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Abstract. We consider the moduli spaceM of stable principal G-bundles over a compact Riemann
surface C of genus g > 2, G being any reductive algebraic group and give an explicit description of
the generic fibre of the Hitchin mapH : T �

M!K.
If T � G is a fixed maximal torus with Weyl group W , for each given generic element � 2 K

one may construct a W -Galois covering eC of C and consider the generalized Prym variety P =

HomW (X(T ); J( eC)), whereX(T ) denotes the group of characters of T and J(eC) the Jacobian. The
connected component P0 � P which contains the trivial element is an abelian variety. In the present
paper we use the classical theory of representations of finite groups to compute dim P = dimM.
Next, by means of mostly elementary techniques, we explicitly construct a finite map F from each
connected component H�1

(�)c of the Hitchin fibre to P0. In case G = PGl(2) one has that the
generic fibre of F : H�1

(�)c ! P0 is a principal homogeneous space with respect to a product
of (2d � 2) copies of Z=2Z where d is the degree of the canonical bundle over C. However if
the Dynkin diagram of G does not contain components of type Bl, l > 1 or when the commutator
subgroup (G;G) is simply connected the map F is injective.

Mathematics Subject Classifications: 14D20, 32L05, 14F05, 58F07.

Key words: principal G-bundles, generalized Prym varieties.

Introduction

We consider here the moduli spaceM of stable principalG-bundles over a compact
Riemann surface C , with G an algebraic complex group. We denote by K the
canonical bundle over C . In [Hi] N. Hitchin defined an analytic map H from the
cotangent bundle T �M to the ‘characteristic space’ K by associating to each G-
bundle P and section s 2 H0(C; adP 
K) the spectral invariants of s. Hitchin
showed for G = Gl(n);SO(n);Sp(n) that the generic fibre of H is an open set
in an abelian variety A. In fact, he considers in each case a nonsingular spectral
curve S covering C : for G = Gl(n), A is identified with the Jacobian J(S) ; in
the other cases, there is a naturally defined involution on S andA is the associated
Prym variety. More recently, Faltings extended these results and described an
abelianization procedure for the moduli space of Higgs G-bundles, with G any
reductive group (see [F]). If T � G is a fixed maximal torus with Weyl group W ,
one may construct for each given generic element � 2 K a ramified covering eC of
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18 RENATA SCOGNAMILLO

C having jW j sheets. The combined action of W on eC and on the group of one
parameter subgroups of T induces an action on the space of all principal T -bundles
� over eC and we may consider the subvariety bP of those � which areW -invariant in
this sense. The connected component P0 of bP which contains the trivial T -bundle
is an abelian variety. In [F] it is shown that the generic fibre of the Hitchin map
is a principal homogeneous space with respect to a group (namely the first étale
cohomology group ofCwith coefficients in a suitably defined group scheme) which
is isogenous to bP . In the present paper, by means of mostly elementary techniques,
we explicitly construct a map F from each connected component H�1(�)c of
H�1(�) to P0 and show that F has finite fibres. We use the classical theory of
representations of finite groups to compute dimP0 = dimM and conclude that
the image under F of H�1(�)c contains a Zariski open set in P0.

In case G = PGl(2) one can check directly that the generic fibre of F :
H�1(�)c ! P0 is a principal homogeneous space with respect to a product of
(2 �degK�2) copies of Z=2Z. However in case the Dynkin diagram ofG does not
contain components of type Bl, l > 1 or when the commutator subgroup (G;G) is
simply connected the map F is injective.

Such results were announced in our previous paper [Sc], in which we showed that
P0 is isogenous to a ‘spectral’ Prym–Tjurin variety P� for each given dominant
weight �. Results concerning the description of the Hitchin fibre in terms of
generalized Prym varieties were also announced in R. Donagi, Spectral covers,
preprint, alg-geom/9505009 (1995).

1. The Hitchin map for any reductive group

We denote by C a compact Riemann surface of genus g > 2 and by G a reductive
algebraic group over the field of complex numbers. We also write g as the Lie
algebra of G. The moduli space of stable principal G-bundles over C is a quasi-
projective complex variety M with dimM = (g � 1) dimG+ dimZ(G), Z(G)
being the center of G. Note here that semistability for a principal G-bundle P
corresponds to semistability for the holomorphic vector bundle adP associated to
the adjoint representation Ad: G! gl(g) ([A-B], [R]).

We denote by K the canonical line bundle over C . By deformation theory and
Serre duality, a point in the cotangent bundle T �M of M is a pair (P; s) with P a
stable principal G-bundle over C and s a section of the vector bundle adP 
K .
The ring of polynomials on g which are invariant with respect to the adjoint action
is freely generated by homogeneous polynomials h1; : : : ; hk. Each hi induces a
map Hi : adP 
K ! Kdi where di = deghi, and the Hitchin map

H : T �M!K = �k

i=1H
0(C;Kdi)

takes (P; s) to the element inKwhose ith component is the composition ofHi with
s ([Hi]). It is a remarkable fact that the dimension ofK is equal to the dimension of
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M. Moreover the mapH is surjective. This fact can be deduced from the existence
of very stable G-bundles (see [L], [BR], [KP] Lemma 1.4).

We fix once and for all a maximal torus T � G with associated root system
R = R(G;T ) and Weyl group W =NG(T )=T . We also fix a subset R+ � R of
positive roots (or equivalently a Borel subgroupB�T ). If t denotes the Lie algebra
of T , the differential of each root � 2 R induces a map d� : t 
K ! K and the
homogeneous W -invariant polynomials �1; : : : ; �k on t obtained by restriction of
h1; : : : ; hk define a Galois covering

� = (�1; : : : ; �k) : t
K ! �k
i=1K

di

whose discriminant � is given by the zeroes of the W -invariant function
Q
�2R d�.

For generic � 2 K = H0(C;�iK
di), we consider the curve eC := ��(t
K). This

is a ramified covering of C having m = jW j sheets, whose branch locus Ram
satisfies by construction

O(Ram) �= K jRj � K(dimG�rankG): (1.1)

If we indicate by � : eC ! t
K the natural inclusion map, we have by definition,
for each w 2W ,

�(w�) =Ad(nw)�(�); (1.2)

wherenw2 NG(T ) is any representative ofw. Note also that, if � : eC ! C denotes
the projection map, d� � � is a holomorphic section of ��K .

eC �
- t
K

C

�

?

�
- �iK

di

?

As a consequence of our genericity hypothesis, eC has the following properties:

(a) it is smooth and irreducible.
(b) each ramification point p 2 ��1(Ram) has index 1; i.e. is a simple zero for

the section
Q
�2R+(d� � �) : eC ! ��K jRj=2.

This may be checked as follows. Let us denote by �i : Kdi ! C , i = 1; : : : ; k
and q : t
K ! C the projections. Moreover for every i = 1; : : : ; k let us denote by

i : Kdi ! ��

i
Kdi the tautological section. For each iwe consider those sections of

q�Kdi that have the form s = c ���
i

i+q�ai for some c 2 C and ai 2 H0(C;Kdi).

As c varies in C and ai in H0(C;Kdi) the zero divisor of s forms a linear system �i
of divisors in t
K that has no base points since the linear system jKdi j on C has
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no base points. For � = (a1; : : : ; ak) 2 K, the curve eC is defined by the equations
��
i

i = q�ai, i = 1; : : : ; k. One immediately checks that the map

Kdi �! PdimH0(C;Kdi)

x 7�! [
i(x); �
�
i
ai;1(x); : : : ; �

�
i
ai;mi

(x)];

where the ai;j ’s form a basis of H0(C;Kdi) has image of dimension 2 and that
�1 : t 
K ! Kd1 is dominant. By Bertini’s theorem (see [J], Theorem 6.3) the
divisor X1 2 �1 of the section ��1(
1 � ��1a1) = ��1
1 � q�a1 with ai generic
in H0(C;Kdi) is smooth and irreducible. If k > 2, we next consider the linear
system onX1 given by the restriction of �2. Since the polynomial�2 is algebraically
independent from �1 the map �2 jX1 : X1 ! Kd2 is dominant. We use the same
argument as above and from Bertini’s theorem we obtain that the divisor X2 � X1

of the section ��2
2 � q�a2 jX1 with generic a2 is smooth and irreducible. We can
repeat the same argument for the linear system �i jXi�1 for every i 6 k (since
the map �i jXi�1 : Xi�1 ! Kdi is dominant) and thus prove (a). As for the
statement (b) one may consider the restriction of the linear systems above both to
the discriminant locus � and to the locus Z � � where

Q
�2R+ d� vanishes with

multiplicity > 2 (Z = Sing�). Again from Bertini’s theorem one obtains that eC
does not intersect Z and intersects �nZ transversely.

Remark 1.1. For each � 2 R+, let s� 2W denote the corresponding reflection.
As a consequence of condition (b) above we may consider the ramification locus
in eC as a disjoint union: D =

`
�2R+ D�, with D� = fzeroes of d� � �g = f� 2eC j s�� = �g. By our previous considerations D� belongs to the linear system

j��K j. In case G is simple and simply laced, i.e. W acts transitively on the set of
roots R, we may write for each y 2 Ram

��1(y) =
a

�2R+

Dy

�;

where Dy
� := D� \ �

�1(y) is nonempty for every � 2 R+.
If G is not simply laced and has connected Dynkin diagram, R is the union of

two W -orbits R1; R2, each one consisting of roots having the same length. Then
we have

��1(y) =
a

�2R1\R+

Dy

� or ��1(y) =
a

�2R2\R+

Dy

� (1.3)

depending on whether y corresponds to a short or a long root.
More generally, if the Dynkin diagram of G has more than one connected

component, we have as many different ‘kinds’ of fibers

��1(y) =
a

�2Rj\R+

Dy

�
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as are the W -orbits Rj � R. Since for each � 2 R+ we have jD� j= jW j � degK
and each fibre over a branch point consists of jW j=2 points, the number of fibres
which correspond to the same orbit Rj is equal to

nj = jR+
j
j � jW j � degK= 1

2 jW j

= jRj j � degK: (1.4)

Let nowX(T ) be the group of characters of T and consider the groupH1( eC; T )
of isomorphism classes of holomorphic principal T -bundles over eC . Each pair
(�; �) with � a principal T -bundle, � 2 X(T ), defines a line bundle �� � � ��C

and this way H1( eC; T ) is identified with

Pic( eC)
X(T )�;

X(T )� � Hom(X(T );Z) being the dual group. For the same reason, the group of
isomorphism classes of topologically trivial principal T -bundles is a tensor product

J( eC)
X(T )�

(here, as usual, J( eC) denotes the group of divisors with zero degree modulo
linear equivalence). Now, the action of W on the sheets of eC induces an action
on J( eC). On the other hand, W acts by conjugation on T , hence on X(T )�. If
� = D1 
 �1 + � � � + Dl 
 �l is a principal T -bundle over eC and w 2 W an
element of the Weyl group, we set

w� = wD1 

w�1 + � � �+ wDl 


w�l:

DEFINITION 1.1. The generalized Prym varietyP = [J( eC)
X(T )�]W consists
of those isomorphism classes of topologically trivial T -bundles � which satisfy
w� �= � for each w 2W .

Note that P is an algebraic group whose connected component of the identity P0

is an abelian variety.

2. Computing the dimension of P

The following can be deduced from the above mentioned Faltings’ result describing
the generic Hitchin fibre as isogenous to bP = [Pic( eC) 
 X(T )�]W ([F], Theo-
rem III.2) and the fact (due to G. Laumon and proved in [F], Theorem II.5) that all
Hitchin fibers have the same dimension:

PROPOSITION 2.1. The dimension of P is equal to the dimension of M.

In this section we give a direct proof of such statement. If we set S �X(T )
Z C
and denote by H1 the first cohomologyW -representationH1( eC;C), by Doulbault
theorem we have

dimP = 1
2dim[H1 
 S�]W = 1

2dim HomW (S;H1):
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22 RENATA SCOGNAMILLO

We will compute M � dim HomW (S;H1) by use of the classical theory of
representations of finite groups and associated characters (for more details about
this subject, see for example [Se]).

For any W -representation V considered here, we denote by �V : W ! C its
character (for � : W ! Gl(V ) the homomorphism defining the representation, we
have by definition �V (w) = trace(�(w)); 8w 2 W ). By the theory of characters
of finite groups we have

M = h�S ; �H1i; (2.1)

where h ; i is the usual scalar product between characters. If N is the number of
connected components of the Dynkin diagram � of G and h = dimZ(G) we have
a decomposition

S = B � � � � � B| {z }
h

�S1 � � � � � SN ;

where B is the 1-dimensional trivial representation and Si the irreducible reflection
representation corresponding to the ith component of �, i = 1; : : : ; N . Then we
may rewrite (2.1) as

M = hh�B; �H1i+
NX
i=1

h�Si ; �H1i: (2.2)

We observe thatW acts trivially on the cohomology groupsH0( eC;C) �= H2( eC;C) �=
C. Hence the Lefschetz character�L � �H0��H1+�H2 satisfies�L = 2�B��H1

and we have

h�B; �H1i = 2� h�B; �Li; (2.3)

h�Si ; �H1i = �h�Si ; �Li: (2.4)

On the other hand, it is well known (Hopf trace formula, see e.g.[CR]) that the
Lefschetz character satisfies

�L = �eC0 � �eC1 + �eC2 ;

eCn being the free C-module generated by the n-cells of some cellular decomposi-
tion of eC ( eCn �= Hn(K

n;Kn�1; C), with Kj the jth skeleton of eC, j = n; n� 1).
We choose one finite triangulation � of C whose set of vertices contains

all branch points. We denote by Cn the free module generated by the n-cells
of � for n = 1; 2, and by C0

0 and Dj the free modules whose generators are
respectively all vertices not lying in the branch locus Ram and all branch points
corresponding to the same W -orbit Rj � R (see Remark 1.1.). Let N 0 be the
number of W -orbits in R, and for each j = 1; : : : ; N 0 let us fix one positive
root �j 2 R+

j
and set Hj = f1; s�jg � W . We denote by IndW

Hj
(Bj) the W -

representation induced by the 1-dimensional trivial representation Bj of Hj (by
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definition, IndWHj
(Bj) = �[w]2W=Hj

Cv[w] with W acting by u � v[w] = v[uw]). We
have the following isomorphisms of W -modules:

eC2 �= C[W ]
 C2;

eC1 �= C[W ]
 C1;

eC0 �= C[W ]
 C0
0 �

N 0M
j=1

IndWHj
(Bj)
Dj

� C[W ]
 C0
0 �

N
0M

j=1

(IndWHj
(Bj))

nj ;

where C[W ] denotes as usual the regular representation and the nj’s satisfy (1.4).
By Frobenius reciprocity formula we have

h�B; �IndW
Hj

(Bj)
i = h�Bj ; �Bj i = 1;

and since from the general theory each irreducible W -representation occurs as a
subrepresentation of C[W ] as many times as is its dimension, we obtain

h�B; �Li = rkC2 � rkC1 + rkC0
0+ j Ram j= (2� 2g): (2.5)

Analogously, we have

h�Si ; �Li = (rkC2 � rkC1 + rkC0
0 ) dimSi +

N
0X

j=1

njh�Bj ; �resj Sii;

where resjSi denotes the representation obtained by restriction to Hj .
Now, given some positive root � 2 R+, the corresponding reflection s� 2 W

acts trivially on Si whenever � =2 Si, otherwise it acts trivially on one subspace of
codimension 1 in Si. Thus we get

h�Si ; �Li = (rkC2 � rkC1 + rkC0
0 ) dimSi +

X
Rj�Si

nj(dimSi � 1) +

+
X

Rj 6�Si

nj � dimSi

= (2� 2g) dimSi �
X

Rj�Si

nj: (2.6)

By substituting (2.5) and (2.6) respectively in (2.3) and (2.4) and then (2.3) and
(2.4) in (2.2), we finally obtain

M = 2h+ (2g � 2)

 
h+

NX
i=1

dimSi

!
+

N
0X

j=1

nj

= 2h+ (2g � 2) dimT+ j Ram j :

comp3937.tex; 29/10/1997; 7:17; v.7; p.7

https://doi.org/10.1023/A:1000235107340 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000235107340


24 RENATA SCOGNAMILLO

Since dim T+ j R j= dimG, by (1.1) we get

dimP � 1
2M = (g � 1) dimG+ h:

3. The main results

In this section we will define a map F from each connected component of the
generic Hitchin fibre to the abelian variety P0 and study its properties. We first
show how one can associate to each given pair (P; s) 2 H�1(�) a T -bundle
T = T (P; s) which satisfies wT �= T 8w 2W .

For� 2 K generic, let thenP be a principalG-bundle and s 2 H0(C; adP
K)
such that (P; s) 2 H�1(�). We first consider the restriction P0 of P to the open set
C0. Since for every � 2 C0, s(�) 2 g is regular semisimple (for an analysis of the
regular elements in g, see for example [K]), we have a morphism of vector bundles

[s; ] : adP0 ! adP0 
K

whose kernel N is a bundle of Cartan subalgebras in g. We thus have a section


 : C0 ! P=NG(T ) � P �G G=NG(T )

locally defined by 
(�) = �(�)NG(T ) where �(�) 2 G satisfies Ad �(�)t = N� �

cg(s(�)). If we pull back P0 over eC0 we actually have a section

' : eC0 ! ��P0=T (3.1)

locally defined by '(�) = �(�)T where �(�) 2 G satisfies

Ad�(�)(�(�)) = s(�(�)): (3.2)

Thus over eC0 the bundle ��P has a reduction of its structure group to T . Moreover,
from (1.2) we have for each w 2W

'(w�) = �(�)n�1
w T (3.3)

which implies that such T -reduction �0 = '�(��P0) is W -invariant with respect
to the action previously defined. Now if we consider a Borel subgroup B � G
containing T , the inclusion map T ,! B and ' define a section: eC0 ! ��P �G

G=B. Since G=B is a complete variety, by the valuative criterion of properness
this section can be extended to the whole curve eC and we thus obtain (uniquely up
to isomorphisms) a B-reduction PB of the G-bundle ��P such that PB jeC0

is the
B-extension of �0.

If ( ; ) denotes a W -invariant scalar product on X(T ) 
Z R and � 2 R, we
define as usual the one parameter subgroup �0 2 Hom(X(T );Z) by

�0(�) = h�; �i �
2(�; �)
(�; �)

8� 2 X(T ): (3.4)

We want to prove the following:
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THEOREM 3.1. Let �B = �(P; s) be the T -bundle associated to PB via the
natural projectionB ! T . Let us fix one theta characteristic 1

2K and consider the
T -bundle K� =

1
2�

�K 

P

�2R+ �0, where R+ � R is the subset of positive roots
that corresponds to B. Then T (P; s) := �B +K� is W -invariant.

The proof will be organized in a few lemmas. We first observe that since W is
generated by the simple reflections it suffices to show

s��B �= �B + ��K 
 �0 (3.5)

for every simple root �. In fact we have
P

�2R+ s�(�
0) =

P
�2R+

� 6=�

�0 � �0, so, if

relation (3.5) holds, one has s�(�B +K�) �= �B + K�. In terms of line bundles
associated to characters on T , relation (3.5) can be rewritten as

(s��B � �B)�� C �= h�; �i��K 8� 2 X(T ): (3.6)

Given a simple root �, let us denote by s�(B) the Borel subgroup n�Bn�1
� , where

n� 2 NG(T ) represents s�. One analogously obtains another T -bundle �s�(B)

such that �s�(B) jeC0

�= �0 from the completion of �0 to an s�(B)-reduction Ps�(B).
The first lemma treats the relationship between �B and �s�(B).

LEMMA 3.2. We have �s�(B)
�= s��B .

Proof. We consider an open covering fVhgh2H of C over which P and the
canonical bundle K can be trivialized and with the property that each Vh contains
at most one branch point. We choose a Čech covering U = fUhgh2H of eC to be
given by all open sets Uh = ��1(Vh) (by definition each Uh is stable with respect
to the action of W ). For h 2 H we choose frames eh1 ; : : : ; e

h
q for the vector bundle

adP 
K over Vh � C , q being equal to the dimension of g. With respect to this
choice the section s : C ! adP 
K is locally given by ‘coordinates’ sh : Vh ! g
satisfying

sh = Ad ghl � khlsl for Vh \ Vl 6= ;; (3.7)

ghl and khl being transition functions for P , K respectively. Let �h : Uh ! t be
coordinates for � : eC ! t
K . We define J � H to be the subset of those indices
j such that Vj contains a branch point and set I = H n J . For each h 2 H we fix
maps �h : Uh ! G such that, for each i 2 I , �i satisfies

Ad�i(�)(�i(�)) = si(�(�)) (3.8)

(compare with (3.2)) and the 0-chain f�h(�)Bgh2H defines the section b'B : eC !
��P=B completing ' in (3.1). By definition, the B-bundle PB is represented by
the cocycle fbhlg 2 Z1(U ; B) where bhl(�) � �h(�)

�1ghl(�(�))�l(�). Define
fb0

hl
g 2 Z1(U ; s�(B)) by b0

hl
(�) = n�bhl(s��)n

�1
� 8� 2 Uh \ Ul. We have

b0
hl
(�) � n��h(s��)

�1ghl(�(�))�l(s��)n
�1
� , hence fb0

hl
g represents an s�(B)-

reduction of ��P . On the other hand, from (3.3) we have f�i(s��)n�1
� Tgi2I =
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f�i(�)Tgi2I hence fb0
hl
g represents Ps�(B). Now, if we denote by p : B ! T; p0 :

s�(B) ! T the natural projections we have p0 � b0
hl
(�) = n�(p � bhl(s��))n

�1
�

(since every Borel subgroup is a semidirect product of its maximal torus and
its maximal unipotent subgroup). Since fn�(p � bhl(s��))n�1

� g are by definition
transition functions for s��B , we thus have an isomorphism �s�(B)

�= s��B . 2

We keep the notations of the proof of Lemma 3.2. For each positive root � 2 R+,
we shall denote by �h : Uh ! C the coordinates of the section of ��K over eC given
by the composition d� � � (see Section 1). Our next step consists in finding suitable
transition functions bji for PB on intersectionsUi\Uj with j 2 J . Indeed, we will
find suitable maps �j : Uj ! G with j 2 J defining the completed section b'B .
We fix nilpotent generators fX
g
2R+ in the Lie algebra b of B with ad t(X
) =

d
(t)X
 ; 8t 2 t, 8
 2 R+. In general, the completion b'B : eC ! ��P=B of our
' above is locally given by holomorphic maps fj : Uj ! G with j 2 J such that

Ad fj(�)
�1sj(�(�)) = �j(�) +

X

2R+

a
(�)X
 : (3.9)

By Remark 1.1, for j 2 J the setUj is a union of open sets
S
�2R(j)\R+ Uj;� where

R(j) is some W -orbit of roots depending on j and each Uj;� contains only those
ramification points that are zeroes for �j .

LEMMA 3.3. There exists a holomorphic map �j : Uj ! G satisfying for each
� 2 R(j) \R+ and � 2 Uj;�

Ad�j(�)�1sj(�(�)) = �j(�) +X� : (3.10)

Proof. We construct �j separately on each connected component of Uj . By our
genericity hypothesis we may assume for every ramification point p 2 Uj;�

Ad fj(p)
�1sj(�(p)) = �j(p) +X� (3.11)

with �j(p) � d�(�j(p)) = 0.
Let � be the root with minimal height inR+ nf�g such that a�(�) in (3.9) is not

identically zero. The G-valued map cj(�) = exp a�(�)

�j(�)
X� is holomorphic on each

fixed connected component of Uj;� and by evaluating Ad cj(�) on the right-hand
side of (3.9) we get

Ad cj(�)(�j(�) +
X

2R+

a
(�)X
) = �j(�) + a0�(�)X� +
X


2R+nf�g


>�

a
(�)X
 :

By an induction argument we can then assume

Ad fj(�)�1sj(�(�)) = �j(�) + a�(�)X� ; (3.12)
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AN ELEMENTARY APPROACH TO THE ABELIANIZATION OF THE HITCHIN SYSTEM 27

where a�(p) = 1 (since we may multiply fj by a suitable constant in T ). Consider

now the map dj(�) = exp a�(�)�1
�j(�)

X� . Since p is a simple zero for �j , dj is
holomorphic on the connected component of Uj;� containing p. We have

Ad dj(�)(�j(�) + a�(�)X�) = �j(�) +X�

and the claim of our lemma is proved. 2

For each j 2 J , define uj : Uj ! B by uj(�) = exp X�

�j(�)
whenever � 2 Uj;�. We

have

Aduj(�)�1�j(�) = �j(�) +X�: (3.13)

We may represent the completed section b'B by f�h(�)Bg where the �i ’s are as
in (3.8) for every i 2 I and the �j ’s satisfy (3.10) for every j 2 J . By substituting
(3.8) and (3.10) in (3.7) and replacing �j(�)+X� with Aduj(�)�1�j(�) we obtain
transition functions on each nonempty intersection Uj \ Ui

bji(�) � �j(�)
�1gji(�(�))�i(�) = u�1

j
(�)tji(�); (3.14)

where tji : Ui \ Uj ! T is holomorphic (as uj is holomorphic on Ui \ Uj). Since
each element in B can be written uniquely as a product of a unipotent element by
an element in T we have tji = p � bji.

We now compare PB with Ps�(B). By definition we only need to compare them
around the ramification points. As set of nilpotent generators in the Lie algebra of
s�(B) we may choose fX�g�2R+nf�g [fAdn�(X�)g. Thus from Lemma 3.3 we

may define a section b's�(B) : eC ! ��P=s�(B) completing ' by

b's�(B)(�) = �j(�)s�(B) for � 2 Uj n Uj;�;

b's�(B)(�) = �j(s��)n
�1
� s�(B) for � 2 Uj;�;

where the G-valued maps �j satisfy (3.10). From this we see that Ps�(B) and PB
are isomorphic on eC nD� and that on all intersection sets Uj;� \Ui with j 2 J we
have transition functions for Ps�(B) of the form

b0ji(�) = n��j(s��)
�1�j(�)bji(�): (3.15)

If we apply Lemma 3.3 to the set s�(R+) of positive roots corresponding to s�(B)
we obtain on Uj;� \ Ui a factorization b0

ji
(�) = u0

j

�1(�)t0
ji
(�) with u0

j
(�) =

exp Adn�(X�)

��j(�)
= n�uj

�1(�)n�1
� and t0

ji
(�) = p0 � b0

ji
(�) (compare with (3.14)).

Let us denote by I the identity element in G. From (3.15) and Lemma 3.2 a
meromorphic section of s��B � �B is given by a 0-cochain fthgh2H 2 C0(U ; T )
where

th(�) = I whenever h 2 I or h 2 J and � =2 Uj;�; (3.16)

tj(�) = n�uj(�)
�1�j(s��)

�1�j(�)uj(�)
�1 8� 2 Uj;�; j 2 J: (3.17)
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28 RENATA SCOGNAMILLO

By (3.10) on each Uj;� the map hj(�) = �j(s��)
�1�j(�) satisfies

Adhj(�)(�j(�) +X�) = �j(s��) +X� = Adn�(�j(�)) +X�: (3.18)

ChooseX�� 2 g so thatX�;X��; h� := [X�;X��] 2 t generate a Lie subalgebra
h� � g with h� �= sl(2) and d�(h�) = 2. Define

Fj(�) = exp(�j(�)X��) 8� 2 Uj;�:

Since Fj(�) satisfies AdFj(�)(�j(�) +X�) = Adn�(�j(�)) +X�, by (3.18) we
have on Uj;�

�j(s��)
�1�j(�) = Fj(�) � Lj(�); (3.19)

where for each � 2 Uj;�, Lj(�) 2 B lies in the centralizer of �j(�) + X� 2 b.
Note that for q any ramification point in Uj;� we have by definition

Lj(q) = I: (3.20)

In particular the map Lj is holomorphic. Since when � 2 Uj;� is not a ramification
point �j(�) +X� is regular semisimple and by (3.13) one has cg(�j(�) +X�) =

Aduj(�)�1t; the holomorphic T -valued map lj(�) = p � Lj(�) has the form

lj(�) = uj(�)Lj(�)uj(�)
�1: (3.21)

Relation (3.17) becomes

tj(�) = zj(�) � lj(�); (3.22)

where the map zj(�) � n�uj(�)
�1Fj(�)uj(�)

�1 has values in T and is holomor-
phic everywhere in Uj;� but on the ramification points. The connected subgroup
H� � G generated by exp(X�); exp(X��); exp(h�) is isomorphic to a copy of
Sl(2) or PGl(2) in G and one can compute zj(�) directly in terms of two by two
matrices. In the Sl(2) case, denoting by % the isomorphism: H� ! Sl(2), one has
for some c 2 C�

%(zj(�))

= �

 
0 �1

1 0

! 
1 �c=�j(�)

0 1

! 
1 0

�j(�)=c 1

! 
1 �c=�j(�)

0 1

!

= � diag(c�1�j(�); c�j(�)
�1); (3.23)

where �j(�) are the coordinates of the section d� � �, according to our previous

notations. As for H�

%
�= PGl(2) one gets

%(zj(�)) = diag(c�1�j(�); c�j(�)�1); (3.24)
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where the bar indicates the image under the factor map: Gl(2)! PGl(2). Let now
T� � T be the identity component of the subgroup Ker(�) = ft 2 T j �(t) = 1g.
The centralizer Z� in G of T� is a reductive group of semisimple rank 1 having Lie
algebra z = t�CX��CX�� and it is known that such a group is a productT 0�H ,
T 0 being a torus and H being a copy of Sl(2), PGl(2) or Gl(2). The caseH = Sl(2)
is characterized by the group of characters X(T ) being an orthogonal direct sum
Z�1 �X 0, with �1 =

p
�. If we compose any � 2 X 0 with the 0-chain fthgh2H

defined by (3.16) and (3.17) we obtain a nowhere vanishing holomorphic section
of the line bundle (s��B � �B) �� C. If instead we compose �1 to fthgh2H , by
(3.22) and (3.23) we get a holomorphic section of (s��B��B)��1 C having simple
zeroes exactly on the locusD�. Thus relation (3.6) is satisfied (see Remark 1.1).

The case H = PGl(2) is characterized by X(T ) being an orthogonal direct
sum Z� � X 0. For � 2 X 0, we get the same result as for the Sl(2) case. For
� = � we find instead a holomorphic section of (s��B � �B)�� C having zeroes
of multiplicity two on D�. This proves (3.6).

In caseH = Gl(2), we have an orthogonal direct sumX(T ) = X 0�Z�1�Z�2

with � = �1 � �
�1
2 . Composing � 2 X 0 gives us again s��B �� C �= �B �� C

as in the previous cases. If we compose �1 we obtain a holomorphic section of
(s��B � �B) ��1 C having simple zeroes exactly on D�. If we compose �2 we
obtain a meromorphic section of (s��B � �B) ��2 C having simple poles exactly
on D�. Thus relation (3.6) holds also in this case and Theorem 3.1 is proved. 2

We thus have a map

T : H�1(�) ! bP � [Pic( eC)
X(T )�]W ;

(P; s) 7�! �(P; s) +K�:

Note that from (3.5) and Lemma 3.2 T does not depend on the choice of the Borel
subgroup B � T (or of the subset of positive roots in R).

DEFINITION 3.4. Let H�1(�)c be some connected component of H�1(�). For a
fixed point (P 0; s0) 2 H�1(�)c we define F : H�1(�)c ! P0 by

F(P; s) = T (P; s)� T (P 0; s0) � �(P; s)� �(P 0; s0):

Such definition does not depend on our previous choice of the theta characteristic
1
2K . We now want to study the fibers of T . First we make the following

Remark 3.1. For i 2 I , the maps �i(�) in (3.8) are defined up to multiplication
to the right by some holomorphic map mi : Ui ! T . As for j 2 J , any other
holomorphic map�0

j
(�) satisfying (3.10) has the form�0

j
(�) = �j(�)Mj(�)where,

for every � 2 R(j) \R+, Mj : Uj;� ! B is holomorphic and such that Mj(�) 2
cG(�j(�) + X�). If we replace �j and �i with the new maps �0

j
(�) and �0

i
(�) =

�i(�)mi(�), we obtain from (P; s) and B an equivalent cocycle fm�1
h
thimig
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30 RENATA SCOGNAMILLO

representing �B . Since, for every j 2 J and q 2 Uj \ D�, �j(q) + X� 2 b is
regular, we have cG(�j(q) +X�) = T�U�, where T� is the identity component of
Ker(� : T ! C�) and U� is the unipotent 1-dimensional subgroup corresponding
to the root�. Hence the T -valued mapmj(�) := p�Mj(�) � uj(�)Mj(�)uj(�)

�1

satisfies for every � 2 R(j) \R+

�(mj(q)) = 1 8q 2 Uj \ D�: (3.25)

LEMMA 3.5. Let (P; s); (Q; v) be pairs in H�1(�) such that �(P; s) and �(Q; v)
are isomorphic. Let fthlg and fethlg with h; l 2 H be cocycles representing �(P; s)
and �(Q; v) respectively and suppose

ethl = m�1
h
thlml; (3.26)

where the maps mh : Uh ! T are holomorphic and satisfy condition (3.25) for
every j 2 J and � 2 R(j) \R+. Then Q is isomorphic to P and v = s.

Proof. For what concerns P and the construction of �(P; s) we keep the nota-
tions used in the proof of Theorem 3.1. In particular we still consider a Cěch
covering U = fUhgh2H of eC consisting of W -invariant open sets as it was first
defined in the proof of Lemma 3.2. For each nonempty intersection Uh \ Ul we
have transition functions for the B-reduction QB of ��Q having the form:

ebji(�) = e�j(�)�1egji(�(�))e�i(�) = uj(�)
�1etji(�) 8j 2 J; i 2 I; (3.27)

ebhi(�) = e�h(�)�1eghi(�(�))e�i(�) = ethi(�) 8i; h 2 I; (3.28)

where feghlgh;l2H are transition functions for theG-bundleQ and e�i, e�j are defined
analogously as �i and �j in (3.14). For j 2 J , define Mj : Uj ! B by

Mj := u�1
j
mjuj (see Remark 3.1). (3.29)

The hypothesis of the lemma provide that Mj is holomorphic on Uj;� for each
� 2 R(j) \R+ and we have Mj(�) 2 cG(�j(�) +X�) 8� 2 Uj;� by definition of
uj . Define the holomorphic maps

�i = �imie��1
i

8i 2 I and

�j = �jMj e��1
j

8j 2 J:

From (3.27), (3.14) and (3.26) we obtain the equivalence condition between cocy-
cles on eC:

eghl(�(�)) = �h(�)
�1ghl(�(�))�l(�) 8� 2 Uh \ Ul 8h; l 2 H:

The claim of the lemma is then proved provided we show that the maps �l are
invariant with respect to the action of W on the sheets of eC . In fact if we indicate
by fvhgh2H the coordinates of v so that vh = Ad eghl � khlvl, by our definition of
the maps e�l, e�h we have:

Ad�lvl = sl 8l 2 H:
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SinceW is generated by the simple reflections, it suffices to show�l(s��) = �l(�)
for every simple reflection s�. From (3.3) we have for each i 2 I

�i(s��)
�1�i(�) = n�li(�) (3.30)

for suitable holomorphic maps li : Ui ! T . By evaluating the transition functions
thi = ��1

h
ghi�i with h; i 2 I on s�� and replacing �i(s��) with �i(�)li(�)�1n�1

�

and �h(s��) with �h(�)lh(�)�1n�1
� we obtain

thi(s��) = n�lh(�)thi(�)li(�)
�1n�1

� : (3.31)

Analogously, if we define eli : Ui ! T by

e�i(s��)�1e�i(�) = n�eli(�); (3.32)

we have

ethi(s��) = n�elh(�)ethi(�)eli(�)�1n�1
� : (3.33)

By replacing ethi with m�1
h
thimi in both sides of (3.33) and substituting (3.31) in

the left-hand side, we obtain an equality both sides of which contain only factors
with values in T . We cancel thi(�) and obtain

mh(�) � n
�1
� mh(s��)

�1n� � elh(�)�1 � lh(�)

= mi(�) � n
�1
� mi(s��)

�1n� � eli(�)�1 � li(�)

for every � 2 Uh \Ui, i; h 2 I . We can repeat the same calculation on intersection
sets Ui \ Uj with j 2 J and i 2 I . What we need is the analog for j 2 J of the
relations (3.30) and (3.32). On each open set Uj;� the map �j(�) is related with
�j(s��) via the identity (3.19). If for each � 2 R+ n f�g we define n�� 2 N(T )
to be the representative of s� satisfying Adn�;�(X�) = Xs�(�), by construction
of the maps �j in Lemma (3.3) we have for � 2 Uj;�

�j(s��)
�1�j(�) = n�;�Lj(�); (3.34)

where Lj(�) is a suitable element in the centralizer of �j(�)+X� . We analogously
define eLj : Uj ! B 8j 2 J by

e�j(s��)�1e�j(�) = Fj(�)eLj(�) for � 2 Uj;�; (3.35)

e�j(s��)�1e�j(�) = n�;� eLj(�) for � 2 Uj;� with � 6= � (3.36)

and set for each � 2 Uj

lj(�) := p � Lj(�) = uj(�)Lj(�)uj(�)
�1; (3.37)

elj(�) := p � eLj(�) = uj(�)eLj(�)uj(�)�1: (3.38)
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One uses (3.19), (3.35) and the fact that the map zj(�) = n�u
�1
j
(�)Fj(�)u

�1
j
(�)

(see (3.22)) is holomorphic T -valued outside the ramification points (hence it
commutes with any other map with values in T ), to obtain by the same procedure
described above for all pairs of indices h; i 2 I

mj(�) � n
�1
� mj(s��)

�1n� � elj(�)�1 � lj(�)

= mi(�) � n
�1
� mi(s��)

�1n� � eli(�)�1 � li(�)

for each � 2 Uj;� \ Ui. One uses (3.34) and (3.36) to prove the same identity for
all � 2 Uj;� \Ui with � 6= �. In conclusion, the maps mh(�) �n

�1
� mh(s��)

�1n� �elh(�)�1 � lh(�) : Uh ! T with h 2 H are the restriction to Uh of a global
holomorphic map on eC, hence are equal to some constant c. We compute such map
on one ramification point q 2 Uj;�. Since we have lj(q) = elj(q) = I (compare
with (3.20)) and �(mj(q)) = 1 by hypothesis, we obtain c = I, i.e.

mh(s��) = n�mh(�) � lh(�) � elh(�)�1n�1
� 8h 2 H: (3.39)

By use of (3.30), (3.32) and this last identity we find �i(s��) = �i(�) for each
� 2 Ui, i 2 I . As for j 2 J , if � is in Uj;� we have by (3.19) and (3.35), by the
definition of Mj , lj and elj and by (3.39)

�j(s��)

= �i(�)uj(�)
�1lj(�)

�1zj(�)
�1mj(�)lj(�)elj(�)�1zj(�)elj(�)uj(�)e�j(�)�1

= �j(�):

If � is in Uj;� , one proves �j(s��) = �j(�) by using (3.34), (3.36), (3.39) and the
identity (following from the above definition ofn�;�)n�;�uj(s��)n

�1
�;�

= uj(�).2

LEMMA 3.6. Let (P; s); (Q; v) be pairs in H�1(�) such that �(P; s) and �(Q; v)
are isomorphic. Let fthlg and fethlg with h; l 2 H be cocycles representing �(P; s)
and �(Q; v) respectively and write

ethl = m�1
h
thlml (3.40)

for suitable holomorphic maps mh : Uh ! T with h 2 H . Up to multiplying each
mh by one and the same suitably chosen element in T , the following holds:

(i) for each positive root � 2 R+ and q 2 Uj \D� we have �(mj(q)) = �1.
(ii) if for � 2 R+ there exists some character � 2 X(T ) such that

h�; �i = 1; (3.41)

we have �(mj(q)) = 1 8q 2 Uj \ D�.
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Proof. Choose one ramification point q� 2 D� for each � 2 �, q� 2 Uj(�) for
suitable j(�) 2 J . Up to multiplying the maps fmhgh2H by a suitable element in
T we may assume

�(mj(�)(q�)) = 1 8� 2 �: (3.42)

We keep the same notation as before. We consider the maps flhg and felhg, h 2 H
as in (3.30), (3.32), (3.37) and (3.38) and let � be some simple root. From the proof
of Lemma (3.5) one has that the maps mh(�) �n

�1
� mh(s��)

�1n� � elh(�)�1 � lh(�) :
Uh ! T are the restriction of a global holomorphic map on eC . Computing such map
on q� gives us by (3.42) and the fact that we have lj(q) = elj(q) = I 8q 2 D� \Uj

mj(q) � n
�1
� mj(s�q)

�1n� � elj(q)�1 � lj(q) = I 8q 2 D \ Uj; j 2 J (3.43)

and

mj(q) = n�1
� mj(q)n� 8q 2 D� \ Uj ; j 2 J:

By evaluating � : T ! C� on both sides of this last identity we obtain

�2(mj(q)) = 1:

If moreover � satisfies condition (3.41), evaluating � on both sides of the same
identity gives �(mj(q)) = �(mj(q)) � �

�1(mj(q)), or

�(mj(q)) = 1:

The claim of the theorem is thus proved for every simple root. Consider now q 2 D�

with � 2 R+ n�. Note that for q 2 Uj , from the definition of lj and elj and the fact
that Lj(q) and eLj(q) belong to the centralizer in G of �j(q) +X� we have

�(lj(q)) = �(elj(q)) = 1 (3.44)

(compare with (3.25) in Remark 3.1). By evaluating � : T ! C� on both sides of
(3.43) as � runs over all simple roots we obtain �(mj(q)) = �(n�1

� mj(s�q)n�)
8� 2 �, hence

�(mj(q)) = �(n�1
w mj(wq)nw) 8w 2W:

On the other hand, we know that there exist � 2 � and u 2 W with u(�) = �.
We thus have

�(mj(q)) = �(numj(u
�1q)n�1

u ) = �(mj(u
�1q)) = �1: 2

THEOREM 3.7. Suppose G has one of the following properties:

(a) the commutator group (G;G) is simply connected;
(b) the Dynkin diagram of G has no component of type Bl; l > 1.
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Then the map T : H�1(�)! bP is injective.
Proof. In case (G;G) is simply connected the fundamental weights are elements

in X(T ) ; in particular condition (3.41) in Lemma 3.6 is satisfied for every root
� 2 R+ and our claim follows from Lemma 3.5. As for the case G satisfies
condition (b), we see from the Dynkin diagram of all simple groups of type different
from Bl, l > 1 and G2 that for every � 2 R+ there exists another root � with
h�; �i = 1. On the other hand the type G2 is simply connected. 2

THEOREM 3.8. Let a > 1 be the cardinality of the subset A � R+ of those roots
which do not satisfy condition (3.41) in Lemma 3.6. If d denotes the degree of ��K ,
the fibre of T consists of at most 2a(d�1) points.

Proof. Let (P; s) 2 H�1(�), �(P; s) be as in Theorem 3.1 and suppose there
exists a pair (Q; v) 2 H�1(�) such that �(Q; v) �= �(P; s). Let fthlgh;l2H and
fethlgh;l2H be cocycles representing �(P; s) and �(Q; v) respectively and writeethl = m�1

h
thlml for suitable holomorphic maps mh : Uh ! T with h 2 H .

From the proof of Lemma 3.6 we can assume that for a chosen ramification points
q 2 D� , one for each� 2 A, and every other ramification point q 2 D� with � =2 A,
condition �(mj(q)) = 1 (for suitable j 2 J) holds. If (Q; v) is distinct from (P; s),
by Lemmas 3.5 and 3.6 there exists some � 2 A and some p� 2 Uj \ D� (with
suitable j 2 J) such that condition

�(mj(p�)) = �1 (3.45)

is satisfied. Moreover, two pairs for which relation (3.45) holds for exactly the
same set of ramification points coincide by Remark 3.1. 2

From Theorems 3.7 and 3.8 and from Proposition 2.1 we obtain the following

COROLLARY 3.9. The image under F of H�1(�)c contains a Zariski open set in
P0.

3.1. THE PGl(2) CASE

Let � 2 H0(C;K2) be generic. Let P be a PGl(2)-bundle over C and s 2
H0(C; adP 
K) such thatH(P; s) = �. We indicate by pr : Gl(2)! PGl(2) =
Gl(2)=C� the factor map and as maximal torus T � PGl(2) we choose the one
obtained by restricting pr to the maximal torus eT � Gl(2) given by all diagonal
matrices. We also set t = LieT;et = Lie eT . In this setting, eC = ��(t 
K) is a
ramified double covering of C whose ramification divisorD satisfies by definition
O(D) �= ��K .

Let fVhgh2H and fUhgh2H be open coverings of C and eC defined as before.
If fghl : Vh \ Vl ! PGl(2)gh;l2H , are transition functions for P , it is known that
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there exists some rank 2 vector bundle F, hence some principal Gl(2)-bundle eP ,
with transition functions eghl satisfying

pr � eghl = ghl 8h; l 2 H: (3.46)

Moreover, any other rank 2 vector bundle F 0 has the same property if and only
if F 0 �= F 
 L for some line bundle L 2 Pic(C). Note also that this implies
degF � degF 0(mod 2) (since deg(F 
 L) = degF � degL2). For the sake of
simplicity for any F satisfying relation (3.46) we write P = pr(F ). For eP as
above, we clearly have an isomorphism ad eP 
K �= (adP 
K)�K and given
some fixed generic section x : C ! K we may define es 2 H0(ad eP 
 K) byes = s � x. We set e� = HGl(2)(

eP ; es) 2 H0(C;K �K2) (the subscript indicating

that we are in the Gl(2) setting) and observe that the covering e��(et 
 K) of C
coincides with eC . Then it is clear from the argument above that we have a surjective
map

‘pr’ : H�1
Gl(2)(

e�)!H�1
PGl(2)(�):

This also shows that H�1
PGl(2)(�) has two components H�1

PGl(2)(�)0, H�1
PGl(2)(�)1 :

namely (Q; v) 2 H�1
PGl(2)(�) is contained in H�1

PGl(2)(�)0 orH�1
PGl(2)(�)1 depending

on the parity of the degree of those F which satisfy pr(F ) = Q.
We now look at our construction in the Gl(2) case. If we indicate by �1 and �2

the coordinate functions on eT and set e� = �1 ��
�1
2 , � = se�, we have by definition

PGl(2) = fQ
 �01 � ��Q
 �02 j Q 2 J( eC)g � J( eC)
(the one parameter subgroups�0

i
being defined by �i(�0j) = (�i; �j); j = 1; 2) and

bPGl(2) = Pic( eC):
The map T : H�1

Gl(2)(
e�) ! Pic( eC) is injective (see Theorem 3.7), dominant and

by Hitchin’s theory (see [Hi]) it preserves the parity of the degrees. By the argu-
ment above the generic fibre of the map ‘pr’ is a principal homogeneous space
with respect to � = fM 2 Pic( eC) j M = ��L;L 2 Pic(C)g: In this setting
the map �� : Pic(C) ! Pic( eC) is injective (since eC ! C is a ramified cover-
ing: see e.g [M]), hence � coincides with Pic(C). Since Pic( eC)even=Pic(C) and
Pic( eC)odd=Pic(C) are both principal homogeneous spaces with respect to the con-
nected group J( eC)=J(C), it follows that the componentsH�1

PGl(2)(�)0,H�1
PGl(2)(�)1

are connected. Now, let �0 be the one parameter subgroup in T � PGl(2) given by
composing pr with �01 (we have X(T )� = Z�0). By definition, we have bPPGl(2) =

PPGl(2) = fQ 
 �0 j Q 2 J( eC); ��Q �= Q�1g and, since �� : J(C) ! J( eC) is

injective, this is just the Prym variety P ( eC; �) � J( eC). From Theorem 3.1 theeT -bundle e� = �( eP ; es) has transition functions thl : Uh \ Ul ! eT of the form

thl(�) = diag(qhl(�); �
�qhl(�) � khl(�(�))):
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One can easily check that the maps

pr � thl(�) = qhl(�) � �
�qhl(�)

�1 � khl(�(�))
�1 : Uh \ Ul ! C�

are transition functions for � = �(P; s). In other words, if we use the additive
notation, we have TPGl(2)(P; s) = (1 � ��) � TGl(2)(

eP ; es). Moreover, if eP 0 is
another Gl(2)-bundle inducing via the factor map pr the same PGl(2)-bundle
P , we have that �( eP 0; es) has transition functions thr(�) � lhr(�(�)), where flhr :
Vh\Vr ! C�gh;r2H define some line bundleL overC . We thus have the following
commutative diagram:

Pic( eC) (1���)
- P ( eC; �)

H�1
Gl(2)(

e�)

TGl(2)

6

‘pr’
- H�1

PGl(2)(�)0

a
H�1

PGl(2)(�)1

6

TPGL(2)

If we set �0 = fN 2 Pic( eC) j N = ��Ng, we see that all sufficiently general
fibres of the dominant map TPGl(2) are principal homogeneous spaces with respect
to �0=�. It is known (see [M]) that�0=� is isomorphic to (Z=2Z)(d�1), d being the
number of ramification points of eC or, in this setting, the degree of ��K . Note here
that the number of Z=2Z factors reaches its maximum with respect to the estimate
given in Theorem 3.8. Since each component H�1

PGl(2)(�)c, c = 0; 1, is connected,

we have that the generic fibre of F : H�1
PGl(2)(�)c ! P ( eC; �) consists of 2(d�2)

points.
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[L] Laumon, G.: Un analogue global du cône nilpotent, Duke Math. J. 57 (1988), 647–671.
[M] Mumford, D.: Prym Varieties I. In Contributions to analysis, L.V. Ahlfors (eds), pp. 325–350,

New York, London, Academic Press, 1974.
[R] Ramanathan, A.: Stable principal bundles on a compact Riemann surface, Math. Ann. 213

(1975), 129–152.
[Sc] Scognamillo, R.: Prym-Tjurin varieties and the Hitchin map, Math. Ann. 303 (1995), 47–62.
[Se] Serre, J. P.: Linear Representations of Finite Groups, New York, Springer-Verlag, 1977.

comp3937.tex; 29/10/1997; 7:17; v.7; p.21

https://doi.org/10.1023/A:1000235107340 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000235107340

