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ON THE ORDERS OF PRIMITIVE LINEAR P'-GROUPS

A. GAMBINI WEIGEL AND T.S. WEIGEL

A group G ̂  GLK(V) is called if-primitive if there exists no non-trivial decom-
position of V into a sum of if-spaces which is stabilised by G. We show that if
V is a finite vector space and G a if-primitive subgroup of GLK (V) whose order
is coprime to |V|, we can bound the order of G by |V|log2 (|V|) apart from one
exception. Later we use this result to obtain some lower bounds on the number
of p-singular elements in terms of the group order and the minimal representation
degree.

1. INTRODUCTION

Let G be a finite group and V a finite dimensional K vector space for some field
K. Assume further that V is an irreducible JfG-module and that G is acting faithfully
on V. Similarly to permutation groups, we call the representation <j> : G •—> GLJC{V)

imprimitive if there exist non-trivial subspaces Wi ^ V; i = 1,... ,r of V such that
V = Wi @ ... ®Wr and G is acting on the set { Wi | 1 ^ i ^ r }. Accordingly we
call the representation primitive if the representation is faithful and not imprimitive.
So primitive representations have to be irreducible by definition, but the converse is
not true. A primitive representation can be thought of as a representation for which
Clifford theory cannot be applied to simplify the representation via a permutation
representation.

Our main purpose in the following section is to consider the case where V is a
finite vector space over some finite field F, of characteristic p and G is some finite
p'-group, that is, (\G\ ,p) = 1. An example of this situation is the vector space V = F,
where F = F2n is the extension field of F2 of degree n and G = F* x Aut/ (F), the
semidirect product of the group of units of F with the group of field automorphisms of
F. In this case we have

\G\ = {\V\-l).\og{]V\),

where log : R+ —> R denotes the logarithm function to the base 2, that is, 2lo8(z) = x.
We shall show that asymptotically this is the maximal possible order of a primitive linear
p'-group acting on a finite vector space V.
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496 A.G. Weigel and T.S. Weigel [2]

THEOREM A. Let G be a finite K-primitive linear group acting on a finite vector
space V over some finite field K of characteristic p. Assume further that (\G\ ,p) = 1
and define E :- End*-,- (V). Then

| G K |V|- dimE (V). log (p)

or G ~ Spi{3), K = F7 and V is an irreducible ^.-dimensional KG-module.

Some work has been done on bounding the order of arbitrary primitive linear groups

G in terms of the finite vector space V they are acting on [16]. But in general one

cannot expect to obtain a polynomial bound for \G\. However it was proved by Palfy

that for soluble G one can bound \G\ by |V|3'25 [16].

Also Theorem A may be interesting in itself as it has a nice application. For a

finite group G we define

fi(G) :- min{n 6 N | 3(j> 6 Horn (G,5n), <j> injective }

to be the minimal faithful representation degree of G as a permutation group. An
element of G is called p-singular if its order is divisible by p. Let p be a divisor of the
order of G. Then it is natural to ask what the distribution of p-singular elements looks
like. Let us define

Ap(G):={geG\p\ord(g)}.

In section 3 and 4 we prove the following theorem:

THEOREM B . Let G be a finite group and p a non-trivial prime divisor of \G\.
Then one has

Easy examples show that IP(G) := \G\ /(\AP(G)\) cannot be bounded by a con-
stant, for example, for Gn = {Zp)

n » Zpn_1 one gets Ip{G) = pn. As Gn has exactly
one minimal normal subgroup the minimal faithful permutation representation of Gn

must be transitive. This implies //(Gn) = p n . So the best possible result one can expect
is that IP{G) is bounded by fi(G).

The motivation for describing the distribution of p-singular elements in terms of the
minimal faithful representation degree has its origin in "Computational Group Theory".
Although there exists a polynomial time algorithm for finding elements of order p (see
[11]), this problem is usually solved on computers simply by choosing elements at
random and checking their orders. Simplicity of implementation and success in many
applications justify this treatment. Theorem B gives an explanation for this success.
By choosing fi(G) e many elements there is a 'high' possibility in finding an element
of order p.
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This paper was written while the first author was working on her dissertation [8],
in which she also discussed this problem in detail. Recently the authors have heard of
a similar version of our Theorem by Isaacs, Kantor and Spaltenstein [10] which was
found independently. In our treatment Theorem A is the keypoint for a good reduction
to the almost simple case, while they chose a different approach with the advantage
that they obtained a bound linear in fi{G).

Finally we want to mention that the proofs of Theorem A and Theorem B make
use of the classification of finite simple groups. All notations we shall use are standard;
most of them can be found in [5, 3, or 4].

2. PRIMITIVE LINEAR P ' -GROUPS

The proof of Theorem A will be given in two steps. First we reduce the problem
to the almost simple case, second we prove the assertion for all almost simple groups.
The reduction follows a similar argument to that used in the classification of maximal
subgroups due to Aschbacher [1].

For this we extend the notation of primitive hnear groups to semi-linear groups. For
this let us define TLK(V) := GLK{V). Aut, {K) and PYLK{V) := PGLK(V). Autf(K).
A group G ^ TLK{V) is called K-imprimitive if there exist non-trivial Tf-subspaces
W1}... ,Wn such that V = Wx@...@Wn and G is acting on the set { Wu . . . , Wn }.
Accordingly we call a group K-primitive if such a decomposition does not exist. Sim-
ilarly H ^ PTLK{V) is called K-primitive if G = Z.H is K-primitive on V where
Z:=Z(GLK(V)).

We call the if-primitive group G ^ TLK(V) reduced if

(1) (F*{G))/(Z{G)) is simple and non-abelian,
(2) V is an absolutely irreducible A"F*(G)-module,
(3) V as a XjF*(G')-module is defined over no proper subfield of K.

Here F*(G) denotes the generalised Fitting subgroup of G. The following lemma will
reduce the proof to the almost simple case:

LEMMA 2 . 1 . Let K be a finite Geld of characteristic p. Assume that for every

reduced K-semUinear p'-group H ^ TLK(W) one has

\H\4\W\dimE{W)-log(p)

where E = EndrpH(W0 or H = Sp4(3), K = F7 and W is an irreducible 4-
dimensionaJ KH-module. Then for every K-primitive p'-group G ^ TLK(V) one
has

\G\^\V\dimB,{V)log(p)
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where E' = EndfpG (V) or G = Sp4(3), K = Wj and V is an irreducible 4-dimensional
KG-module.

PROOF: Let G < TLK(V) be a primitive p'-group. Without loss of generality one
may assume Z = Z(GLK(V)) < G. We put

AfG:={N <G\Z <N <GH GLK(V)}.

As G is JiT-primitive there is only one isomorphism type of irreducible JfiV-submodule
of V for each TV 6 Afa • To see this assume that there are two non-isomorphic non-trivial
irreducible .KW-submodules W\, W2 6 IrrKN(V), that is, Wj. ̂ KN W2. AS Z < N
every FpJV-submodule of V is also a ifiV-submodule. This shows also that two KN-
submodules of V are isomorphic as KN-moduies if and only if they are isomorphic
as FpiV-modules. So let X\ (respectively X2) be the homogeneous components of
V that contain the FpJV-submodules Wi (respectively W2). Now one may apply
Clifford theory to the irreducible FpG-module V, the normal subgroup N and the
homogeneous component X\ (see [9, p.565]). This yields V = ® Xf. But by the

G
previously mentioned argument Xf is also a KJV-module and we obtain a contradiction
to the X-primitivity of G. Let us define WN ^ V to be a non-trivial irreducible KN-
submodule of V.

The proof of Lemma 2.1 will be done by induction on (dim^ (V'), \K : ¥p |) endowed
with the lexicograhical order, that is, (2,1) > (1,2).

For dim* (V) = 1 one has G < TLK(K) = K' x Aut/ (K). Let A < Aut/ {K) :=
Im{G —y Aut/ (K)). Then E := EndrpO (K) = Fix,! (K) is the fixed subfield of K
under the action of A. By elementary Galois theory one has \A\ = \K : E\ = dim^ (K)
and the assertion follows in this case.

So assume that the assertion holds for Ko-primitive p'-groups Go ^ TLJC0(VO)

where (dim*0 (Vo),\K0 : ¥p\) < (dimK(V),\K : Fp|).
Assume that there exists a normal subgroup M G Ma with S := EndjfM

K. For all irreducible KM-submodules W G IrrjcM{V) of V one has W C±
and EndifAf (W) ~ 5 . By some standard arguments (see [1, (3.11.)] one has

CGLK{V)(M) ~ GLS{U), for £̂  € Horn™ (WM, V).

So put F" := Z(CGLif(V)(M)) ~ S*, and f := F" U {0} C End/f (V). Clearly F ~
and F is a homogeneous .F-module; in particular V is an F vector space. Let » £ 7
g 6 G, c € C, m,m' G M such that 5m = m'5. Then

v.m(Lg~1cg) = v.g~lm'cg = v.g~lcm'g — v.{^~1cg)m
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and G acts on CQLK{V){M) by conjugation; in particular G acts on F C Endjc {V)

by conjugation Fp-linearly. Let N := ker (G —» Aut/ (F)) be the kernel of this action.
As N ^ CGLK(V)(F*) one gets N < GLF(V). For v 6 V, f G F and G G G
one gets (v.f).g = (v.g).f' and thus G is F-semi-linear, that is, G ^ F Z F ( V ' ) .

But G is if-primitive and therefore F-primitive on V. As (dim^ (V), \F : ¥p\) <

(dim^c (V), \K : ¥p\) we may apply induction. As \F : Yp\ ^ 2 one can exclude the case
(G, V) = (Sp4(3) , (F7)4) . Thus induction implies \G\ < |V| • d i m E ( y ) • log(p). So in
the following we may assume that EndjfAf (Wjf) = K for all M G jVo-

Now assume that V is a reducible ifJV-module for some N £ MG- Let W €
ITTKN{V), W ^V. By the previously mentioned arguments (see [1, (3.11)]) one has

E n d ™ (V) ~ EndK- {U), where P := Horn™ (W, 1 )̂,

and G is acting on CGLK(V)(N) — GLK[U) by conjugation. As V ~ ® Ŵ  one

gets

cGLKm(CGLKmW) = GLK{W),

where GLK(W) is embedded diagonally in GLK(V). Let

= CGLK(V){CGLK(V)(N)) O G G i

~ GLK(W) o GLK(U).

The sign "o"stands for the central product of normal subgroups, that is, AoB is agroup
where A,B < A o B and Af\ B ^ Z(A o B). As G normalises CGLK{V)(N) one has
Go := GnGLK(V) < IT. For H it follows that V ~jfH W®K"^. So V is an absolutely
irreducible Jif^-module and this implies CGLK(V)(H) = Z. But G is also acting on
Z by conjugation with kernel Go. This implies G ^ (GLK(W) o GLK(U)). Aut/ (A"),
where the action of Aut/ (A") is diagonal on GLK{W) and GLK{U). Let

a :G —> TLK(U) =: Hx

0-.G—+ TLK(W) =: H3

be the canonical homomorphisms. Further let A := Im{G —* Aut/ (K)) and r :— \A\.
Then Ga (respectively G&) are .K'-primitive subgroups of Hi (respectively Hi) and
we may apply induction. This yields

and
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or K = Wj and Ga or G& is isomorphic to P5p4(3) and U or W is 4-dimensional.
Let 7 := a x /?. Then the diagram

G » # i x jy2 » ffj

i I
H2 y Autf(K)

commutes and one gets \Ga x G& : G7| > r. This yields

As 2"-1 = 1 + (n - 1) + ("J1) + . . . + 1 ^ n for n G N, one has log(p) ^ \Z\. This
yields for the first case

\G\ ^ 1-^P- • dim* (V®KW)r- \U\ • \W\

and the desired result holds. If Ga = G13 = P5p4(3) and f/ and VK are the 4-
dimensional modules of 5"p4(3) one can check the inequality by an easy calculation.
Now assume that Ga = P5p4(3) and dim^ (U) = 4 and (G^,W) ^ (pSPi(3),(F7)*) .

Then induction implies

Now one uses the estimate |P5p4(3)| ^ 4 • 75 and the fact that dimiy (W) ^ 2. This
implies \W\ • \Ga\ ^ 4 • 75 + d i m^ (w) ^ dim^ {U) • 74 d i m^ (w) and the assertion follows
in this case too. So we may assume that V is an absolutely irreducible if JV-module
for all N eMG.

Now assume that for some N 6 MG , V is defined over some proper subfield
Ko < K, that is, there exists an irreducible KQN'-module W 6 Irrjc0N(V), such that
V ~KN K ®K0 W. As V is an absolutely irreducible if TV-module W has to be an
absolutely irreducible ifoiV-module. The same arguments as in the previous case show
that

End*0,v (V) ~ End*0 (U), for U = Hom*oN (W,V),

and NGLKO(V)(N) ^ CGLKO(V) (CGLKO{V)(N)) O CGLKQ{V){N) =: tf2 off,.

where ^ i := CGLKO{V){N) - GLKo(U). As Z is contained in # ! = CGLK (V){N),
one has F 2 ^ CGLKO(V)(Z) = GLK(V). This implies that (Hi o H2)nGLK(V) = H2o
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(Hi f\GLK{V)). But V is an irreducible A" TV-module and therefore HinGLK(V) = Z.

Thus one has G ^ (Z o GLKo(W)). Aut/ (K), where the action of Aut/ (K) is the

diagonal one. Now define A :— Im(G —> A\itf(K)), AQ := Im(G —> Aut/ (i^o))i

r := |A| and ro := |Ao|. Let <f> : G —» TLKO(W) be the canonical projection. Then

G* has to be a KQ-primitive subgroup of TLKO(W) and we may apply induction as

(dim*, (W), \K0 :¥,])< (dimK(V), \K : F p | ) , that is,

or Ko = F7) G* Ĉ  -P^P4(3), VF ~ (F7)4. But ker(^) = /T* xi D, where
Fix A (Ko); in particular r = |Z}| • ro . In the first case this implies

and using the isotony of the function f(x) = xn/(x — 1) for x ^ 2 this yields the desired
inequality. For G* = 54(3), FF = (F7)4 one can use the estimate |G*| ^ 4-75 to obtain
the assertion in this case. So we may assume that for all N £ MG the if iV-module V
is defined over no proper subfield of K.

Let M be a minimal element of A/G • Then M/Z is characteristically simple and
either elementary abelian or a direct product of copies of some finite non-abelian simple
group X.

Assume that the first case holds and that M/Z ~ (Zj)n. Let L* be the /-Sylow
subgroup of M. Then L* is of symplectic type (see [19, p.75ff]), that is, every abelian
characteristic subgroup is cyclic. Define

L :={g <E L* | ord(5) = / } , for I odd

and L :={g £ L* |ord(5) = 4}, for Z = 2.

Then L is a characteristic subgroup of M of symplectic type of exponent /, (respectively
4). The structure of L and further information concerning Z(L) and Ci4
can be read from the following table (see [13, (4.6.)]):
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structure of L

m times

2/0 o . •. o Lo

m t imes

Ds o ... o Ds

(m-i) times

Ds o .. .o Ds oQs
m times

Z 4 O Z?4 0 . . . 0 £>4

notation

Z2m+1,fodd

nl+2m

Zt 0 21+2m

\Z(L)\

I

2

2

4

CW)(Z(L))

i2m x SP2m(l)

22m x O+m(2)

22m " O,-m(2)

22m x 5P2m(2)

Here Lo denotes the extraspecial group of order I3 and exponent I, Qs the quar-
ternion group and Ds the dihedral group of order 8. The absolutely irreducible rep-
resentations of L over a field of characteristic p ^ I are well known (see [13, Propo-
sition 4.6.3.]): L has \Z(L) — 1| inequivalent absolutely irreducible representations of
degree lm, where 2m = n. Further the smallest field over which they can be re-
alised is Fpe , where e is the smallest integer for which pe = l(mod|Z(i/)|). Now let
Go = Gf\GLK{V). Then

Go ^ NGLK(V)(L) ^ CAut{L)(Z(L)) =: C.

In nearly all cases one has already \C\ < |F | • dim*- (F) log (p). To see this let q = \K\.
Then it follows that

| C | ^ {q - 1) • I2m*+3m <; lm . q2m1+2m+l

Thus for 1^5,1 = 3 and m ̂  4, or I =2 and m ^ 7, one gets 2-m2+2-m+l ^ lm and
therefore C < dim/f (V) • |V|. Similar arguments show that |C| ^ |F | dimK (V) log (p)
provided (l,m,q) ? (3,1,4), (3,1,7), (3,2,4), (2,1,2), (2,2,9) and q = 3,5,7,9;
(2,3,g) and g = 3 , 5 , 7 ; (2,4,3), (2,4,5), (2,5,3).

Let 1 = 3. In all three open cases one easily verifies that

\C\pl^\V\dimK(V)log{p),

where \C\p, denotes the p'-part of the group order of C and thus the assertion
follows in this case. So from now on we may assume that 1 = 2. Let d —
| (Z 4 o2 1 + 2 m ) -A Sp2m{2)\. Then dp, ^ |V| • dim*- (V) • log(p) except the cases
(m,q) = (2,3), (2,5), (2,7), (3,3), (3,5), (4,3). These cases now have to be analysed
one by one.
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Let (m,q) = (2,7). As \Z(L)\ \(q - 1) it follows that \Z(L)\ = 2 and thus

C = Z

in particular \C[ ^ \V\ • dim* (V) • log(p).

Let q = 3. Then the previously mentioned argument shows that

C = 21 + 2 m xi O±m(2)

and \C\3i ^ \V\ • dim/c (V) • log (p) except in the cases

2]f
+6 x O+(2)

2]_+B x O-(2)

Let d*. = max{ |M|p, | M a maximal subgroup of C }. The maximal subgroups of
O£(2) (respectively 0^(2)) can be found in [5] and so d*, can be determined in both
cases. An easy calculation shows that d", ^ | V| • dim f̂ (V) • log (p). This argument can
also be used to handle the cases

G0^Zi0 21+4 x 5p4(2) ^ GI4(5)

Go ^ Z4 o 21+6 xi Sp6(2) ^ GLa{5).

This shows that \G0\ ^ |V| • dim/c (V) • log(p). As |G/G0| = dimE (K) one obtains
the desired result in the case that M/Z is elementary abelian. From now on we may
assume that each N € MG is non-soluble. Let

M/Z = X x ...xX,

t times

where X denotes some finite simple non-abelian group and t ^ 2. Further let Y = Z.X.
As V is an absolutely irreducible K(Y x ... x y)-module, elementary character theory
implies that V ^KM W <S>. • -®W for some absolutely irreducible K Y- module W. As
CGLK{V)(M) = Z it follows that

NGLK{V){M) ~ {NGLK(W){Y) O . -. O NGLK{W)(Y)) X 5 t )

where 5t denotes the symmetric group on t letters. Let B :— NGLK{W){X) O •-• O

NGLK{W){Y) and H := (G0B)/B. Then by assuming tha t G has maximal order it

follows tha t

Gor\B = A0...0A
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for some A < NCLK{,W){Y). As Y ^ A ^ GLK(W) and W is an absolutely irreducible
if ^-module one gets that A is a if-primitive subgroup of GLK{W) and we may apply
induction.

First let us assume that K = F7 , W - (F7)4 and A - Y ~ Z6 o Sp4(3). Then
|Go| ^ (|A"| - l ) | P 5 p 4 ( 3 ) | ' < ! and using the estimates t\ s£ 72' and |PSp4(3)| s£4-75

one gets the desired result.

So let us assume that \A\ ̂  |W\ • dimjc (W) • log (p). Then one obtains

(IJfl-l)1"1

«As before one has log (p) ^ \K\ - 1. Put q := |tf|. If qa ^ qat • t\ for a = dim*
the desired inequality holds. Thus let us define

E:={(q,a,t)e{n6N\n>2} | qa' <qatt\}.

A lengthy but elementary calculation shows that E = { (q,2, 2) | q ̂  2} U {(2,2,3)}.
But for (q,a,t) = (2,2,3) one gets Go ^ Gi2(2) / 5 3 . Thus Go is a (2,3)-group
and therefore soluble. Here "/" denotes the wreath product with the permutation
representation of S3 on 3 letters. Thus this case can be excluded by hypothesis. Let
us assume that (a, f) = (2,2). This implies

G0~(AoA)xZ2^ (GL2(q) o GL2(q)) x Z2

for some non-soluble p'-group A of GLi[q). Now Dickson's Theorem [9, p.213] implies
that X ~ A5 and A ^ 2.5s. In particular the assertion follows for q > 19. The cases
which remain to be considered are values for q such that q = ±l(mod5), (q,60) = 1
and q ^ 19. Thus q = 11 and q = 19 has to be analysed some more. For q = 19 one
can check the desired inequality; for q — 11 one has to use additionally that 2.-4s is
maximal in GZ/2(H) (see [5]).

So if the assertion were false one must have t — 1 and F*(G) = Y for some
quasisimple group Y. So the hypothesis applies. This finishes the proof of the lemma. D

Next we have to show that the assertion of Theorem A holds for reduced primitive
groups. Therefore we define for any finite simple group X and any set M of prime
numbers or zero

RM{X) := min{ n £ N | I - . PGLn(F), F a field with char(F) £ M }

to be the minimal faithful projective representation degree over a field whose charac-
teristic lies in M. For simplicity we write Rp{X) = R{p}(X). We prove the following
lemma:
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LEMMA 2 . 2 . Let X be some finite non-abelian simple group and q = p? some

prime power with (q,\X\) — 1. Then one has

1 • log (p)|Aut (X)\ ^ R0(X)

or X ~ As, At, L3{2), P5p4(3) = VA{2), Ut{3)

PROOF: It suffices to show that |Aut(X)| ^ RQ(X) • p^oW" 1 • log(p), where
P = Px is the smallest prime number not dividing \X\, that is, (p, |X | ) = 1. The proof
now will be done by a case by case analysis of all finite simple groups.

Let X — Ah be an alternating group. Then for k ^ 7 one has Ro{Ak) = k — 1
(see [5, 13, Proposition 5.3.5]). This yields

R0(X) - 1) • (k + I)*"2 fc! = |Aut (X) | .

Thus the desired inequality holds in this case.

Now let X be sporadic. Then from [5] one can determine RQ{X), which is listed

together with px in Table 2.

Table 2.

X

Ro(X)

Px

M n

10

7

M 1 2

10

7

M22

10

13

M23

22

13

M 2 4

23

13

Ji

56

13

J2

6

11

J3

18

7

JA

1333

13

X

Ro(X)

PX

HS

22

13

MCL

22

13

He

51

11

Ru

28

11

Suz

12

17

O'N

342

13

Coi

24

17

Co2

23

13

Coi

23

13

X

PX

Fi22

22

17

Fi23

782

19

Fi'2i

783

19

HN

133

13

Ly

2480

13

Th

248

11

BM

4371

29

M

196883

37

1Then in all cases one can check the inequality |Aut(X)| ^ Ro{X) •

log(px)-
Finally let X be a simple group of Lie type. Now we may apply a theorem of

Landazuri and Seitz [14] which gives a lower bound e(X) for the minimal faithful
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Table 3.

A.G. Weigel and T.S. Weigel [12]

X

L2(s)

Lk{s) fc ^ 3

PSp2k{a),k^ 2 3 odd
s even

Uk(a),k^3 kodd
k even

Pn+k(s),k>4 3^2 ,3 ,5
3 = 2,3,5

pn-k(s),k^4

Pfl2k+i(s),k ^ 3 s odd, s > 5
s = 3,5

Ms)
Et{s)

F4(s) s odd
s even

G,(«)
2^e(3)

3£4(3)

252(5)
2G2(3)

^4(3)

e(X)

a - 1
(2,3-1)

3*"1 - 1

1/2 (3*-1)
1/2 (,»-»-1)(*-1)

(3*-l)/(3 + l)

(a*-1-!)^*"2-!)
s*-2(a*-i_l)

(3*-1+l)(3*-2-l)

s*-i(s*-i_l)

-V-l)
315(32-1)

327(32-l)

3«(32-ir
1/237(SS-1)(3-1)

3(32-l)

3»(32-l)'

3'(32-l)

/777(3-l)

3(3-1)

V^72"34(3-l)

exceptions

X2(4),i2(9)

1-3(2), £,(4)

5P4(2)',5P6(2)

^(2)^4(3)

n+(2)

pnT(3)

F4(2)

G,(3),G,(4)

252(8)

2F4(2)'

The * indicates deviations to the h'st of [14].

projective representation degree in non-natural characteristic. In Table 3 we give an
overview of these lower bounds. The table can be found in this form in [13, Table
5.3.A].

We give a complete proof for the case X ~ Lk(s). The same arguments yield the
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desired result in the other cases. First let k ^ 3. Then Ro{X) ^ a*~J - 1, p = px ^ 5

and |Aut(X) | = |A"| • (fc,5 — 1) • /o - 2 , where a = SJ5° for some prime number so] in

particular one has |Aut (X)\ < ak . Now we claim that

provided (a, k) ^ (2,3). Let us assume that the opposite holds. This yields that there

exist a,k such that a**-*+2 > 5 ' 4 " 1 " 2 or

For k = 3 this implies s2 — 4 • .s + 2 < 0 and thus a = 2 or a = 3. For fc = 4 one
gets s s — 7 - 3 + 5 < 0 and therefore 3 = 2. For k ^ 5 one can use the fact that
f(x) - (a;*"1 - 2)/(x - 1) is isotonic for x ^ 2, and this yields fc2 - fc + 2 > 2* - 4,
a contradiction for k ^ 5. An easy calculation shows that only the case (a,k) = (2,3)
remains and the claim is proved. For X — i/j(4) one can use the character table (see
[5]) to deduce that Ro(L3(4)) = 6 and p = 11. Then one easily checks the assertion of
Lemma 2.2. It remains to consider the case k = 2. First let a > 13. Then 2* > 4 • as

and therefore

I . 5<-»>/» . ( , - i ) . log (p) > 2 - 3 . (a - i) > i . ,» . ( , - i ) ;* |Aut ( * ) | .

As Z2(2) and £2(3) are soluble, £2(4) = I 2 (5) = As, -M7) = i s (2 ) , L2(9) = A6;
only the cases X = L2{8), L2(U), L2(l3) remain. For X = L2(8) one has Ro{X) = 8 ,
px = 5, for A" = I 2 ( l l ) one gets i?o(^) = 5, px = 7 and for X = L2{U), Ro(X) = 6
and p = 5 [5] and the assertion follows by elementary calculations. This proves the
lemma for groups of type At. For finite simple groups of different Lie-type one can use
the estimate e(X) given in Table 3. In these cases one obtains as exceptions the groups
X = PSPi{3) = tf4(2), £/4(3) and fi+(2). D

PROOF OF THEOREM A: Let if be a finite field of characteristic p and let G ^
TLK(V) be a reduced primitive p'-group. Then H := F*(G) ^ GLK{V) is a quasisim-
ple group and V is an absolutely irreducible KH-modvle defined over no proper subfield
of K. Let Go := G D GLK(V) and X := H/Z. Then \G : Go\ ^ \K : Endrp (K) | . As
Go/Z ^ Aut (X) it follows from Lemma 2.2. that either

or H/Z ~ As, A6, L3(2), P5p 4 (3) , J74(3) or fi+(2). Let us assume that

|Aut (H/Z)\ > \K\dim><(v)-' • dimK (V) • log(p).
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Then an easy calculation shows that one of the following must hold:

(i) X = A5, dimjr(V) = 2, 1*1 = 7,11,13,17,

(ii) X = A6, dimjf(V) = 3, |JT| = 7,11,

(iii) X = L2(7) = L3{2), dimjf(V)=3, 1*1=5,

(iv) X = Ui(2) = PSPi(3), dim* 0 0 = 4. | * | = 7,11,13,

dimjr(V) = 5, 1*1 = 7,

(v) jr = J74(3),dimK(V) = 6, 1*1 = 11,13,

(vi) JT = n+(2), dim*(V) = 8 , | * | = l l .

Let X = As. The group As is a subgroup of £2(9) if and only if 5\q or q =
±l(mod5) (see [9, p.213]). So only the case q — 11 remains to be considered. But As
is a maximal subgroup of P f f ^ J l l ) (see [5]) and therefore one gets

|G0| 5* 600 < II2 • 2 • log (11).

The group Ae is not isomorphic to a subgroup of 2>s(7) or £3(11) (see [5]) and
thus we may exclude the case X = Ag. The same holds for L3{2) as £3(2) is not a
subgroup of £3(5) (see [5]).

Let X = PSp4(3). Then PSp4(3) is a subgroup of L4(p) if and only if p =

I(mod6) (see [12]). This excludes the case (n,p) = (4,11). The character table of
GSp4(3) (see [5]) shows that NPGLt<iP){X) = X. Thus one has for (n,p) = (4,13)

|Go| <12-|JC| < 13*-4-log(13).

The character table also shows that NPGLB(I)(X) = X and therefore

| G 0 K 6 - | * | < 7 5 - 5 - l o g ( 7 ) .

Let X = {74(3). 1/4(3) has a projective 6-dimensional representation over an
algebraically closed field of characteristic 0. But the linear representation is only defined
for 6.Ui(3) (see [5]). Thus one has 6||Z| = q - 1 and this excludes the case q = 11.

The character table also shows that (7VpGi6(13)(X))/X is a subgroup of Z2, so one
has

|G0| ^ 2 4 | X | < 1 3 6 - 6 - l o g ( 1 3 ) .

Let X = fl^(2). Then X has a 8-dimensional projective representation over Fn .
But the corresponding linear representation is only defined for 2.f2|J~(2). Thus one has
(NpaLe(u){X))/X = Z2 and this yields

| G o K l 2 - | X | < l l 8 - 8 - l o g ( l l ) .

Thus we have proved the assertion of Theorem A for all reduced primitive groups
and the only exception to the estimate is the group 5p4(3) acting on V = Wy . But then
Lemma 2.1. implies that the estimate holds for all groups except G = 5p4(3) acting
on V = Fj and Theorem A is proved. D
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3. T H E DISTRIBUTION OF P-SINGULAR ELEMENTS IN FINITE GROUPS

In this section we shall prove Theorem B. As in the previous section we divide the

proof in two parts: The first part is a reduction to the almost simple case and in the

second we prove a slightly stronger version of Theorem B for almost simple groups. For

the reduction part we use some well-known result of Easdown and Praeger which will

be stated now.

PROPOSITION 3 . 1 . (See [7, Proposition 1.3.]) Let G be a finite group and N

be an abelian (elementary abelian) normal subgroup of G. Then there exists an abelian

(elementary abelian) normal subgroup L of G containing N having the same prime

divisors as N such that fi(G/L) ^ /*(<?).

For N < G one has \AP{G)\ ^ \N\ • \AP(G/N)\ + \AP(N)\. For this reason

Proposition 3.1. will be an important tool in the reduction step. Let E be some non-

abelian finite simple group. We put Out(E) := (Aut (E))/E. For our purpose we need

the following facts about minimal representation degrees:

PROPOSITION 3.2.

(a) Let H — Ei x ... x Er for some finite non-abelian simple groups E{.

Then one has

(b) Let E be some finite simple group. Then \Out(E)\ 4, n{E)-
(c) Let S be a normal subgroup oi G with

S ~ Ei x ... x Ei x ... x Er x ... x Er,

ni times Tir times

wiere the Ei's are finite simple groups and E{ gk Ej, for all i ^ j .

Assume further that Ca{S) = 1. Then

PROOF: (a) See [7, Theorem 3.1]

(b) By the classification of finite simple groups it suffices to consider a finite simple

group of Lie type G. For p-subgroups P ^ Sn it is shown in [2] that | P / [P ,P ] | ^ pn/p.

This implies that P/(Frat(P)) is elementary abelian of rank less than or equal to

(fi(P))/p. Thus one gets fi(G) ^ p • / • /, where pf = q is the order of the field

of definition and I is the Lie rank of the corresponding simple algebraic group, for
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example, for G = 2B2(2
2k+1) we let / = (2Jfc + l) /2. By a theorem of Steinberg one

knows that |Oui(C?)| = d- f • g, where d denotes the order of the diagonal, / the order
of the field automorphism and g the order of the graph automorphisms. This argument
therefore shows that Out(G) < fi(G) provided G ^ Ai(2k), I ^ 2; 2At(2

k), / ^ 2,
Z?4 (3 ) . For these remaining cases one may consult Table 5.2.A of [13] to verify that

i : = Ei x • x

(c) Put

n; times

Then one has
r r

Aut (S) = J ] Aut (Ni) = J ] Aut (Ei) I Sni.
i = l >=1

This yields

Here the wreath product is build via the canonical permutation representation of Sn

Now applying part (c) one gets

a
We prove the following intermediate result to Theorem B.

LEMMA 3 . 3 . Let G ^ Sn be a Unite group, p a prime divisor of \G\ and n =

(i(G). We assume that for all simple groups X and all almost simple groups F with

X ^ S ^ Aut (X), one has

>
\S\ ^2

for all non-trivia/ prime divisors of \X\. Then one has

\G\ ^

PROOF: Let G < Sym(Cl), \£l\ = n. We proceed by induction on |C?|.
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Assume that G acts intransitively on Q and let B\,... , Bt be the orbits of G.
Then G does not act faithfully on any orbit as |T?;| < n. Further G embeds in the

h
direct product of its transitive constituents, that is, G < Yl {G/G^Bi)) • So there exists

t=i

an t 6 { 1 , . . . ,k} such that p | G / ( G ( B , ) ) | - Using induction we may conclude that

\G/G{Bi)\ " 2 •

and the assertion holds as fi(G) > |B,| ^ ^ ( G ^ ^ ) ) ) . Thus we may assume that G
is acting transitively on Q.

Assume G has an abelian normal subgroup TV whose order is coprime to p. Using
Proposition 3.1 we find an abelian normal subgroup L of G whose order is coprime to
p such that /x(G/X) < t*{G). So induction implies

\AP(G)\ \L\ \AP(G/L)\ 1 1
\G\ " \L\\G/L\ " 2- i^G/L). log (M(G/L)) ^ 2 /x(G) l o g ^ G ) )

and we may assume that Opi{G) = 1.

Now assume that G has an elementary abelian normal p-subgroup TV. By Propo-
sition 3.1. we may assume that fi{G/N) ^ /*(G). If p||G/TV| one concludes as before.
So we may assume that (|TV|, |G/TV|) = 1. By the Schur-Zassenhaus Theorem there
exists a complement C to TV in G. As \C\ is coprime to p, TV is a completely reducible
FpG-module, that is, TV ~ N\ x ... x TV, and each TV< is a minimal FpG-submodule of
TV. If r > 1 then T^ is complementable by U := TV2 x . . . x TVP X C and p\\G/Ni \. As
G/TVi ~U^G, one has fi(G/Ni) ^ /*(G) and one may conclude as before. So r = 1
and TV = Fit(G), the largest nilpotent normal subgroup of G. Let H be the stabiliser
of an element a £ fl.

Assume that M := TV n H ± 1. Then M ^ TV, because Coreo (JT) = 1. TV is a
completely reducible ¥PH-module, so let Mo be an fT-invariant complement of M in
TV. Put U := H • Mo < G and we get |M0| < \G : H\ = n. As ^{U) C ^ ( G ) it
follows that

\H\ |Mo|
\G\ ' \V\ ' \G\ ~ \V\

But p||£/7(Coret/(#))| and

p(U/Coreu(H)) ^ \U : H\ = \M0\.

If we use the fact that \Aj,{U)\ 2 |Coret/(#)| \AP(U/ Corei/ (H))\ and apply the in-
duction hypothesis for U/(Coieu{B)) we get

2.|Mo|-log(|M0|)' n
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and the desired result follows by isotony.

So let us assume that H n N - 1. Then \G\ ̂  \H\ \N\ and n ^ \N\. Since p
does not divide \G/N\, N has a complement 5 in G. Put C = Cs(-W) then we have
C <G and G/C acts faithfully and Fp-linearly on N. Then fJ.(G/C) < |JV| < n and
p| |G/C| . So if C ^ 1 we may apply induction again and obtain the desired result.
Thus we may assume that C = 1. Then N is a faithful and irreducible FpS-module
and it is a well-known fact that S is a subgroup of the wreath product GL(fi,p) I Sr,

where \N\ = pa = pPT [18]. If S does not act Fp-primitively on N one has /? < a.
In this case it follows either (a,p) = (2,2),G ~ J44 and S ~ Z3 acts primitively on
iV ~ Z2 X Z2 or

n = /i(G) ^ r • / < pa < n,

a contradiction. So S is a Wp -linear p'-group acting on the Fp -vector space N and

Theorem A applies. The following two cases arise: Either \S\ < \N\ • log (|iV|) so that

{\N\-l) 1 1
\G\ " \N\ \S\^2-\N\-log(\N\)

or 5 < Ze o 5p4(3) and \N\ = 74.

In the latter case one has 5 ~ A x 5p4(3) where A ~ Z3 or A = 1. From the list
of maximal subgroups of 5p4(3) [5] we conclude that /x(iV x S) = 280 • |A|. From the
character table of 5p4(3) we can read off the characteristic polynomial of the conjugacy
class 3̂ 4. which equals (x2 + x + l)(x — 1) . This shows that for an element g of this
conjugacy class one gets \Cr<f(g)\ = 49 and so one has at least 23040 many elements of
order 21 in JV x 5p4(3). This yields the desired inequality in this case too.

So we may assume that Fit(G) = 1. Let S = soc(G) — L\ x . . . x Lr, where Li

is a minimal non-abelian normal subgroup of G, that is, a direct product of m copies
of a non-abelian simple group Ei- Since the Fitting group of G is trivial, S equals
the generalised Fitting subgroup, in particular CG{S) = 1. If p| |G/S| one can use
Proposition 3.2.(c) and apply induction to obtain the desired inequality. For p | \G/S\

we may assume without loss of generality that p||Li|, in particular p|j2?i|. Put

= Na/Cl(E1C1/C1)

and d/d =

So G/C\ acts transitively and faithfully on the direct factors of L\C\jC\ ~ L\ iso-
morphic to E\, for example,

\G/d\ = \G/d •• N/d\ \Nld\ =

https://doi.org/10.1017/S0004972700015951 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015951


[19] Primitive linear p'-groups 513

Since N/C2 is a quasisimple group containing E1C2/C2 — -Ei we may apply the hy-
pothesis to conclude that

\AP(N/C2)\ y 1
\N/C2\ " 2- fi(E1)

This yields

n,

and the lemma is proved. D

4. THE DISTRIBUTION OF P-SINGULAR ELEMENTS IN QUASISIMPLE GROUPS

The results we prove in this section make use of the classification of finite simple
groups using the completeness of the list, the character tables for some simple groups
as reported in the Atlas, [5], and bounds on the orders of maximal subgroups of the
simple groups. To complete the proof of Theorem B it suffices to prove the following
lemma.

LEMMA 4 . 1 . Let S be a quasisimple group, that is, X ^ 5 ^ Aut (X) and X is
a finite non-abelian simple group. Let p be a prime divisor of \X\. Then the following
inequality holds

\AP(S)\
\S\ " 2

For X ^ A6, Lt+1(q), Ui(5), U^{1), Pn£(4), PQ.t(5) this bound can beimprovedto

\s\
PROOF: The proof of Lemma 4.1 will be done in four steps. First we consider the

case when X is an alternating group. Then X = Ln(q) and X a finite group of Lie
type is treated. Finally we have to look at the 26 sporadic groups.

Let X ~ An • Then for n ^ 6 one has 5 — An, Sn. Each element x G S has a
unique representation as a product of disjoint cycles, that is, x = X\ • • • xr, such that
supp(xi) D supp(xj) = 0 for i ^ j . The prime p divides ord(x) if and only if there
exists an i such that p||stipp(a;;)|. For S = Sn we can count the number of elements

where 3upp(zi) PI supp(x2) = 0) 1 € •supp(xi), ord(zj) — p. One gets

Ap(Sn) >(^l j ) • (p - 1)! • (n - p)! = (n - 1)!.
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With a similar procedure one concludes that Ap(An) > (n — l)/2!. As n(An) = n the
assertion follows in this case. For S ^ Aut (AQ) one uses Ap(Ae) C AP(S).

In the following we consider quasisimple groups 5 where X is a finite group of Lie
type. Therefore we recall some well known facts about finite groups of Lie type. We
use substantially the same notation as in [3] and [4]. Let G be an algebraic group and
F a Frobenius automorphism of G. Then GF will denote the finite group of Lie type
obtained as the fixed point set of F, that is, GF = {g £ G | F(g) — g}. An element
g £ G is called a regular element of G if the dimension of CG(<7) equals the rank of
G, which is the dimension of a maximal torus of G. U

PROPOSITION 4 . 2 . (See [4, (5.1.9)]) Let G be a connected, reductive group

and F a Probenius automorphism of G. Then GF contains (\GF\) /(\(Z°)F g')

regular unipotent elements, where Z° denotes the connected component of the centre

of G, I is the semisimple rank of G and q is defined as in [4, p.35].

PROPOSITION 4 . 3 . (See [4, (6.6.1)]) Let G be a connected, reductive group
and F a Frobenius automorphism of G. Then the number of unipotent elements in

GF is \G%.

Now consider the quasisimple group S where Li+i(q) ^ S ^ Aut (£1+1(9)), q —

Let X = L2(q), q = IT* . A famous theorem of Galois asserts that (i(X) = q + 1,
or X is one of the following [9, p.214]: L2{2), L2{3), L2{5), L2(7), L2(9), L2(ll).
The groups £2(2) and £2(3) are soluble and therefore may be discarded. Further
£2(5) ^ As, L2(9) ~ .4.6 have already been considered. The group L2(7) ~ £3(2) will
be discussed in the next paragraph. Thus the only group which has to be considered
separately is X = .£2(11). In this case one has fi(L2(ll)) = 11.

Therefore let us assume that X = £2(9), 9 7̂  2,3,5,7,9,11. If p = n there exist
(9 + 1) trivial intersecting Sylow p-subgroups of X. So

\AP(X)\ ^ 1 .
\S\ " ( 2 , 9 - 1 ) - / \X\

Let p ^ 7r. Then there exists a cyclic self-centralising subgroup T of order (q + Vj/d

or (9 - I)/d where d-(2,q-l), such that p\\T\. This implies

1 \AP(X)\ >J_ \AP(X)\ 1
' d f ' \ x \ ' { i ) f\S\ " d f \X\

For X = £2(11) one can use the same arguments and this yields

\MS)\> 1
\s\ '
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in this case.

Now assume X = Li+i(q), I > 1, q = 7r'. If one excludes the case X — L±{2) ~ Aa

which was already treated before one gets for / > 1

This result is based on the work of Cooperstein [6] and Patton [17] and is reported in
full detail in [13, Table 5.2.A].

Let p = 7T. As Li+i(q) ~ G f / 2 ( G f ' ) , where G is a simply connected algebraic
group of type Ai, one may apply Proposition 4.3 to deduce that in G F and therefore
in X there are at least |G elements of p-power order. This yields

\ S \ ' 2 - ( q - l , l + l ) - f \ X \ " 2 - f

B u t

and thus
\ S \ " 2 - f

For p ^ 7r we have to consider three cases: (1) p | | .Z (G F ) | , (2) p | ( g - l ) , but
p\ | Z ( G F ) | and (3) p\ (q - 1). Let k - min{m 6 N | p\qm - 1 }. By A we denote a
partition of I + 1 consisting of two integers rj and r2 such that I + 1 = r\ + r2 • To A
there corresponds a decomposition V ~ Vi © V2 , where dimy, (V.) = r,-, for i — 1,2.

Assume that (2) or (3) holds. Then there exists a maximal torus TA of SLt+i(q)
and an element t 6 T\ such that for To := (t):

(a) p|ord(<);

(b) There exist exactly two non-trivial irreducible F9Tb-submodules V\ and V2 of

V such that dimF, (Vi) = r i ;

If fc = 1, that is, p\(q — 1), there exists a cyclic torus T\ corresponding to the
partition A = (1,1) which leaves invariant a vector subspace Vi of dimension / and a
one dimensional subspace V2. With an appropriate base the generator t of the torus
TA corresponds to a matrix of the form

x =

where (a) is a Singer-cycle on Vi (see [9, p.l87f]). V\ and V2 are non-isomorphic
irreducible F97o-submodules of V, and therefore the only non-trivial F,To-submodules
of V.
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If k ^ 2, then p\(qk — l)/(q— 1) and p does not divide qm — 1 for all m < k.
Consider the torus T£ of GLi+i(q) corresponding to the partition A = (k,l + 1 — k):
Let Vi ~ Wqk , I \ ~ Wqk and V2 ^ Wq,+1-k , T2 ~ F t + l _ t and define T£ := Tx x T2.
IfZ + 1 — fc = l we are done with a similar argument as for Jb = 1, so assume k ^ I.
Thus I + 1 — k > 1, in particular T2 D SLi+i-k{q) ^ 1. Denote by t2 a generator of
T2 PI SLi+i-k(q)- So <2 acts irreducibly on V2 . Let tj be an element of order p in the
torus Ti D SLk(q) of SLk(q) • The choice of A; implies that Vi is an irreducible F, (ti)-
module. Let t := tf x tf e TA n 5Lj+i(?). where (a,p) = 1, (/3,ord(t2)) = 1, and
To := (<). Then for all choices of a and /?, Vi and V2 are irreducible F,To submodules
of V. We claim that we can choose a and (3 such that V\ and V2 are non equivalent
F,T0-modules.

IfZ + 1 — k ^ k then obviously Vi is not isomorphic to V2 as an F,To-module. So
assume that /+1 = 2k. There exist (jp — Y)/k non-equivalent irreducible representations
of (ti) . So if V\ —¥qT0 V2 for all choices of a and 0 one gets 1 + k = p. As the images
of To —* G £ F , ( V I ) and To —> GLWq (V2) must have the same order for Vi ~F,To V2

this yields p = {qp~l — l)/(<7 — 1)- So [qp~1 — l)/(<7 — 1) is a prime number and thus
p — 1 is a prime. This implies p — 3, k = 2, q = 2 and X = Li(2) which was
excluded by hypothesis and the claim is proved. Thus in both cases (2) and (3) one
finds a maximal torus T\ := T£ D S-Li+^g) and an element t 6 T\ satisfying (a) and
(b). But if V\ and V2 are the only irreducible F9To-modules it follows easily that
Hom^To (v>v) — F , t ©F,i+i-k and thus CSLF (V)(0 = TA. In particular, if 7 denotes
the image of t in ij+i(g) one has

This yields that

\AP(S)\

and the assertion follows in this case.
Now let p\(q - 1,1 + 1) = \Z(SLi+i(q))\. Let £ denote a primitive p<fc-root of unity

in F, . It suffices to construct a torus T in SLi+i(q) and an element g G T such that
= T , p|ord(5) and (g) D 2(5£i+,(9)) = 1.

Let 1 = 2, then SLs(q) contains a maximally split torus T of order (g — 1) and
)p2|(g — 1) . In this case put

eT.
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As p / 2 one concludes that CsL3(q)(g) = T. It is obvious that {g} C\Z(SLi+i(q)) = 1.
Let I > 2 and consider the field norm N : F*,_t —> F£ . So N is a surjective map whose

kernel has order (g'"1 — l)/(g — 1). Thus by order arguments there exists an element
T £ F?i_i being contained in no proper subfield of F^i-i , such that N(T) = £ - 1 . Put

(i
0
0

0

0
r
0

0
7-9 0

0 T«

.. 0

.. 0

'" ' 0

5 ==

. ) 0 ] ,

Then g £ T\ where T\ is a maximal torus corresponding to the partition A =
(1,1,/ —1). Further we have p|ord(p) and (g) H Z(SLi+i(q)) = 1. As all eigen-
values of g are distinct elements in F,, where F, denotes the algebraic closure of F, , g
is a regular element in G = 5L|+i(F9) , in particular C\SL,+1(J)(<7) = T\. This implies
the assertion also in this case.

Next we consider an arbitrary finite group of Lie type X.

PROPOSITION 4 . 4 . Let G be an algebraic simple, simply connected group of Lie
type over the algebraically closed field F, of characteristic n. Let F : G —> G be a
Frobenius automorphism of G and GF be the corresponding finite group of Lie type.
Let p be a prime divisor of the order of X := GF/Z(GF) . Then

IA.WI ^ i
\Y\ i i i \<

1̂ 1 (9 + 1)
where I denotes the Lie ra.nk of G and q is defined as before.

PROOF: It is a well known fact that an element g £ G F is a 7r-element if and only if
g is unipotent and g is a 7r'-element if and only if g is semisimple.

(1) Let p = 7r. G is a simple algebraic group, so Z°(G) = 1 and Proposition 4.2
yields

\GF\ " q>-

(2) Let p ^ 7r and s be a semisimple element of GF, such that ord(a) = pa for
some a £ N, and s & Z{GF). So Steinberg's Theorem [4, Theorem 3.5.6] implies
that H :— CG(S) is a connected reductive group, in particular H has decomposition:

For [H, H] = 1, H is a maximal torus of G. So H f = CGF (a) is a maximal torus of
and s is a regular semisimple element. It is a well known fact that the order of a
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maximal torus of G F is bounded by (q+ 1) [4, Proposition 3.3.5] and thus we obtain
in this case

\AP(X)\ d 1
1*1 " K 7 ( ) l " p

where d = \Z(GF)\.
If [H,H] ^ 1, H contains regular unipotent elements. Let T\,... ,7* denote the

HF-conjugacy classes of regular unipotent elements in H F and let « i , . . . ,uj. be rep-
resentatives of these classes. From Proposition 4.2 we deduce that

F
9

where / (H) is the semisimple rank of H. Set <Tj := a • «,-, t = 1 , . . . ,fc. For these
elements <Ti we claim that the GF-conjugacy classes S,- := {<rf | g g G F } are disjoint
and that Cap((n) C CGF(S) = H F .

Let g G G F be such that a\ = crj . We find an arbitrary big k £ N such that p\nk — 1

and thus can choose k such that S* = s and u* = u j = 1. Then

and g € C G . F ( S ) = H F . From this we obtain Ti = Tj, a contradiction. The same
argument also shows that CGr(<r,) ^ H F . Thus one even has <?GF(<TI) =
So

But at most d elements in G F have the same image in X. Thus one gets

> ..•_, \Ji\ > ..•_, Ui\ 1 . 1

\X\ . gJ ( H )

and the proposition is proved. D

Let X ^ S ^ Aut (5 ) , where X is a finite simple group of Lie type. We assume further
that X ^ G2(2),2F4(2). Then Proposition 4.4. implies that

\S\ " \Out(E)\ (g + i ) ' -

Bounds for the minimal permutation representation degrees for groups of Lie type were
computed for the classical groups by Cooperstein [6], and by Patton [17], and for the
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X

PSPi,(q)

q odd

2'z
Ee(q)

t*jR I 0 )

hi'ti Q 1

£8(9)

G2{q)

^jr 21 O 1

9 2 ' - l

9 - 1

O — 1

( 0 ~\~ *)\Q — 1 )

9 - 1

9 - 1

93+l
\Q —j— 1 J 1 9 ~l~ 1 J

( Q — ( — l ) I l 9 — ( — 1 ) 1

(92 - 1)

914(*)

92°(*)

927(*)

957(*)

l/696(*)

9T(*)

926(*)

exceptions

ASM*)) = 2'"1 (2' -1)

/x(P5P4(3)) = 27

/i(tA3(5)) = 50

6* ^ '

^(^4(2)') = 1600

The (*) indicates where we give only a lower bound.

exeptional groups in Liebeck and Saxl [15]. We list these bounds in Table 4. Using
these bounds one can verify the inequality

(*)
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for all simple groups of Lie type apart from the following exeptions:

X ~ Ll+1(g),PSPi(3),U3(5),U3(8),t/4(3),t/4(5), £/4(7),U6(2),Pn+(3),Pn+(4),

Groups of tyle At+i were considered before. One can use the character tables in [5] to
show that (*) also holds for 5 provided X = aoc(S) = PSp4(3) , U3(8), Ut(3), U6{2),
Pnj(3). For the remaining groups X ~ t/3(5), l/4(5), tf4(7), P f # ( 4 ) , P^t(5) o n e

easily verifies the estimate

\Out(E)\ (g + l ) f ^ 2 - n(E) • log(^(E)).

Thus it remains to consider X ~ 2F4(2)'. In this case one has fi{X) = 1600 and for
each non trivial conjugacy class C of X one has \C\-p{X) ~£ \X\ and thus the assertion
holds in this case too.

Finally assume that X is sporadic and S a quasisimple group which satisfies X ^
S ^ Aut ( X ) . It is a trivial matter to calculate for each prime dividing |_X"| the number
|>4.p(X)| using the character tables in [5]. There we can also find lists of all maximal
subgroups of most of the sporadic groups. This we can use to calculate the minimal
permutation representation degree for X. For

X ~J4, Fi23, Th, Fi'2i, BM, M

there do not exist complete lists of maximal subgroups, but we can roughly bound the
minimal degree as follows:

1334 as fi(Ji) ^ x ( l ) + 1 f°r all non-trivial irreducible chracters x,

3510 as n{Fi23) ^ fi{Fi22) = 3510,

(i[Th) ^ 249 as fi[Th) ^ x ( l ) + 1 f°r ^ non-trivial irreducible chracters x>

) ^ 2040 3LS fM(Fi'24) ^ fM(He) ^ 2040,

1140000 as /i(BM) ^ p(HN) = 1140000,

H{M) > 1140000 as /x{M) ^ fJ.(HN) = 1140000.

For all simple sporadic groups X and prime divisors p of X one concludes that

1
\S\ '

and this completes the proof of Lemma 4.1. and thus also of Theorem B. D
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