BULL. AUSTRAL. MATH. SOC. VOL. 35 (1987) 267-274

MAZUR'S INTERSECTION PROPERTY OF BALLS

FOR COMPACT CONVEX SETS

J.H.M. WHITFIELD AND V. ZIZLER

We show that every compact convex set in a Banach space X is an intersection of balls provided the cone generated by the set of all extreme points of the dual unit ball B_1^* of X^* is dense in X^* in the topology of uniform convergence on compact sets in X. This allows us to renorm every Banach space with transfinite Schauder basis by a norm which shares the mentioned intersection property.

It was proved by Phelps in [5] that for a finite dimensional Banach space X the set of all extreme points of the dual unit ball B_1^* is dense in the unit sphere $S_1^* \subset X^*$ if and only if X has the following property called here property (CI) :

every compact convex set G in X is an intersection of closed balls.

We extend the necessity part of this result to general Banach spaces (Theorem 1), by using significantly ideas of Giles, Gregory and Sims in [3]. We then prove that every Banach space with a transfinite Schauder

Received 8 April 1986. The authors' research was supported in part by grants from NSERC, Canada and University of Alberta

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00.

basis can be equivalently renormed to have the (CI) property (Theorem 2). This shows that property (CI) is quite a weak condition on X.

It should be pointed out that the research in this area originated with Mazur [4].

In this note Banach spaces will be considered to be real spaces and balls will be assumed closed. If G is a compact convex symmetric subset of a Banach space X, then $||f||_{G}$ will denote the seminorm on X^* defined by $||f||_{G} = \sup f(G)$. The C-topology on X^* will mean the topology of uniform convergence on compact sets in X. For a set $A \in X^*$, the closure of A in the C-topology will be denoted by C-ccAA. If $A \in X$, then $\overline{cs}A$ means the closed convex symmetric hull of A in X. A slice of the unit ball B_1 is a nonempty intersection of B_1 with an open halfspace. If x is an element of the unit sphere $S_1 \in X$, then $D(x) = \{f \in B_1^*; f(x) = 1\}$, where B_1^* stands for the dual unit ball of X^* . If $A \in S_1$, then $D(A) = \bigcup D(x)$. The elements in D(x) will be denoted by f_x , The set of all positive integers is denoted by M. If G is a compact convex symmetric set in X and $A \in X^*$, then the G-diam A means $\sup\{||f-g||_{G}, f,g \in A\}$. If $A \in S_1^* \in X^*$, then the cone generated by A is the set $\{ta, t > 0, a \in A\}$.

We will use the following "compact" version of a Definition in [3], [8]:

DEFINITION 1. If G is a compact convex symmetric set in a Banach space X and $\varepsilon > 0$, we say that a point $x \in S_1 \subset X$ belongs to the set $M_{G,\varepsilon}$ if there is a $\delta > 0$ such that

$$\sup_{\substack{y \in G \\ 0 < t < \delta}} \frac{||x + ty|| + ||x - ty|| - 2}{t} < \varepsilon .$$

With this definition we have, similarly to [3],

LEMMA 1. Let G be a compact convex symmetric set in a Banach space X, $x \in S_1$, $\varepsilon > 0$. Then the following statements are equivalent

(i) $x \in M_{G, \varepsilon}$ (ii) there is a $\delta > 0$ such that

$$G$$
-diam{ $f \in B_1^*$, $f(x) > 1-\delta$ } < ε

(iii) there is a $\delta > 0$ such that

$$G-diam\{\cup D(z), z \in S_{\gamma}, ||z-x|| < \delta\} < \varepsilon$$

Proof. An easy adjustment of that for Lemma 2.1 in [3]. We omit it.

LEMMA 2. Let X be a Banach space, G be a compact convex symmetric subset of X, f be an extreme point of $B_1^* \subset X_1^*$, $\varepsilon > 0$. Then

$$f \in C - clD(M_{G,\varepsilon})$$
.

Proof. Since B_1^* is w^* -compact and the restricted *C*-topology on B_1^* coincides with the restricted w^* -topology, the Theorem on page 107 in [2] asserts that slices determined by functionals from *X* form a neighbourhood base of *f* in the restricted *C*-topology on B_1^* . It means that if $\eta \in (0,\epsilon)$ and G_1 is a compact set in *X*, then there is an $x \in S \subset X$ and $\delta > 0$ such that if

$$S = \{g \in B_1^*; g(x) > 1-\delta\}$$
 and $G_0 = \overline{cs}(G \cup G_1)$,

then

(i)
$$f \in S$$

(ii) G_0 -diam $S < \eta$.

Then $x \in M_{G_0,\eta}$ by Lemma 1. Plainly, $M_{G_0,\eta} \subset M_{G,\varepsilon}$. Furthermore, $\||f_x - f||_{G_0} < \eta$ for any $f_x \in D(x)$ since such an $f_x \in S$.

Therefore

$$\sup(|(f-f_{\gamma})(y)|, y \in G_{\gamma}) < \eta$$

and it follows that $f \in C-cl D(M_{G,\epsilon})$.

THEOREM 1. Let X be a Banach space. Suppose that the cone K generated by the set E of all extreme points of the dual unit ball $B_1^* \subset X^*$ is dense in X^* in the topology of uniform convergence on compact sets in X. Then X has property (CI).

Ο

Proof. An adjustment of that of Lemma 2.2 in [3] ((i) => ii)). We are to show that if for some $f \in S_1^*$ and some compact convex set $G \subset X$ we have $\inf f(G) > 0$, then there is a ball $B \subset X$ such that $B \supset G$ and $0 \notin B$.

Let $\varepsilon = \frac{1}{5} \inf f(G)$ and $G_0 = \overline{cs} G$. Since $C - cl K = X^*$, there is an $h \in E$ and t > 0 such that $||f - th||_{G_0} < \varepsilon$.

By using Lemma 1, we have that there is an $x \in M_{G_0, \varepsilon/t}$ and $f_x \in D(X)$ such that

$$||h - f_x||_{G_0} < \frac{\epsilon}{t}$$
.

Consider the sequence of balls $B_n : B_n$ is centred at $\frac{n\varepsilon}{t}x$ and has radius $\frac{n-1}{t}\varepsilon$; n = 2, 3, ...

Since no B_n contains 0 , it is enough to show that for some $n \in \mathbb{N}$, $B_n^{} \subset G$.

Suppose otherwise and choose $x_n \in G \setminus B_n$, n = 2, 3, ... Let $t_n = \frac{t}{n\epsilon}$.

Then

$$\frac{||x + t_n x_n|| + ||x - t_n x_n|| - 2}{t_n} = \frac{||x + t_n x_n|| - 1}{t_n} + ||x_n - \frac{1}{t_n} x|| - \frac{1}{t_n}$$

$$\geq f_x(x_n) + \frac{n-1}{t} \epsilon - \frac{n\epsilon}{t}$$

$$\geq \frac{1}{t} f(x_n) - ||h - \frac{1}{t} f||_{G_0} - ||h - f_x|_{G_0} - \frac{\epsilon}{t}$$

$$\geq \frac{5\epsilon}{t} - \frac{3\epsilon}{t} = \frac{2\epsilon}{t}.$$

Since $\lim t_n = 0$ and $x_n \in G \subset G_0$, we have a contradiction with

$$x \in M_{G_0, \varepsilon/t}$$

Thus Theorem 1 is proved.

Ο

DEFINITION 2. (see for example [1]). Let X be a Banach space. Let us call a system S_{α} , where the α are ordinals, $1 \le \alpha \le \gamma$, of continuous projections of X a transfinite Schauder-Bessaga basis if

(i)
$$S_1 = 0$$
, $S_\gamma = \text{Identity}$;

(ii)
$$S_{\alpha}S_{\beta} = S_{\beta}S_{\alpha} = S_{\alpha}$$
 if $\alpha \leq \beta$;

(iii) for every $x \in X$, the function $\alpha \rightarrow S_{\alpha} x$ is continuous on ordinals (we use the norm topology on X);

(iv)
$$\dim(S_{\alpha+1} - S_{\alpha})X = 1$$
 for $1 \le \alpha < \gamma$

Before proceeding, let us notice that it follows from (iii) in Definition 2, from the compactness of the segment $[1,\gamma]$ of ordinals and from the Banach Steinhauss uniform boundedness principle, that $\sup_{\alpha} ||S_{\alpha}|| < \infty$.

LEMMA 3. Let X be a Banach space with a transfinite Schauder-Bessaga basis $\{S_{\alpha}\}$, $1 \le \alpha \le \gamma$. Let H be the norm closed linear hull of $\bigcup_{\substack{\alpha < \gamma \\ 1 \le \alpha < \gamma}} (S_{\alpha+1}^* - S_{\alpha}^*)X^*$. Then C-clH = X*.

Proof. Given $f \in X^*$, we prove by transfinite induction that $S^*_{\alpha}f \in C\text{-}c\ell H$ for every $1 \leq \alpha \leq \gamma$.

$$S_{1}^{*}f = 0 \in C-clH$$
. If $S_{\beta}^{*}f \in C-clH$ for all $\beta < \alpha$ and if $\alpha = \beta + 1$ for some $\beta < \alpha$, then

$$S^{*}_{\alpha}f = S^{*}_{\beta}f + (S^{*}_{\beta+1} - S^{*}_{\beta})f \in C-cLH$$

since both summands do. If α is a limiting ordinal, then it follows from (iii) in Definition 2 that

$$\begin{array}{ll}
S^*f &=& \lim S^*f \\ \beta^*\alpha & \beta^*\alpha \\ \beta^*\alpha & \beta^*\alpha
\end{array}$$

in the w^* topology and since $\sup ||S^*_{\alpha}|| < \beta$, also in the C-topology,

$$S^*_{\alpha}f \in C-cl H$$
 .

THEOREM 2. Let X be a Banach space with a transfinite Schauder-Bessaga basis $\{S_{\alpha}\}, 1 \leq \alpha \leq \gamma$. Then there is an equivalent norm on X

which has property (CI).

Proof. For $1 \le \alpha \le \gamma$, choose $e_{\alpha} \in (S_{\alpha+1} - S_{\alpha})X$, $||e_{\alpha}|| = 1$. For simplicity, denote the set of ordinals $1 \le \alpha < \gamma$ by Γ . Consider the map T of X^* into $\ell_{\infty}(\Gamma)$ defined by

$$Tf(\alpha) = f(e_{\alpha})$$
 for $\alpha \in \Gamma$.

Then T is bounded, linear and continuous with respect to w^* -topologies of X^* and $\ell_{\infty}(\Gamma)$. If for some $f \in X^*$, $f(e_{\alpha}) = 0$ for every $\alpha \in \Gamma$, then it follows easily by transfinite induction that $S_{\alpha}^*f = 0$ for every $0 \le \alpha \le \gamma$. Therefore T is a 1-1 map.

Furthermore, if H is the norm closed linear hull of

U $(S_{\alpha+1}^* - S_{\alpha}^*)X^*$, then T maps H into $c_0(\Gamma)$. This follows from $0 \le \alpha < \gamma$ the orthogonality of $(S_{\alpha+1} - S_{\alpha})$ and $(S_{\alpha'+1} - S_{\alpha})$ for $\alpha \ne \alpha'$ (see iii) in Definition 2) and from the boundedness of T.

Let us introduce a dual equivalent norm on X^* by

$$||f||_{1}^{2} = ||f||^{2} + ||Tf||_{D}^{2}$$
,

where ||f|| is the original dual norm on X^* and $||\cdot||_D$ is Day's norm on $\ell_{m}(\Gamma)$ (see for example [6],[7]).

It is well known (see [7] or examine the proof in[6]) that Day's norm is an equivalent norm on $\ell_{\infty}(\Gamma)$ which is locally uniformly convex at every point $x \in c_{\rho}(\Gamma)$ in the following sense:

Whenever $x \in c_0(\Gamma)$ and $x_n \in l_{\infty}(\Gamma)$ are such that

$$\lim_{n} 2\|x\|_{D}^{2} + 2\|x_{n}\|_{D}^{2} - \|x + x_{n}\|_{D}^{2} = 0 ,$$

then $\lim ||x - x_n||_D = 0$.

From this property of $\|\cdot\|_D$ and from standard convexity arguments it follows that if $f \in H$, $f_n \in X^*$ are such that

$$\lim_{n} 2||f||_{1}^{2} + 2||f_{n}||_{1}^{2} - ||f+f_{n}||_{1}^{2} = 0 ,$$

then

$$\lim_{n} ||Tf - Tf_{n}||_{D} = 0.$$

This implies that $\lim_{n \to \infty} (f_n - f)e_{\alpha} = 0$ for every $\alpha \in \Gamma$.

This in particular means that if B_1^* and S_1^* denote the unit ball and the unit sphere of the new dual equivalent norm $||f||_1$ on X^* , then every point of $H \cap S_1^*$ is an extreme point of B_1^* . Therefore the cone K generated by the set of all extreme points of this new B_1^* contains H. By using Lemma 3,

$$C-cl K \supset C-cl H = X^*$$

and Theorem 1 may be used to finish the proof of Theorem 2. \Box

Let us finish the paper by noticing that as in [4], [5], [3], property (CI) has an interesting application stated here as the follow-ing

PROPOSITION 1. Let S be a Banach space with property (CI). Then a sequence $\{x_n\} \subset X$ is norm convergent to $x \in X$ if and only if

- (i) $\{x_n\}$ is relatively norm compact and
- (ii) every closed ball in X which contains infinitely many points of $\{x_n\}$ also contains x .

References

- C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Polish Sci. Publ. Warsaw 1975.
- G. Choquet, Lectures on Analysis, Vol. II, Representation Theory, Edited by J. Marsden, W.A. Benjamin, Inc. 1969.
- [3] J.R. Giles, D.A. Gregory and Brailey Sims, "Characterization of normed linear spaces with Mazur's intersection property", Bull. Austral. Math. Soc. 18 (1978), 105-123.
- [4] S. Mazur, "Uber Schwach Konvergenz in der Raumen (L^p)", Studia Math. 4 (1933), 128-133.
- [5] R.R. Phelps, "A representation theorem for bounded convex sets", Proc. Amer. Math. Soc. 11 (1960), 976-983.
- [6] John Rainwater, "Local uniform convexity of Day's norm on $c_0(\Gamma)$ ", *Proc. Amer. Math. Soc.* 22 (1969), 335-339.

J. H. M. Whitfield and V. Zizler

- [7] John Rainwater, "Day's norm on $c_0(\Gamma)$ ", Various Publ. Ser. No. 8. (1969).
- [8] F. Sullivan, "Dentability, "Smoothability and stronger properties in Banach spaces", Indiana Math. J. 26 (1977), 545-553.

Department of Mathematical SciencesDepartment of MathematicsLakehead UniversityUniversity of AlbertaThunder Bay, OntarioEdmonton, AlbertaCanada P7B 5E1Canada T6G 2G1