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Abstract. We consider the moduli space M of stable principa G-bundles over a compact Riemann
surface C' of genus g > 2, G being any reductive algebraic group and give an explicit description of
the generic fibre of the Hitchinmap H: T" M — K.

If T C G isafixed maximal torus with Weyl group W, for each given generic element ¢ € K
one may construct a W-Galois covering C' of C' and consider the generalized Prym variety P =

Homw (X (T'), J(C)), where X (T") denotesthe group of charactersof 7" and J (C') the Jacobian. The
connected component Po C P which contains the trivial element is an abelian variety. In the present
paper we use the classical theory of representations of finite groups to compute dim P = dim M.
Next, by means of mostly elementary techniques, we explicitly construct a finite map F from each
connected component H~*(¢). of the Hitchin fibre to Po. In case G = PGI(2) one has that the
generic fibre of F: H~(¢). — Po is a principal homogeneous space with respect to a product
of (2d — 2) copies of Z/2Z where d is the degree of the canonical bundle over C. However if
the Dynkin diagram of G does not contain components of type B;, [ > 1 or when the commutator
subgroup (G, G) is simply connected the map F isinjective.

M athematics Subject Classifications: 14D20, 32L05, 14F05, 58F07.

Key words: principal G-bundles, generalized Prym varieties.

I ntroduction

We consider herethe moduli space M of stable principal G-bundlesover acompact
Riemann surface C, with G an agebraic complex group. We denote by K the
canonical bundle over C'. In [Hi] N. Hitchin defined an analytic map #H from the
cotangent bundle 7 M to the ‘characteristic space’ K by associating to each G-
bundle P and section s € H°(C,ad P ® K) the spectral invariants of s. Hitchin
showed for G = Gl(n), SO(n), Sp(n) that the generic fibre of # is an open set
in an abelian variety A. In fact, he considers in each case a nonsingular spectral
curve S covering C : for G = Gl(n), A isidentified with the Jacobian J(S) ; in
the other cases, thereis anaturally defined involution on S and A is the associated
Prym variety. More recently, Faltings extended these results and described an
abelianization procedure for the moduli space of Higgs G-bundles, with G any
reductive group (see [F]). If T C G is afixed maximal torus with Weyl group W,
one may construct for each given generic element ¢ € K aramified covering C' of

https://doi.org/10.1023/A:1000235107340 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000235107340

18 RENATA SCOGNAMILLO

C' having || sheets. The combined action of W on C and on the group of one
parameter subgroups of 7" induces an action on the space of all principal 7'-bundles
7 over C' and we may consider the subvariety P of thoser whichare W -invariantin
this sense. The connected component P, of 7 which contains the trivial 7-bundle
is an abelian variety. In [F] it is shown that the generic fibre of the Hitchin map
is a principal homogeneous space with respect to a group (namely the first étale
cohomology group of C with coefficientsin asuitably defined group scheme) which
isisogenousto P. In the present paper, by means of mostly el ementary techniques,
we explicitly construct a map F from each connected component #~1(¢).. of
H~1(¢) to Py and show that F has finite fibres. We use the classical theory of
representations of finite groups to compute dim?Py = dim M and conclude that
the image under F of #~1(¢).. contains a Zariski open set in Po.

In case G = PGI(2) one can check directly that the generic fibre of F :
H~Y($). — Po is a principal homogeneous space with respect to a product of
(2-deg K — 2) copiesof Z /2Z . However in casethe Dynkin diagram of G does not
contain components of type By, [ > 1 or when the commutator subgroup (G, G) is
simply connected the map F isinjective.

Such resultswereannounced in our previous paper [ Sc], in whichwe showed that
Po is isogenous to a ‘spectral’ Prym—Tjurin variety P, for each given dominant
weight A. Results concerning the description of the Hitchin fibre in terms of
generalized Prym varieties were also announced in R. Donagi, Spectral covers,
preprint, alg-geom/9505009 (1995).

1. TheHitchin map for any reductive group

We denote by C a compact Riemann surface of genusg > 2 and by G areductive
algebraic group over the field of complex numbers. We also write g as the Lie
algebra of G. The moduli space of stable principal G-bundles over C is a quasi-
projective complex variety M withdimM = (g — 1)dmG + dimZ(G), Z(G)
being the center of G. Note here that semistability for a principa G-bundle P
corresponds to semistability for the holomorphic vector bundle ad P associated to
the adjoint representation Ad: G — gl(g) ([A-B], [R]).

We denote by K the canonical line bundle over C'. By deformation theory and
Serre duality, a point in the cotangent bundle 7% M of M isapair (P, s) with P a
stable principal G-bundle over C' and s a section of the vector bundlead P ® K.
Thering of polynomials on g which are invariant with respect to the adjoint action
is freely generated by homogeneous polynomials kg, ..., hy. Each h; induces a
map H;: ad P ® K — K% where d; = degh;, and the Hitchin map

H:T*M — K =af HY(C,K%)

takes (P, s) tothe element in K whose ith component i sthe composition of #; with
s ([Hi]). It isaremarkabl e fact that the dimension of K isequal to the dimension of
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M. Moreover the map # issurjective. Thisfact can be deduced from the existence
of very stable G-bundles (see[L], [BR], [KP] Lemma 1.4).

We fix once and for all a maximal torus T' C G with associated root system
R = R(G,T) and Weyl group W =N (T)/T . We also fix asubset RT C R of
positiveroots (or equivalently aBorel subgroup B O T). If t denotestheLiealgebra
of T, the differential of eachroot o € R inducesamap da: t ® K — K and the
homogeneous W -invariant polynomials o1, . . ., o3 ont obtained by restriction of
hi, ..., hy definea Galois covering

g=(01,...,04): t® K — @F_ K%

whose discriminant = is given by the zeroes of the W -invariant function [, c z do.
For generic ¢ € K = HO(C, ®; K%), weconsider thecurve C := ¢*(t® K). This
is a ramified covering of C' having m = |W| sheets, whose branch locus Ram
satisfies by construction

O(Ram) = K = g(@mG-raka) (11)

If weindicate by .: C — t @ K the natural inclusion map, we have by definition,
foreachw € W,

t(wn) =Ad(rw)e(n), (1.2)

wheren,, € N¢(T') isany representativeof w. Notealso that, if 7: C — C denotes
the projection map, da o « is aholomorphic section of 7* K.

C ! s t@ K

As a consequence of our genericity hypothesis, C' has the following properties:

(@) it issmooth and irreducible.
(b) each ramification point p € 71*1(Ram) has index 1; i.e. is a simple zero for
the section [ ,c g+ (da o t): C — m* K IEI/2,

This may be checked asfollows. Let usdenote by 7;: K% — C,i=1,...,k
andq: t® K — Ctheprojections. Moreover foreveryi = 1,. .., k let usdenote by
i+ K% — ¥ K% thetautological section. For eachi we consider those sections of
q* K% that havetheform s = c-o}v; +q*a; for somec € Canda; € HO(C, K%).
Ascvariesin C anda; in H(C, K% ) the zero divisor of s formsalinear system §;
of divisorsint ® K that has no base points since the linear system |K%| on C' has
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no base points. For ¢ = (aa, . .. ,ax) € K, the curve C is defined by the equations
ofvi =q"a;, 0 =1,..., k. Oneimmediately checks that the map

K4 . pdimH(C,K%)

. — i(e),mfai1(x),. .., 7 e m, (x)],

where the a; ; ’s form a basis of H%(C, K%) has image of dimension 2 and that
o1:t® K — K% is dominant. By Bertini’s theorem (see [J], Theorem 6.3) the
divisor X1 € 41 of the section o5 (y1 — mja1) = ojy1 — ¢*a1 With a; generic
in HO(C, K%) is smooth and irreducible. If &£ > 2, we next consider the linear
systemon X given by therestriction of ¢,. Sincethepolynomial o, isalgebraically
independent from o1 themap o2 |x,: X1 — K 2 js dominant. We use the same
argument as above and from Bertini’s theorem we obtain that the divisor X> C X3
of the section o3y2 — g*a2 | x, with generic a, is smooth and irreducible. We can
repeat the same argument for the linear system o; |x, , for every i < k (since
the map o; |x,_,: Xi 1 — K% is dominant) and thus prove (a). As for the
statement (b) one may consider the restriction of the linear systems above both to
the discriminant locus = and to the locus Z C = where ], z+ da vanishes with
multiplicity > 2 (£ = SingE). Again from Bertini’s theorem one obtains that C
does not intersect Z and intersects =\ Z transversely.

Remark 1.1. Foreach« € R, let s, € W denote the corresponding reflection.
As a consequence of condition (b) above we may consider the ramification locus
in C asadigoint union: D = [],cg+ Da, With D, = {zeroesof dao 1} = {n €
C | san = n}. By our previous considerations D,, belongs to the linear system
|7* K |. In case G is simple and simply laced, i.e. W acts transitively on the set of
roots R, we may write for eachy € Ram

mYy) = II D%
aER*
where DY := D, N 7 1(y) isnonempty for every o € R™.
If G isnot smply laced and has connected Dynkin diagram, R is the union of

two W-orbits R;, R, each one consisting of roots having the same length. Then
we have

iy = I DYoo iy = ] DY (13)

a€ERNRT acERNRT

depending on whether y correspondsto a short or along root.
More generdly, if the Dynkin diagram of G has more than one connected
component, we have as many different ‘kinds' of fibers

My = ][] DY

aER; NRt+
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asarethe W-orbits R; C R. Sincefor eacha € R wehave | D, |= |W| - deg K
and each fibre over a branch point consists of |IW|/2 points, the number of fibres
which correspond to the same orbit R; is equal to

nj = |Rf|-|W|- degK/3|W]|
— |R;| - deg K. (1.4)

Let now X (") bethegroup of charactersof 7" and consider the group H YC,T)
of isomorphism classes of holomorphic principal T-bundles over C. Each pair
(7, ) with 7 aprincipal T-bundle, » € X (T'), definesalinebundle 7, = 7 x,C
and thisway HY(C, T') isidentified with

Pic(C) ® X (T)",
X(T)* = Hom(X (T"),Z) being the dual group. For the same reason, the group of
isomorphism classes of topologically trivial principal 7-bundlesisatensor product

J(C)® X(T)*

(here, as usual, J(C') denotes the group of divisors with zero degree modulo
linear equivalence). Now, the action of 1 on the sheets of C' induces an action

on J(C). On the other hand, W' acts by conjugation on 7', hence on X (T')*. If
T=D1®x1+ -+ D;® x;isaprincipal T-bundle over C and w € W an
element of the Weyl group, we set

wT:wD1®u§(1+"'+le®u§(l.

DEFINITION 1.1. Thegeneralized Prymvariety P = [J(C) ® X (T)*]"V consists
of those isomorphism classes of topologically trivial T-bundles + which satisfy
Wr = rforeachw e W.

Note that P is an algebraic group whose connected component of the identity Pq
isan abelian variety.

2. Computing the dimension of P

Thefollowing can be deduced from the above mentioned Faltings' result describing
the generic Hitchin fibre as isogenous to P = [Pic(C) ® X (T)*]" ([F], Theo-
rem 111.2) and the fact (dueto G. Laumon and proved in [F], Theorem I1.5) that all
Hitchin fibers have the same dimension:

PROPOSITION 2.1. The dimension of P is equal to the dimension of M.

In this section we give adirect proof of such statement. If weset S =X (7') ®z C
and denote by H* the first conomology W -representation H*(C, C), by Doulbault
theorem we have

dim?P = ZdimH" ® §*]" = 1dimHomyy (S, HY).
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We will compute M = dimHomy (S, H') by use of the classical theory of
representations of finite groups and associated characters (for more details about
this subject, see for example[Se]).

For any W -representation V' considered here, we denote by xy : W — C its
character (for p: W — GI(V') the homomorphism defining the representation, we
have by definition xy (w) = trace(p(w)), Yw € W). By the theory of characters
of finite groups we have

M = (xs, Xm1), (2.1)

where (, ) is the usual scalar product between characters. If NV is the number of
connected components of the Dynkin diagram IT of G and h = dim Z(G) we have
adecomposition

S=Bd - - oBdS1D--- D Sp,
h
where B isthe 1-dimensional trivial representation and S; theirreducible reflection

representation corresponding to the sth component of I, = 1,..., N. Then we
may rewrite (2.1) as

N

M = hixs,xm) + Y_{xs: Xm)- (2.2)
=1

Weobservethat W actstrivially on thecohomology groupsHO(C’, C)= HZ(C’, C)=
C. HencethelLefschetz character x 1, = x yo—x g1+ x g2 Satisfiesyr, = 2xs—x 1

and we have
(xB>xH1) = 2—(XB,XL) (2.3
(X5 XH1) = —{Xs5:5XL)- (2.4)

On the other hand, it is well known (Hopf trace formula, see e.g.[CR]) that the
Lefschetz character satisfies

XL = Xgo — Xga t X

cn being the free C-module generated by the n-cells of some cellular decomposi-
tionof C (C™ = H, (K™, K1, C), with K7 the jth skeleton of C, j = n,n — 1).

We choose one finite triangulation A of C' whose set of vertices contains
al branch points. We denote by C™ the free module generated by the n-cells
of A for n = 1,2, and by CJ and D; the free modules whose generators are
respectively all vertices not lying in the branch locus Ram and al branch points
corresponding to the same W-orbit R; C R (see Remark 1.1.). Let N’ be the
number of W-orbits in R, and for each ;7 = 1,..., N’ let us fix one positive
root aj € R} and set H; = {1,54,} C W. We denote by Indj; (B;) the W-
representation induced by the 1- dlmens onal trivial representation B of H; (by
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definition, IndW( Bj) = ®wjew,n; Cvpw) With W acting by u o vy, = v[y)). We
have thefollovvlng isomorphisms of W-modules:

C? ~ C[W]® C?,

Cl = Ccw] el

~ N,

C° = CW]® C3 @ @ Indy (B;) ® D,
j=1
Nl

ClW]® g ® @(Indy, (B;))™,
j=1

where C[WW] denotes as usual the regular representation and the n;'s satisfy (1.4).
By Frobenius reciprocity formulawe have

(Xs7x|ndg{vj(3j)> = (xB,,xB;) =1,

and since from the general theory each irreducible T -representation occurs as a
subrepresentation of C[WW] as many times asiis its dimension, we obtain
(x5,xL) = 1KC? =tk C* +-tk C§+ | Ram |= (2 - 29). (2.5)
Anaogously, we have
Nl
(xs:xz) = (kC? =tk C + 1k C) dimS; + Y 1 (x5, Xres; s.),
j=1
where res;S; denotes the representation obtained by restriction to ;.

Now, given some positive root o € R™, the corresponding reflection s, € W
actstrivialy on §; whenever o ¢ S;, otherwise it acts trivially on one subspace of
codimension 1in S;. Thuswe get

(xsioxL) = (IKC? —rkCt+1kCG) dimS; + > n;(dimS; — 1) +
R;CS;
+ Y ny-dims;
R;ZS;
Rj cS;
By substituting (2.5) and (2.6) respectively in (2.3) and (2.4) and then (2.3) and
(2.4) in (2.2), wefinally obtain

M = 2h+(29-2) <h~|—2dlm$>+2n3

= 2h + (29 — 2)dimT+ | Ram | .
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SincedimT+ | R |= dimG, by (1.1) we get
dmP=1iM = (g —1)dimG + h.

3. Themain results

In this section we will define a map F from each connected component of the
generic Hitchin fibre to the abelian variety Py and study its properties. We first
show how one can associate to each given pair (P,s) € H™(¢) a T-bundle
T = T (P, s) which satisfies“T = T Vw € W.

For ¢ € K generic, letthen P beaprincipa G-bundieand s € H°(C,ad PQ K)
suchthat (P, s) € H~1(¢). Wefirst consider the restriction Py of P to the open set
Co. Sincefor every £ € Co, s(€) € gisregular semisimple (for an analysis of the
regular elementsin g, seefor example [K]), we have amorphism of vector bundles

[S, ]Z adPy —adPy® K
whose kernel NV is abundle of Cartan subalgebrasin g. We thus have a section
v- Co— P/Ng(T) =P x¢g G/Ng(T)

locally defined by (¢) = 1/(¢)Ng(T) where v(¢) € G satisfiesAd v (£)t = N =
cg(s(€)). If we pull back Py over Co we actually have asection

@: Co— 1 Py/T (3.1)
locally defined by ¢(n) = u(n)T where u(n) € G satisfies
Adp(n)(e(n)) = s(r(n)). (3.2

Thusover Cy the bundle 7* P hasareduction of its structure group to T'. Moreover,
from (1.2) we havefor eachw € W

p(wn) = p(n)n, T (33)
which implies that such T'-reduction 7o = ¢* (7* ) is W-invariant with respect
to the action previously defined. Now if we consider a Borel subgroup B C G
containing 7', the inclusion map 7" — B and ¢ define a section: Cp — 7*P x¢
G/B. Since G/B is a complete variety, by the valuative criterion of properness
this section can be extended to the whole curve C and we thus obtain (uniquely up
to isomorphisms) a B-reduction Pp of the G-bundle 7* P such that Pg |~ isthe
B-extension of 7.

If (,) denotes a W-invariant scalar product on X (7)) ®z R and 5 € R, we
define as usual the one parameter subgroup 5’ € Hom(X (T'),Z) by

BN = (\5) = 2(%)

We want to prove the following:

VA € X(T). (3.4)
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THEOREM 3.1. Let 75 = 7(P,s) be the T-bundle associated to Pp via the
natural projection B — T'. Let usfix one theta characteristic %K and consider the
T-bundle K, = %w*K@ Y per+ B where RT C R isthe subset of positive roots
that correspondsto B. Then 7 (P, s) := 7 + K, is W -invariant.

The proof will be organized in a few lemmas. We first observe that since W is
generated by the simple reflections it sufficesto show

Serp 2 g+ 1K @ o (3.5)
for every simple root «. In fact we have 3 5 p+ sa(8') = X 5cp+ B — o, S0, if

Bra
relation (3.5) holds, one has *~ (73 + K,) = 75 + K. In terms of line bundles
associated to characterson 7', relation (3.5) can be rewritten as

(SO‘TB—TB) X,\C%<)\,OA>7T*K V)\EX(T). (36)

Given asimpleroot «, let usdenote by s, (B) the Borel subgroup n,, Bn; 1, where
ne € Ng(T) represents s,. One analogously obtains another T-bundle 7, ()
suchthat 7,_(p) |60% 7o from the completion of 7o to an s, (B)-reduction P (p.
Thefirst lemma treats the relationship between 7 and 7, ().

LEMMA 3.2. Wehave T, (p) = **75.

Proof. We consider an open covering {V},},en of C over which P and the
canonical bundle K can be trivialized and with the property that each V}, contains
at most one branch point. We choose a Cech covering/ = {Up, }ren Of C to be
given by all open sets U, = 7~(V},) (by definition each Uy, is stable with respect
to the action of W). For h € H we chooseframese?, ..., ef; for the vector bundle
adP ® K over V}, C C, q being equal to the dimension of g. With respect to this
choicethe sections: C' — adP ® K islocally given by ‘coordinates' sy, : Vi, — g
satisfying

Sy = Adghl ckysy for Vi, NV, # (Z), (37)

gn, and kyp,; being transition functions for P, K respectively. Let ¢, : U, — t be
coordinatesfor .: C — t ® K. Wedefine J C H to be the subset of those indices
j such that V; contains abranch pointand set I = H \ J. For each h € H we fix
maps iy, : U, — G suchthat, for eachi € I, u; satisfies

Adpi(n)(ei(n) = si(r(n)) (3.8)

(compare with (3.2)) and the O-chain {u, () B } e definesthe section g C —
m* P/ B completing ¢ in (3.1). By definition, the B-bundle Pg is represented by
the cocycle {by;} € Z*(U, B) where by (n) = pn(n) ™ gni(m(n))m(n). Define
{b} € ZXU, 54(B)) by bjy(n) = nabu(san)ng® ¥n € Uy N U We have
b (1) = napin(san) tgn(m(n)m(san)ngt, hence {b),} represents an so(B)-
reduction of 7* P. On the other hand, from (3.3) we have {u;(san)ng T Yicr =
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{ni(n)T }ier hence {b},,} represents P, _(p). Now, if we denoteby p: B — T, p":
sa(B) — T the natural projections we have p’ o b),,(n) = na(p © bui(san))ng
(since every Borel subgroup is a semidirect product of its maximal torus and
its maximal unipotent subgroup). Since {1, (p o by (san))ny '} are by definition
transition functions for *= 7, we thus have an isomorphism 7, gy = *7p. O

We keep the notations of the proof of Lemma 3.2. For each positiveroot 5 € R,
weshall denoteby 3, : U;, — C thecoordinatesof the sectionof n* K over C given
by the composition d 3 o . (see Section 1). Our next step consistsin finding suitable
transition functionsb;; for P onintersectionsU; NU; with j € J. Indeed, we will
find suitable maps 11 : U; — G with j € J defining the completed section ¢p.
Wefix nilpotent generators { X, },c g+ inthe Lieagebrab of B withad t(X,,) =
dy(t)X,, Vt € t,Vy € RT. In general, the completion ¢ : C — ©*P/B of our
© aboveislocally given by holomorphic maps f;: U; — G with j € J such that

Ad fi(n) " sj(m(m) = i(m) + Y ay(m) X, (39

vyeRt

By Remark 1.1, for j € J theset U; isaunion of opensets{Jgc g(j)nr+ Uj,p Where
R(j) is some W -orbit of roots depending on j and each U; 3 contains only those
ramification points that are zeroes for 3;.

LEMMA 3.3. There exists a holomorphic map p; : U; — G satisfying for each
BeR(G)NRTandn e Ujp

Adi(n) " s;(m(n)) = 1i(n) + Xp. (3.10)

Proof. We construct ;.; separately on each connected component of U;. By our
genericity hypothesis we may assume for every ramification point p € U g

Ad fi(p) 'sj(n(p) = 1;(p) + X5 (3.11)

with 8;(p) = dB(z;(p)) = 0.
Let a betheroot with minimal heightin R* \ {8} suchthat a,,(n) in(3.9) isnot
identically zero. The G-valued map ¢;(n) = exp %Xa is holomorphic on each

fixed connected component of U; 3 and by evaluating Adc;(n) on the right-hand
side of (3.9) we get

Adc;(n ) + Z ay (M) Xy) =¢j(n )—i—aﬁ( )X + Z
YERT WER;\{B}
>

By an induction argument we can then assume

Ad fi(n) tsi(w(n) = t;(n) + ag(n) Xz, (312
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where ag(p) = 1 (sincewe may multiply f; by asuitable constant in 7). Consider
now the map d;(n) = exp “%5’851Xﬂ. Since p is a simple zero for 3;, d; is
holomorphic on the connected component of U; 3 containing p. We have

Add;(n)(i(n) + ag(n)Xp) = vj(n) + X5

and the claim of our lemmaiis proved. O
Foreachj € J, definew;: U; — B by u;(n) = exp%((% whenever n € U; 5. We
have

Adu;(n) () = 1i(n) + Xg. (3.13)

We may represent the completed section g by {u,(n)B} wherethe u; 's are as
in (3.8) for every i € I andthe p; 'ssatisfy (3.10) for every j € J. By substituting
(3.8) and (3.10) in (3.7) and replacing ¢ (n) + X g with Ad u; (T])_le (n) weobtain
transition functions on each nonempty intersection U; N U;

bji(n) = 15(n)~ gji(m(n))pi () = uj*(n)tja(n), (3.14)

wheret;;: U; N U; — T is holomorphic (asu; is holomorphic on U; N Uj). Since
each element in B can be written uniquely as a product of a unipotent element by
anelementin 7" we havet;; = p o bj;.

We now compare P with P, ). By definition we only need to compare them
around the ramification points. As set of nilpotent generators in the Lie algebra of
sa(B) wemay choose { X} gcp+\{a} U {Adn4(Xa)}. Thusfrom Lemma3.3we

may defineasection @, (py: C — m*P/s,(B) completing ¢ by
Pso(B) (M) = pj(msa(B) forn €U\ Uja,

Psn() (M) = j(s5am)ngsa(B) for n € Ujqa,
where the G-valued maps 1; satisfy (3.10). From this we see that P, () and Pp

areisomorphic on C'\ D,, and that on all intersection sets U, o, N U; with j € J we
have transition functionsfor P, () of theform

Bii(n) = nagsi(sam) ™ s (m)bji(n). (3.15)

If we apply Lemma3.3to the set s, (R™) of positive roots corresponding to s, (B)
we obtain on U, N U; a factorization b;(n) = u;-‘l(n)t;-i(n) with u(n) =
exp% = nqu;~(n)ngt and t;(n) = p' o bl;(n) (compare with (3.14)).
Let us denote by | the identity element in G. From (3.15) and Lemma 3.2 a
meromorphic section of =75 — 7p is given by a 0-cochain {t,}rcn € CO(U, T)
where

th(n) =1 whenever hel orheJ and n¢ Ujq, (3.16)

ti(m) = nauj(n) *pi(sam) Tuimui(n)t Vn€Uja, j€J (317
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By (3.10) oneach U; , themap h;(n) = p;(san) 1 (n) satisfies
Adhj(n)(ei(n) + Xa) = tj(san) + Xo = Adna(ei(n)) + Xa. (3.18)

Choose X _, € gsothat X, X 4, ho := [Xa, X o] € tgeneratealiesubalgebra
h, C gwithh, = si(2) and da(h,) = 2. Define

Fj(n) = exp(aj(n)X—a) Vn € Ujq.

Since Fj () satisfies Ad F; (1) (1 (1) + Xa) = Adnq(1;(1)) + Xa, by (3.18) we
haveon U;

15(sam) i (n) = Fj(n) - Lj(n), (3.19)

where for each ) € Uj o, Lj(n) € B liesin the centralizer of ¢;(n) + X, € b.
Note that for ¢ any ramification point in U; , we have by definition

Li(g) =1. (3.20)

In particular the map L ; is holomorphic. Sincewhenn € U , isnot aramification
point ¢;(n) + X, isregular semismple and by (3.13) one has cg(xj(n) + Xa) =
Adu;(n)~1t, the holomorphic T-valued map I;(n) = p o L;(n) hasthe form

L () = wj(n) Ly (n)u;(n) . (3.22)
Relation (3.17) becomes
tj(n) = z;(n) - 1;(n), (3.22)

where the map z;(n) = nqu;(n) 1F;(n)u;(n) ! hasvaluesin 7' and is holomor-
phic everywhere in U; , but on the ramification points. The connected subgroup
H, C G generated by exp(X,), exp(X_qa), exp(h) is isomorphic to a copy of
SI(2) or PGI(2) in G and one can compute z;(n) directly in terms of two by two
matrices. In the SI(2) case, denoting by o the isomorphism: H, — SI(2), one has
for somec € C*

o(z(n))

B 0 -1 1 —c/aj(n) 1 0 1 —c/aj(n)
“Tl10)\lo 1 amfe1)\o 1

= +diag(ca;(n), ca;(n) ), (3.23)
where «j(n) are the coordinates of the section de o «, according to our previous
notations. Asfor H, = PGI(2) one gets

o(zj(n)) = diag(c™a;(n), caj(n)~1), (3.24)
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where the bar indicates the image under the factor map: Gl(2) — PGI(2). Let now
T, C T betheidentity component of the subgroup Ker(a) = {t € T' | a(t) = 1}.
Thecentralizer Z,, in G of T,, isareductive group of semisimplerank 1 having Lie
algebraz = teCX,dCX_, anditisknownthat suchagroupisaproduct 7" x H,
T" being atorus and H being acopy of Sl(2), PGI(2) or GlI(2). Thecase H = SI(2)
is characterized by the group of characters X (7") being an orthogonal direct sum
Zx1 ® X', with x1 = /a. If we composeany A € X' with the O-chain {¢; } e
defined by (3.16) and (3.17) we obtain a nowhere vanishing holomorphic section
of the line bundle (*»75 — 75) x, C. If instead we compose x1 to {ts }rem, DY
(3.22) and (3.23) we get aholomorphic section of (*» 75 — ) X, C havingsimple
zeroes exactly on the locus D,,. Thusrelation (3.6) is satisfied (see Remark 1.1).

The case H = PGI(2) is characterized by X (7") being an orthogonal direct
sum Za @ X'. For A € X', we get the same result as for the SI(2) case. For
A = a wefind instead a holomorphic section of (*«75 — 75) X, C having zeroes
of multiplicity two on D,,. This proves (3.6).

Incase H = GI(2), we havean orthogonal direct sum X (T') = X'®Zx1®Z x>
with o = x1 - Xgl. Composing A € X' givesus again *e7g x, C = 13 x, C
as in the previous cases. If we compose x1 we obtain a holomorphic section of
(**7p — TB) Xy, C having simple zeroes exactly on D,,. If we compose x, we
obtain a meromorphic section of (> 7 — 75) %, C having simple poles exactly
on D,,. Thusrelation (3.6) holds also in this case and Theorem 3.1isproved. O

We thus have amap

T:HYp) — P=[PicC)eX(T)]7,
(P,s) —> T(P,s) + K.

Note that from (3.5) and Lemma 3.2 7 does not depend on the choice of the Borel
subgroup B D T (or of the subset of positive rootsin R).

DEFINITION 3.4. Let (). be some connected component of #~1(¢). For a
fixed point (P, s') € H~1(¢). wedefine F: H1(¢). — Po by

F(P,s)=T(Ps)—T(P,s)=71(Ps)—7(P,s).

Such definition does not depend on our previous choice of the theta characteristic
%K . We now want to study the fibers of 7. First we make the following

Remark 3.1. For i € I, the maps 11;(n) in (3.8) are defined up to multiplication
to the right by some holomorphic map m; : U; — T'. Asfor j € J, any other
holomorphic map 11’;(n) satisfying (3.10) hastheform 7 (n) = 11;(n) M;(n) where,
forevery o € R(j) N R™, M;: Uj o — B isholomorphic and such that M;(n) €
ca(1j(n) + Xa). If we replace 115 and p; with the new maps p’s(n) and p;(n) =
wi(n)m;(n), we obtain from (P, s) and B an equivalent cocycle {m,;lthimi}
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representing 75. Since, for every j € J and g € Uj N Dy, 1j(q) + Xo € b is
regular, we have c(tj(q) + Xo) = Toldo, Where Ty, isthe identity component of
Ker(a: T'— C*) and U, is the unipotent 1-dimensional subgroup corresponding
totheroot .. Hencethe 7-valued map m; (n) 1= po M;(n) = u;(n)M;(n)u;(n) *
satisfiesfor every a € R(j) N R™

a(mj(q)) =1 VqeUjND,. (3.25)

LEMMA 3.5. Let (P, s), (Q,v) bepairsin H=1(¢) suchthat 7(P, s) and 7(Q, v)
areisomorphic. Let {t;;} and {#;,} with h,] € H be cocyclesrepresenting (P, s)
and 7(Q, v) respectively and suppose

tNhl = mglthlml, (326)

where the maps my, : U, — T are holomorphic and satisfy condition (3.25) for
everyj € Janda € R(j) N RT™. Then Q isisomorphicto P and v = s.

Proof. For what concerns P and the construction of 7(P, s) we keep the nota-
tions used in the proof of Theorem 3.1. In particular we still consider a Céch
coveringd = {Up }peg Of C consisting of W-invariant open sets as it was first
defined in the proof of Lemma 3.2. For each nonempty intersection Uy, N U; we
have transition functions for the B-reduction ) g of 7*@Q having the form:

bji(n) = f(n) " Ga(m(m)a(n) = uj(n) ‘Ea(n) VieJiel, (327)

bri(n) = Fin(n) "“Gni(m(n)iis(n) = twi(n) Vi,h €1, (3.28)
where {gn; },1c p aretransition functionsfor the G-bundle @ and 1i;, 1i; are defined
analogously as yi; and i in (3.14). For j € J, define M;: U; — B by

M;j = u; mju; (seeRemark 3.1). (3.29)
The hypothesis of the lemma provide that A; is holomorphic on Uj,, for each

a € R(j) N R* andwe have M;(n) € ca(1j(n) + Xo) Vn € Uj,o by definition of
uj. Define the holomorphic maps

;= uimiﬁ;l Viel and

L= piMj;* Vjed.
Flrom (3.27), (3.14) and (3.26) we obtain the equivalence condition between cocy-
cleson C:

gr(m(m) =Tn(m) rgu(x(n)Ti(n) VneU,NU, Vh,l € H.

The claim of the lemma is then proved provided we show that the maps I'; are
invariant with respect to the action of W on the sheetsof C. In fact if we indicate
by {vp, }rem the coordinates of v so that v, = Adgy; - knjv;, by our definition of
the maps ji;, 1, We have:

AdI'jw, =s; Vie H.
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Since W isgenerated by the simplereflections, it sufficesto show I';(son) = I'i(n)
for every smplereflection s,. From (3.3) we havefor eachi €

pi(sam)tpi(n) = nali(n) (3.30)

for suitable holomorphic mapsi;: U; — T'. By evaluating the transition functions

thi =ty gnipts With b, i € T on sqn and replacing i (san) With pi(n)l; (n) ~tng?

and iy, (sam) With pp (1) () "*ng* we obtain

thi(sam) = nialn ()ths (M)l () g™ (331)
Analogously, if wedefinel;: U; — T by

ii(sam) " ii(n) = nali(n), (3.32)
we have

thi(sam) = nadn ()i (ML (n) 0y ™ (3.33)

By replacing ¢,; with mglthimi in both sides of (3.33) and substituting (3.31) in
the left-hand side, we obtain an equality both sides of which contain only factors
with valuesin T'. We cancel ¢;;(n) and obtain

ma(n) - g ma(san) na - Ih(n) - h(n)

= mi(n) - ng mi(san) e - li(n) - 1i(n)
forevery n € U, NU;, 4, h € 1. We can repeat the same cal culation on intersection
setsU; N U; with j € J and ¢ € 1. What we need is the analog for j € J of the
relations (3.30) and (3.32). On each open set U; , the map () is related with
pj(sqn) viatheidentity (3.19). If for each 5 € R™ \ {«} wedefinen,s € N(T)
to be the representative of s, satisfying Adnq,5(Xg) = X, (), by construction
of the maps 1i; in Lemma (3.3) we havefor n € U; 3

1 (sam) " i (n) = na,gLj(n), (3.34)

where L;(n) isasuitable element in the centralizer of «;(n) + X 3. We analogously
defineL;: U; — BVj € J by

fij(sam) " ij(n) = Fj(n)L;(n) for n € Uy, (3.35)

fij(sam) ij(n) = napli(n) forneU;s with §# o (3:36)
and set for eachn) € U;

Li(n) = po Lj(n) = uj(n)Lj(n)uj(n) (3.37)

Li(n) i=po Lj(n) = u;(n) L (n)u;(m) " (3.38)
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One uses (3.19), (3.35) and the fact that the map z; (1)) = nau; ™ (n)F;(n)u; *(n)
(see (3.22)) is holomorphic T-valued outside the ramification points (hence it
commutes with any other map with valuesin T'), to obtain by the same procedure

described above for al pairsof indices h,i € T

mj(n) - ngtmy(san) tna - Li(n) "t 1i(n)
= mi(n) - g mi(san) e li(n) - Li(n)
for eachn € U, o N U;. One uses (3.34) and (3.36) to prove the same identity for
aln € Uj 3N U; with B # a. Inconclusion, the mapsmy, (1) - ng tmy (san) g -
() - lu(n) : U, — T with b € H are the restriction to Uj, of a global
holomorphic map on C, hence are equal to some constant c. We compute such map
on one ramification point ¢ € U; . Since we have l;(q) = l;(¢) = | (compare
with (3.20)) and «(m(q)) = 1 by hypothesis, we obtainc =1, i.e.

mp(san) = namp(n) - U(n) - In(n) ng® Vh € H. (3.39)

By use of (3.30), (3.32) and this last identity we find I';(s,n) = L'j(n) for each
neU;,iel Asforje J,if nisinU;, we have by (3.19) and (3.35), by the
definition of M;, I; and [; and by (3.39)
Fj(Saﬁ)
= pi(n)u;(n)
=Tj(n).

If nisinUj g, oneprovesT'j(s,n) = I'j(n) by using (3.34), (3.36), (3.39) and the
identity (following from the abovedefinition of ., g) naﬁuj(san)n;,lﬂ = u;(n). O

-1, 1:(m) ™ 2 ()1 (m)w; () i () ™

LEMMA 3.6. Let (P, s), (Q,v) bepairsinH~*(¢) suchthat 7(P, s) and 7(Q, v)
areisomorphic. Let {¢,} and {¢5,} with h,l € H becocyclesrepresenting (P, s)
and 7(Q, v) respectively and write

th = mﬁlthlmz (3.40)

for suitable holomorphic mapsmy, : U, — T with h € H. Up to multiplying each
my, by one and the same suitably chosen element in T, the following holds:

(i) for each positiveroot « € Rt and ¢ € U; N D, wehave a(m(q)) = F1.
(ii) if for « € R there exists some character A € X (T') such that

(Aa) =1, (3.41)
we have a(m;(q)) = 1Vq € U; N D,,.
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Proof. Choose one ramification point ¢, € D,, foreacha € A, g, € Ujj() for
suitable j(«) € J. Up to multiplying the maps {m, } e by a suitable element in
T we may assume

a(Mmj)(qa)) =1 VYa € A. (3.42)

We keep the same notation as before. We consider the maps {I;,} and {I,}, h € H
asin (3.30), (3.32), (3.37) and (3.38) and let o be some simpl e root. From the proof
of Lemma (3.5) one hasthat the mapsmy, (1) - n; iy, (san) " na - In (7)1 - 11 (1) :
Uy, — T aretherestriction of aglobal holomorphic map on§‘ . Computing such map
on g, gives us by (3.42) and the fact that we havel;(q) = 1;(¢) = | Vg € D, N U;

m;(q) -n;lmj(saq)flna . lj(q)f1 lilg) =1 VYqeDnUj, jeJ (343
and

m;(q) = nymi(q)ne YqgE€DeNU;, jEJ.
By evaluating «: T — C* on both sides of this last identity we obtain

a?(mj(q)) = 1.

If moreover o satisfies condition (3.41), evaluating A on both sides of the same
identity gives A(m;(q)) = A(m;(q)) - & *(m;(q)), or

a(m;(q)) = 1.
Theclaim of thetheoremisthus proved for every simpleroot. Consider now g € D
with 8 € R*\ A. Notethat for ¢ € U;, from the definition of /; and /; and thefact
that L;(¢) and L;(¢) belong to the centralizer in G of +;(¢) + X5 we have
Bi(9) = B(I;(a) = 1 (3.44)

(compare with (3.25) in Remark 3.1). By evaluating 3: T — C* on both sides of
(3.43) as « runs over al simple roots we obtain 3(m;(q)) = B(ng, m;(saq)nq)
Va € A, hence

B(m;(q)) = B(ngtm;(wg)ny,) Yw € W.

On the other hand, we know that there exist & € A and u € W with u(a) = S.
We thus have

B(m;(q)) = ﬁ(numj(u‘lq)ngl) = oz(mj(u_lq)) =7l 0O

THEOREM 3.7. Suppose G has one of the following properties:

(8 the commutator group (G, G) is simply connected;
(b) the Dynkin diagram of G has no component of type By, [ > 1.
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Thenthemap 7: H1(¢) — P isinjective.

Proof. Incase (G, G) issimply connected thefundamental weightsareelements
in X(T') ; in particular condition (3.41) in Lemma 3.6 is satisfied for every root
a € R* and our claim follows from Lemma 3.5. As for the case G satisfies
condition (b), weseefrom the Dynkin diagram of al simplegroupsof typedifferent
from B;, 1 > 1 and G, that for every a € R* there exists another root 3 with
(8, ) = 1. On the other hand the type G2 is simply connected. O

THEOREM 3.8. Let a > 1 be the cardinality of the subset A ¢ R™ of those roots
which do not satlsfycondltlon (3.41) in Lemma 3.6. If d denotesthe degreeof 7* K,
the fibre of 7 consists of at most 2#(¢—1 points.

Proof. Let (P,s) € 7—[*1(¢), 7(P, s) be asin Theorem 3.1 and suppose there
exists a pair (Q,v) € H1(¢) such that 7(Q,v) = 7(P,s). Let {tn}n e and
{thz}h leH be cocycles representing 7(P, s) and 7((Q,v) respectively and write
th = my, Yt,,my for suitable holomorphic maps my, : U, — T with h € H.
From the proof of Lemma 3.6 we can assumethat for « chosen ramification points
q € Dg,oneforeach 5 € A, andevery other ramificationpointg € Dgwith 3 ¢ A,
condition 5(m;(q)) = 1 (for suitablej € J) holds. If (@, v) isdistinct from (P, s),
by Lemmas 3.5 and 3.6 there exists some « € A and some p, € U; N D, (with
suitable j € J) such that condition

a(m;(ps)) = -1 (3.45)

is satisfied. Moreover, two pairs for which relation (3.45) holds for exactly the
same set of ramification points coincide by Remark 3.1. O

From Theorems 3.7 and 3.8 and from Proposition 2.1 we obtain the following

COROLLARY 3.9. Theimage under F of #~1(¢). containsa Zariski open set in
Po.

3.1. THEPGI(2) cAsE

Let ¢ € HO(C, K?) be generic. Let P be a PGI(2)-bundle over C' and s €
HO(C,ad P ® K) suchthat H(P, s) = ¢. Weindicate by pr : GI(2) — PGI(2) =
Gl(2)/C* the factor map and as maximal torus 7' C PGI(2) we choose the one
obtained by restricting pr to the maximal torus 7' C GI(2) given by all diagonal
matrices. We also set t = LieT,t = LieT. In this setting, C = ¢*(t ® K) isa
ramified double covering of C' whose ramification divisor D satisfies by definition
O(D) = 1*K.

Let {V}hern and {Up, }rem be open coverings of C' and C defined as before.
If {gni: Vi, N V) = PGI(2)}4,cm, are transition functions for P, it is known that
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there exists some rank 2 vector bundle F, hence some principal Gl(2)-bundle P,
with transition functions g,; satisfying

pr o §hl = gnl Vh,l € H. (346)

Moreover, any other rank 2 vector bundle F’ has the same property if and only
if F/ 2 F ® L for some line bundle L € Pic(C'). Note also that this implies
deg F = degF'(mod2) (since deg(F ® L) = degF - deg L?). For the sake of
simplicity for any F' satisfying relation (3.46) we write P = pr(F'). For P as
above, we clearly have an isomorphismad P @ K = (ad P ® K) & K and given
some fixed generic section z : ¢ — K we may define § € H%adP ® K) by
§=s®z. Weset ¢ = Hgp)(P,3) € H(C, K & K?) (the subscript indicating
that we are in the GI(2) setting) and observe that the covering ¢*(t ® K) of C
coincideswith C. Thenitisclear from the argument abovethat we have asurjective
map
‘pr: %8|1(2)(¢) — H;Gluz)(ﬁb)-

This also shows that Hpg; ) (¢) has two components 13, ) (#)o, Hpgz) (4)1 :
namely (Q,v) € Hpgy()(4) iscontainedin Heg  (¢)o OF Hpgy ) (¢)1 depending
on the parity of the degree of those F’ which satisfy pr(F) = Q.

We now look at our construction in the Gl(2) case. If we indicate by x1 and x2
the coordinate functionson 7" and set & = x1 - Xz‘l, o = s;, we have by definition

Poie) ={Q@X1®c"Q®x5| Q € J(O)} = J(C)
(the one parameter subgroups x; being defined by x; (x’) = (xi, x;),J = 1,2) and

ﬁg(g) = PIC(CN')

Themap 7 %gll(z)(qz) — Pic(C) is injective (see Theorem 3.7), dominant and
by Hitchin's theory (see [Hi]) it preserves the parity of the degrees. By the argu-
ment above the generic fibre of the map ‘pr’ is a principa homogeneous space

with respect to A = {M € Pic(C) | M = n*L,L € Pic(C)}. In this setting
the map 7*: Pic(C) — Pic(C) is injective (since C — C' is a ramified cover-
ing: see e.g [M]), hence A coincides with Pic(C). Since Pic(C)®® /Pic(C) and
Pic(C)°¥/Pic(C) are both principal homogeneous spaces with respect to the con-
nected group J(C) /.J(C), it followsthat the components Hpg; ) (#)o, Heg(2) (#)1
are connected. Now, let x' be the one parameter subgroup in T' C PGI(2) given by
composing pr with x; (we have X (T')* = Zx'). By definition, we have Ppg(z) =
Praiz) = 1Q® X' | Q € J(C),0"Q = Q 1} and, since n*: J(C) — J(C) is
injective, this is just the Prym variety P(C, o) c J(C). From Theorem 3.1 the
T-bundle 7 = (P, 3) hastransition functionst,; : U, N U; — T of theform

tri(n) = diag(qni(n), 0 qri(n) - kni(mw(n)))-
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One can easily check that the maps

protu(n) = qu(n) - o qu(n) ™t kp(r(n) ™t U, N U — C*

are trangition functions for = 7(P, s). In other words, if we use the additive
notation, we have Tpg)(2) (£, s) = (1 —0*) o 7E;|(2)(]5,§). Moreover, if P is
another GI(2)-bundle inducing via the factor map pr the same PGI(2)-bundle
P, we have that 7(P',3) has transition functions ¢y, (1) - I, (m(n)), where {l, :
VNV, = C*}y, e definesomeline bundle L over C. Wethus havethefollowing
commutative diagram:

~ )

Pic(C) P(C,0)

Tali(2) TroL(2)

H(_;|1(2) (5) 2 H;é(z) (¢)0 H %Eé(z) (¢)1

If weset A’ = {N € Pic(C) | N = ¢*N}, we see that all sufficiently general
fibres of the dominant map 7pg)(2) are principal homogeneous spaces with respect
to A’/A. Itisknown (see[M]) that A’/A isisomorphicto (Z/2Z)(“~Y), d being the
number of ramification pointsof C or, in this setting, the degree of 7* K. Note here
that the number of Z /2Z factors reaches its maximum with respect to the estimate
given in Theorem 3.8. Since each component H5<31|(2) (¢)e, ¢ = 0,1, is connected,
we have that the generic fibre of F: #;g, 5 (4)c — P(C,0) consists of 2(*~2)
points.
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