3 and Process 4. For this case, we have E(R∗

1 − R2|A2) = αvT,α(nR, nS) − αvT,α(nR, nS + 1) =
E(R3 − R∗

4|A2).
Now, let us consider the service completion event from the self-service station. Let A3 denote

this event.
Scenario 1 for A3: First, let us consider the case that nS > 0 such that all processes can

observe this event. Then, E(R∗
1 − R2|A3) = αvT,α(nR, nS − 1) − αvT,α(nR, nS) ≤ αvT,α(nR +

1, nS − 1) − αvT,α(nR + 1, nS), by the induction hypothesis of statement (II), where αvT,α(nR +

1, nS − 1) − αvT,α(nR + 1, nS) = E(R3 − R∗
4|A3).

Scenario 2 for A3: Now consider that nS = 0 such that only Process 2 and Process 4 can
observe this event. For this case, we have E(R∗

1 − R2|A3) = αvT,α(nR, nS) − αvT,α(nR, nS) = 0 =

αvT,α(nR + 1, nS) − αvT,α(nR + 1, nS)E(R3 − R∗
4|A3).

We note that a dummy transition event might also occur due to uniformization. However,
this will not change the state of any processes. So, the induction hypothesis of statement (II) is
sufficient in this case.

Proving Statement (III): This is a superconvexity property of the value functions. We again
show this with induction on T by sample path arguments. Consider four processes on the same
probability space such that all have T + 1 periods remaining. Let Process 1 and Process 4 start at
(nR + 1, nS) and (nR, nS + 2), respectively, and assume that both processes use an optimal policy
π∗. On the other hand, let Process 2 and Process 3 start at (nR + 1, nS + 1) and (nR, nS + 1). For
these processes, we do not assume that they follow an optimal policy. However, we consider that
after the first time period, all policies follow an optimal policy.

We again let Rk and R∗
k be the random variables denoting the (net) rewards obtained by the

policies that Process k ∈ {1, 2, 3, 4} follows and the rewards that could be obtained if Process k
was following an optimal policy instead, respectively. In order to show that E(R∗

1) − E(R∗
2) ≤

E(R∗
3) − E(R∗

4), it is sufficient to show E(R∗
1) − E(R2) ≤ E(R3) − E(R∗

4) as E(R∗
1) − E(R∗

2) ≤
E(R∗

1) − E(R2) ≤ E(R3) − E(R∗
4) ≤ E(R∗

3) − E(R∗
4).

We now condition on the possible events that might occur in the first time period, by using
the fact that after this event, we have T periods left in the horizon. The first event partitions
the state space. By using the law of total expectation, it suffices to show that E(R∗

1 − R2|An) ≤
E(R3 − R∗

4|An) for any transition event An. We skip writing the holding costs incurred at the states
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(during the first time period) as they cancel out in E(R∗
1 − R2|An) and E(R3 − R∗

4|An) irrespective
of the transition events (Ans).

First focus on arrival events. Let class i be an arbitrary customer class whose arrival we observe
in the first time period. Let A1 denote this arrival event. As we do not know the decisions that
the optimal policy π∗ will take after observing this event at states (nR + 1, nS) and (nR, nS + 2),
below we consider all possible scenarios for the decisions that the optimal policy can take at these
states.

Scenario 1 for A1: Assume that the optimal policy routes the arrived cus-
tomer of class i to the regular station at both (nR + 1, nS) and (nR, nS + 2) states.
Let us consider that also Process 2 and Process 3 route this class to the regu-
lar station. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR + 2, nS) − RR

i − αvT,α(nR + 2, nS + 1)) =

α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS + 1)]. By the induction hypothesis of statement (III),

we know that α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS + 1)] ≤ α[vT,α(nR + 1, nS + 1) − vT,α(nR +

1, nS + 2)], where α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)] = (RR
i + αvT,α(nR + 1, nS +

1) − RR
i − αvT,α(nR + 1, nS + 2)) = E(R3 − R∗

4|A1).
Scenario 2 for A1: Assume that the optimal policy routes the arrived customer of

class i to the regular station at (nR + 1, nS) but to the self-service station at (nR, nS +
2). Let us consider that Process 2 and Process 3 mimic Process 1 and Process 4, respec-
tively. Then, E(R∗

1 − R2|A1) = α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS + 1)]. By the induction

hypothesis of statement (III), α[vT,α(nR + 2, nS) − vT,α(nR + 2, nS + 1)] ≤ α[vT,α(nR + 1, nS +

1) − vT,α(nR + 1, nS + 2)] ≤ α[vT,α(nR, nS + 2) − vT,α(nR, nS + 3)] and α[vT,α(nR, nS + 2) −
vT,α(nR, nS + 3)] = E(R3 − R∗

4|A1).
Scenario 3 for A1: Assume that the optimal policy routes the arrived customer of

class i to the regular station at (nR + 1, nS) but rejects at (nR, nS + 2). Let Process 2
mimic Process 4 and Process 3 mimic Process 1. Then, E(R∗

1 − R2|A1) = RR
i + α[vT,α(nR +

2, nS) − vT,α(nR + 1, nS + 1)]. By the induction hypothesis of statement (IV), RR
i + α[vT,α(nR +

2, nS) − vT,α(nR + 1, nS + 1)] ≤ RR
i + α[vT,α(nR + 1, nS) − vT,α(nR, nS + 1)]. By the induction

hypothesis of statement (III), RR
i + α[vT,α(nR + 1, nS) − vT,α(nR, nS + 1)] ≤ RR

i + α[vT,α(nR +

1, nS + 1) − vT,α(nR, nS + 2)], where RR
i + α[vT,α(nR + 1, nS + 1) − vT,α(nR, nS + 2)] ≤ RR

i +

α[vT,α(nR + 1, nS + 1) − vT,α(nR, nS + 2)] = E(R3 − R∗
4|A1).

Scenario 4 for A1: Assume that the optimal policy routes the arrived customer of
class i to the self-service station at both (nR + 1, nS) and (nR, nS + 2) states. Let us
consider that also Process 2 and Process 3 route this class to the self-service station.
Then, E(R∗

1 − R2|A1) = α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)]. By the induction hypoth-

esis of statement (III), α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)] ≤ α[vT,α(nR, nS + 2) −
vT,α(nR+, nS + 3)], where α[vT,α(nR, nS + 2) − vT,α(nR+, nS + 3)] = E(R3 − R∗

4|A1).
Scenario 5 for A1: Assume that the optimal policy routes the arrived customer

of class i to the self-service station at (nR + 1, nS) but to the regular station at
(nR, nS + 2). Let us consider that Process 2 and Process 3 mimic Process 1 and Process
4, respectively. Then, E(R∗

1 − R2|A1) = α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)], where

α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)] = E(R3 − R∗
4|A1).

Scenario 6 for A1: Assume that the optimal policy routes the arrived customer of class i to the
self-service station at (nR + 1, nS) but rejects at (nR, nS + 2). Let us consider that Process 2 and
Process 3 mimic Process 4 and Process 2, respectively. Then, E(R∗

1 − R2|A1) = RS
i + α[vT,α(nR +

1, nS + 1) − vT,α(nR + 1, nS + 1)] = RS
i , where RS

i = RS
i + α[vT,α(nR, nS + 2) − vT,α(nR, nS +

2)] = E(R3 − R∗
4|A1).

Scenario 7 for A1: Assume that the optimal policy rejects the arrived customer of class
i at both (nR + 1, nS) and (nR, nS + 2) states. Let Process 2 and Process 3 reject as well.
Then, E(R∗

1 − R2|A1) = α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)], where α[vT,α(nR + 1, nS) −
vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR, nS + 1) − vT,α(nR, nS + 2)] = E(R3 − R∗

4|A1) holds due to
the induction hypothesis of statement (III).
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Scenario 8 for A1: Assume that the optimal policy rejects the arrived class i at (nR + 1, nS) and
routes to the regular station at (nR, nS + 2). Let us consider that Process 2 and Process 3 mimic
Process 1 and Process 4, respectively. Then E(R∗

1 − R2|A1) = α[vT,α(nR + 1, nS) − vT,α(nR +

1, nS + 1)], by the induction hypothesis of statement (I), α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS +

1)] ≤ α[vT,α(nR + 1, nS + 1) − vT,α(nR + 1, nS + 2)], where α[vT,α(nR + 1, nS + 1) − vT,α(nR +

1, nS + 2)] = E(R3 − R∗
4|A1).

By the induction hypothesis, it is impossible that an optimal policy routes class i to the self-
service at (nR, nS + 2) but rejects at (nR + 1, nS). If it is optimal to not to route class i to the
self-service at (nR + 1, nS), then RS

i < α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)]. By the induc-

tion hypothesis of statement (III), α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR, nS +

1) − vT,α(nR, nS + 2)] and by the induction hypothesis of statement (I), α[vT,α(nR, nS + 1) −
vT,α(nR, nS + 2)] ≤ α[vT,α(nR, nS + 2) − vT,α(nR, nS + 3)]. Then, it is impossible that RS

i +

αvT,α(nR, nS + 3) > αvT,α(nR, nS + 2).
In all decision scenarios possible after observing event A1, we see that we can confirm E(R∗

1 −
R2|A1) ≤ E(R3 − R∗

4|A1).
Now let us look into the case service completion events occur in the first time period. Let

us first consider the service completion event from the regular service station. Let A2 denote this
event.

Scenario 1 for A2: First, let us consider the case that nR > 0 such that all processes can
observe this event. Then, E(R∗

1 − R2|A2) = α[vT,α(nR, nS) − vT,α(nR, nS + 1)] ≤ α[vT,α(nR −
1, nS + 1) − vT,α(nR − 1, nS + 2)] = E(R3 − R∗

4|A2), by the induction hypothesis of statement
(III).

Scenario 2 for A2: Now consider that nR = 0 such that only Process 1 and Process 2 can observe
this event. Then, we will have that E(R∗

1 − R2|A2) = α[vT,α(nR, nS) − vT,α(nR, nS + 1)] where

α[vT,α(nR, nS) − vT,α(nR, nS + 1)] ≤ α[vT,α(nR, nS + 1) − vT,α(nR, nS + 2)] = E(R3 − R∗
4|A2),

by the induction hypothesis of statement (I).
Let us now consider the service completion event from the self-service station. Let A3 denote

this event.
Scenario 1 for A3: First, let us consider the case that nS > 0 such that all processes

can observe this event. Then, E(R∗
1 − R2|A3) = α[vT,α(nR + 1, nS − 1) − vT,α(nR + 1, nS)] ≤

α[vT,α(nR, nS) − vT,α(nR, nS + 1)] = E(R3 − R∗
4|A3), by the induction hypothesis of statement

(III).
Scenario 2 for A3: Now consider the case that nS = 0. For this case, Process 1 can not

observe this event. We have that E(R∗
1 − R2|A3) = α[vT,α(nR + 1, nS) − vT,α(nR + 1, nS)] = 0 ≤

α[vT,α(nR, nS) − vT,α(nR, nS + 1)] = E(R3 − R∗
4|A3), by Lemma 3.1.

Lastly, a dummy transition event might occur due to uniformization, which does not change
the state of any processes. So, the induction hypothesis of statement (III) is sufficient in this case.

Proving Statement (IV): This is a superconvexity property of the value functions. We again
show this with induction on T by sample path arguments. Consider four processes on the same
probability space such that all have T + 1 periods remaining. Let Process 1 and Process 4 start at
(nR, nS + 1) and (nR + 2, nS), respectively, and assume that both processes use an optimal policy
π∗. On the other hand, let Process 2 and Process 3 start at (nR + 1, nS + 1) and (nR + 1, nS). For
these processes, we do not assume that they follow an optimal policy. However, we consider that
after the first time period, all policies follow an optimal policy.

We again let Rk and R∗
k be the random variables denoting the (net) rewards obtained by the

policies that Process k ∈ {1, 2, 3, 4} follows and the rewards that could be obtained if Process k
was following an optimal policy instead, respectively. In order to show that E(R∗

1) − E(R∗
2) ≤

E(R∗
3) − E(R∗

4), it is sufficient to show E(R∗
1) − E(R2) ≤ E(R3) − E(R∗

4) as E(R∗
1) − E(R∗

2) ≤
E(R∗

1) − E(R2) ≤ E(R3) − E(R∗
4) ≤ E(R∗

3) − E(R∗
4).

We now condition on the possible events that might occur in the first time period, by using
the fact that after this event, we have T periods left in the horizon. The first event partitions
the state space. By using the law of total expectation, it suffices to show that E(R∗

1 − R2|An) ≤

https://doi.org/10.1017/S0269964821000073 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000073


OPTIMAL ADMISSION AND ROUTING WITH CONGESTION-SENSITIVE CUSTOMER CLASSES 795

E(R3 − R∗
4|An) for any transition event An. We skip writing the holding costs incurred at the states

(during the first time period) as they cancel out in E(R∗
1 − R2|An) and E(R3 − R∗

4|An) irrespective
of the transition events (Ans).

First focus on arrival events. Let class i be an arbitrary customer class whose arrival we observe
in the first time period. Let A1 denote this arrival event. As we do not know the decisions that
the optimal policy π∗ will take after observing this event at states (nR, nS + 1) and (nR + 2, nS),
below we consider all possible scenarios for the decisions that the optimal policy can take at these
states.

Scenario 1 for A1: Assume that the optimal policy routes the arrived customer of class i to the
regular station at both (nR, nS + 1) and (nR + 2, nS) states. Let us consider that also Process 2
and Process 3 route this class to the regular station. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR +

1, nS + 1) − RR
i − αvT,α(nR + 2, nS + 1)). By the induction hypothesis of statement (IV), we know

that (RR
i + αvT,α(nR + 1, nS + 1) − RR

i − αvT,α(nR + 2, nS + 1)) ≤ (RR
i + αvT,α(nR + 2, nS) −

RR
i − αvT,α(nR + 3, nS)) = E(R3 − R∗

4|A1).
Scenario 2 for A1: Assume that the optimal policy routes the arrived customer of class i to

the regular station at (nR, nS + 1) and to the self-service at (nR + 2, nS) state. Let us consider
that Process 2 and Process 3 mimic Process 1 and Process 4, respectively. Then, E(R∗

1 − R2|A1) =
(RR

i + αvT,α(nR + 1, nS + 1) − RR
i − αvT,α(nR + 2, nS + 1)). We have that RR

i ≥ RR
i , so R∗

1 −
R∗

2 ≤ αvT,α(nR + 1, nS + 1) − RR
i − αvT,α(nR + 2, nS + 1) = E(R3 − R∗

4|A1).
Scenario 3 for A1: Assume that the optimal policy routes the arrived customer of class i to the

regular station at (nR, nS + 1) and rejects at (nR + 2, nS) state. Let us consider that Process 2 and
Process 3 mimic Process 4 and Process 1, respectively. Then, E(R∗

1 − R2|A1) = (RR
i + αvT,α(nR +

1, nS + 1) − αvT,α(nR + 1, nS + 1)). As we assume that RR
i is non-negative always, R∗

1 − R∗
2 ≤

αvT,α(nR + 1, nS + 1) − αvT,α(nR + 1, nS + 1) and by the induction hypothesis of statement

(IV), αvT,α(nR + 1, nS + 1) − αvT,α(nR + 1, nS + 1) ≤ αvT,α(nR + 2, nS) − αvT,α(nR + 2, nS +

1), where αvT,α(nR + 2, nS) − αvT,α(nR + 2, nS + 1) = E(R3 − R∗
4|A1).

Scenario 4 for A1: Assume that the optimal policy routes the arrived customer of class i to
the self-service station at both (nR, nS + 1) and (nR + 2, nS) states. Let us consider that also Pro-
cess 2 and Process 3 route this class to the self-service station. Then, E(R∗

1 − R2|A1) = (RS
i +

αvT,α(nR, nS + 2) − RS
i − αvT,α(nR + 1, nS + 2)). By the induction hypothesis of statement

(IV), αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2) ≤ αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS +

1), where αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS + 1) = E(R3 − R∗
4|A1).

Scenario 5 for A1: Assume that the optimal policy routes the arrived customer of class
i to the self-service station at (nR, nS + 1) and to the regular station at (nR + 2, nS).
Let us consider that Process 2 and Process 3 mimic Process 1 and Process 4, respec-
tively. Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2)). By the induction

hypothesis of statement (IV), αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2) ≤ αvT,α(nR + 1, nS +

1) − αvT,α(nR + 2, nS + 1) ≤ αvT,α(nR + 2, nS) − αvT,α(nR + 3, nS). As RR
i − ri(n

R + 2) ≥ 0,

αvT,α(nR + 2, nS) − αvT,α(nR + 3, nS) = E(R3 − R∗
4|A1).

Scenario 6 for A1: Assume that the optimal policy routes the arrived customer of class i to the
self-service station at (nR, nS + 1) and rejects at (nR + 2, nS) state. Let us consider that Process 2
and Process 3 mimic Process 1 and Process 4, respectively. Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS +

2) − αvT,α(nR + 1, nS + 2). By the induction hypothesis of statement (IV), αvT,α(nR, nS +

2) − αvT,α(nR + 1, nS + 2) ≤ αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS + 1). By the induction

hypothesis of statement (II), αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS + 1) ≤ αvT,α(nR, nS +

2) − αvT,α(nR + 1, nS + 2), where αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2) = E(R3 − R∗
4|A1).

Scenario 7 for A1: Assume that the optimal policy rejects at both states. Let Process 2
and Process 3 reject as well. Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS + 1) − αvT,α(nR + 1, nS +

1) ≤ αvT,α(nR + 1, nS) − αvT,α(nR + 2, nS) = E(R3 − R∗
4|A1), by the induction hypothesis of

statement (IV).
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Scenario 8 for A1: Assume that the optimal policy rejects at (nR, nS + 1) and routes to the
self-service station at (nR + 2, nS). Let us consider that Process 2 and Process 3 mimic Process
1 and Process 4, respectively. Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS + 1) − αvT,α(nR + 1, nS +

1). With the induction hypothesis of statement (II), αvT,α(nR, nS + 1) − αvT,α(nR + 1, nS +

1) ≤ αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2) and with the induction hypothesis of statement

(IV), αvT,α(nR, nS + 2) − αvT,α(nR + 1, nS + 2) ≤ αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS +

1), where αvT,α(nR + 1, nS + 1) − αvT,α(nR + 2, nS + 1) = E(R3 − R∗
4|A1).

Scenario 9 for A1: Assume that the optimal policy rejects at (nR, nS + 1) and routes
to the regular station at (nR + 2, nS). Let us consider that Process 2 and Process 3
mimic Process 1 and Process 4, respectively. Then, E(R∗

1 − R2|A1) = αvT,α(nR, nS + 1) −
αvT,α(nR + 1, nS + 1). With the induction hypothesis of statement (IV), αvT,α(nR, nS + 1) −
αvT,α(nR + 1, nS + 1) ≤ αvT,α(nR + 1, nS) − αvT,α(nR + 2, nS). With the induction hypothe-

sis of statement (II), αvT,α(nR + 1, nS) − αvT,α(nR + 2, nS) ≤ αvT,α(nR + 2, nS) − αvT,α(nR +

3, nS), where αvT,α(nR + 2, nS) − αvT,α(nR + 3, nS) = E(R3 − R∗
4|A1).

In all decision scenarios possible after observing event A1, we see that we can confirm E(R∗
1 −

R2|A1) ≤ E(R3 − R∗
4|A1).

Now let us look into the case service completion events occur in the first time period. Let
us first consider the service completion event from the regular service station. Let A2 denote this
event.

Scenario 1 for A2: First, let us consider the case that nR > 0 such that all processes
can observe this event. Then, E(R∗

1 − R2|A2) = α[vT,α(nR − 1, nS + 1) − vT,α(nR, nS + 1)] ≤
α[vT,α(nR, nS) − vT,α(nR + 1, nS)] = E(R3 − R∗

4|A2), by the induction hypothesis of statement
(IV).

Scenario 2 for A2: Now, let nR = 0 such that Process 1 can not observe this
event. Then, E(R∗

1 − R2|A2) = α[vT,α(nR, nS + 1) − vT,α(nR, nS + 1)] = 0 ≤ α[vT,α(nR, nS) −
vT,α(nR + 1, nS)] = E(R3 − R∗

4|A2), by Lemma 3.1.
Let us now consider the service completion event from the self-service station. Let A3 denote

this event.
Scenario 1 for A3: First, let us consider the case that nS > 0 such that all processes can

observe this event. Then, E(R∗
1 − R2|A3) = α[vT,α(nR, nS) − vT,α(nR + 1, nS)] ≤ α[vT,α(nR +

1, nS − 1) − vT,α(nR + 2, nS − 1)] = E(R3 − R∗
4|A3), by the induction hypothesis of statement

(IV).
Scenario 2 for A3: Now consider that nS = 0 such that only Process 1 and Process 2 can

observe this event. Then, E(R∗
1 − R2|A3) = α[vT,α(nR, nS) − vT,α(nR + 1, nS)] ≤ α[vT,α(nR +

1, nS) − vT,α(nR + 2, nS)] = E(R3 − R∗
4|A3), by the induction hypothesis of statement (V).

Lastly, a dummy transition event might occur due to uniformization, which does not change
the state of any processes. So, the induction hypothesis of statement (IV) is sufficient in this case.

Proving Statement (V): This is the convexity property of the value functions with respect
to the number of customers in the regular station. We show this by induction on the value functions.
We can show the initial induction step by letting v0,α(..) = 0. Then, assuming that (3) holds for
some T and α ∈ [0, 1) and we need to show that (3) also holds for T + 1 and α ∈ [0, 1).

We know that

vT+1,α(nR, nS) − vT+1,α(nR + 1, nS) = RαvT,α(nR, nS) − RαvT,α(nR + 1, nS)

+ αμR(nR)[vT,α(nR − 1, nS) − vT,α(nR, nS)]

+ αμS(nS)[vT,α(nR, nS − 1) − vT,α(nR + 1, nS − 1)]

+ α(μS(cS − nS) + μR(N) − μR(nR + 1))

× [vT,α(nR, nS) − vT,α(nR + 1, nS)] (A.3)
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where RαvT,α(nR, nS) − RαvT,α(nR + 1, nS) is

− h +
∑

i

λi[max[RR
i + αvT,α(nR + 1, nS), RS

i + αvT,α(nR, nS + 1), α(nR, nS)]

− max[RR
i + αvT,α(nR + 2, nS), RS

i + αvT,α(nR + 1, nS + 1), α(nR + 1, nS)]]. (A.4)

We can show this statement by proving that each term in brackets in equation (A.3) is bounded
above by vT+1,α(nR + 1, nS) − vT+1,α(nR + 2, nS). Then, we can be sure that the statement will
hold as the coefficients of these terms sum up to 1.

We first look into the three parts of (A.3) that do not relate to the rewards.

(a) vT,α(nR − 1, nS) − vT,α(nR, nS) ≤ vT,α(nR, nS) − vT,α(nR + 1, nS) ≤ vT,α(nR + 1, nS) −
vT,α(nR + 2, nS) by the induction hypothesis of (V). By Lemma A.1, vT,α(nR + 1, nS) −
vT,α(nR + 2, nS) ≤ vT+1,α(nR + 1, nS) − vT+1,α(nR + 2, nS).

(b) vT,α(nR, nS − 1) − vT,α(nR + 1, nS − 1) ≤ vT,α(nR, nS) − vT,α(nR + 1, nS) by the induc-

tion hypothesis of statement (II). By the induction hypothesis of (V), vT,α(nR, nS) −
vT,α(nR + 1, nS) ≤ vT,α(nR + 1, nS) − vT,α(nR + 2, nS), and finally by Lemma A.1,

vT,α(nR + 1, nS) − vT,α(nR + 2, nS) ≤ vT+1,α(nR + 1, nS) − vT+1,α(nR + 2, nS).

(c) vT,α(nR, nS) − vT,α(nR + 1, nS) ≤ vT,α(nR + 1, nS) − vT,α(nR + 1, nS), by the induction
hypothesis of (V) and we can finally make use of Lemma A.1.

Now check the reward differences. In the notation, we drop the holding cost −h in (A.3),
as it does not affect the conclusions anyway. We show that, for any arbitrary customer class
i, Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) := max[RR

i + αvT,α(nR + 1, nS), RS
i + αvT,α(nR, nS +

1), α(nR, nS)] − max[RR
i + αvT,α(nR + 2, nS), RS

i + αvT,α(nR + 1, nS + 1), α(nR + 1, nS)] is

bounded above by vT+1,α(nR + 1, nS) − vT+1,α(nR + 2, nS).

(a) Consider that it is optimal to route class i to the regular station at both (nR, nS)
and (nR + 1, nS) states. Then, we know that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) =

α[vT,α(nR + 1, nS) − vT,α(nR + 2, nS)]. We know that with Lemma A.1 that α[vT,α(nR +

1, nS) − vT,α(nR + 2, nS)] ≤ α[vT+1,α(nR + 1, nS) − vT+2,α(nR + 2, nS)].

(b) Consider that it is optimal to route class i to the regular station at (nR, nS) but to the
self-service station at (nR + 1, nS). We know that, as it is not optimal to route class i to
the regular station at (nR + 1, nS), Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) ≤ α[vT,α(nR +

1, nS) − vT,α(nR + 2, nS)]. For the rest, we can follow (d).

(c) Similarly, for the case that it is optimal to route class i to the regular station at (nR, nS)
but to reject at (nR + 1, nS), we can infer that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) ≤

α[vT,α(nR + 1, nS) − vT,α(nR + 2, nS)] and follow the lines in (d).

(d) Consider that it is optimal to route class i to the self-service station at both
(nR, nS) and (nR + 1, nS) states. Then, we know that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR +

1, nS) = α[vT,α(nR, nS + 1) − vT,α(nR + 1, nS + 1)]. With the property (IV), we know that

α[vT,α(nR, nS + 1) − vT,α(nR + 1, nS + 1)] ≤ α[vT,α(nR + 1, nS) − vT,α(nR + 2, nS)].

(e) Consider that it is optimal to route class i to the self-service station at (nR, nS) but to the
regular station at (nR + 1, nS). We know that, as it is not optimal to route class i to the self-
service station at (nR + 1, nS), Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) ≤ α[vT,α(nR, nS +

1) − vT,α(nR + 1, nS + 1)]. For the rest, we can follow (g).

(f) Consider that it is optimal to route class i to the self-service station at (nR, nS) but to
reject at (nR + 1, nS). We know that, as it is not optimal to route class i to the self-
service station at (nR + 1, nS), Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) ≤ α[vT,α(nR, nS +

1) − vT,α(nR + 1, nS + 1)]. For the rest, we can follow (g).
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(g) Consider that it is optimal to reject class i at both (nR, nS) and (nR + 1, nS)
states. Then, we know that Ri

αvT,α(nR, nS) − Ri
αvT,α(nR + 1, nS) = α[vT,α(nR, nS) −

vT,α(nR + 1, nS)]. With the induction hypothesis of (V), α[vT,α(nR, nS) − vT,α(nR +

1, nS)] ≤ α[vT,α(nR + 1, nS) − vT,α(nR + 2, nS)] and finally we can use Lemma A.1.

With the induction hypothesis of (V), it is impossible that class i is routed to the regular at
(nR + 1, nS) but rejected at (nR, nS). With the property (II), it is also impossible that class i
routed to the self-service station at (nR + 1, nS) but rejected at (nR, nS).
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