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Abstract

Lladó and Moragas [‘Cycle-magic graphs’, Discrete Math. 307 (2007), 2925–2933] showed the cyclic-
magic and cyclic-supermagic behaviour of several classes of connected graphs. They discussed cycle-
magic labellings of subdivided wheels and friendship graphs, but there are no further results on cycle-
magic labellings of other families of subdivided graphs. In this paper, we find cycle-magic labellings
for subdivided graphs. We show that if a graph has a cycle-(super)magic labelling, then its uniform
subdivided graph also has a cycle-(super)magic labelling. We also discuss some cycle-supermagic
labellings for nonuniform subdivided fans and triangular ladders.

2010 Mathematics subject classification: primary 05C78.
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1. Introduction

Let G = (V,E) be a finite, simple, planar, connected and undirected graph, where V and
E are its vertex and edge sets, respectively. A labelling (or valuation) of a graph is a
map that carries graph elements to numbers (usually positive or nonnegative integers).
Let H be a graph. An H-magic labelling is a total labelling λ from V(G) ∪ E(G) onto
the integers {1, 2, . . . , |V(G) ∪ E(G)|} with the property that, for every subgraph A of G
isomorphic to H, there is an integer constant c such that

∑
v∈V(A) λ(v) +

∑
e∈E(A) λ(e) = c.

A graph G = (V, E) is said to be H-magic if every edge of G belongs to at least one
subgraph isomorphic to H and it admits an H-magic labelling. Additionally, G is said
to be H-supermagic if λ(V(G)) = {1, 2, . . . , |V(G)|}. The notion of H-magic graphs was
introduced by Gutierrez and Lladó [6] as an extension of the magic valuation given
by Kotzig and Rosa [9], which corresponds to the case H = K2. Classification studies
of H-magic labellings have been intensively investigated (see for example [1–4, 7–
13]). Ahmad et al. [1] studied the super K2-magicness of an odd union of necessarily
nonisomorphic acyclic graphs. Furthermore, they found exponential lower bounds for
the number of super K2-magic labellings of these unions. They also discussed the
case when G is not acyclic. Ngurah et al. [14] found the H-supermagic labellings
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for chain graphs, fans, ladder graphs, grids and book graphs. In [10], Lladó and
Moragas showed the cycle-(super)magic behaviour of several classes of connected
graphs including subdivided wheels and subdivided friendship graphs. However, there
are no further results on cycle-magic labellings of other families of subdivided graphs.
For a detailed study of graph labellings, see the very complete survey by Gallian [5].

In this paper, we discuss cycle-magic labellings of subdivided graphs. The paper is
organised as follows. In Section 2, we show that if a graph is cycle-(super)magic, then
its uniform subdivided graph is also cycle-(super)magic. In Section 3, we formulate
the cycle-supermagic labellings of nonuniform subdivided fans and triangular ladders.
At the end, we present an open problem for further study in this area.

2. Cycle-(super)magic labellings of uniform subdivided graphs

Let G be a Cn-supermagic graph and α be the number of cycles Cn in G for n ≥ 3.
An edge e ∈ E(G) is said to be a good edge if e belongs to only one subcycle Cn of the
graph G. For s ≥ 1, B is the collection of good edges obtained by choosing exactly s
good edges from each subcycle isomorphic to Cn in G. Let B = {x j

t y
j
t : 1 ≤ j ≤ α, 1 ≤

t ≤ s} and |B| = sα.

Definition 2.1. Let B ⊂ E(G). A uniform subdivided graph G of the graph G is
obtained by subdividing all edges of B with k ≥ 1 vertices.

Definition 2.2. Let S = E(G)\B. A nonuniform subdivided graph is obtained by
subdividing the edges of S .

Let e = x j
t y

j
t be an arbitrary good edge subdivided by k vertices z1, z2, . . . , zk in a

subcycle isomorphic to Cn. After subdivision, we will have a path Pe � x j
t z1z2 · · · zky j

t
corresponding to the edge e.

Next, we define vertex and edge sets of the graph G as follows:

V(G) = {xi : 1 ≤ i ≤ |V(G)|} ∪ {z j
i,t : 1 ≤ j ≤ α, 1 ≤ i ≤ k, 1 ≤ t ≤ s}

E(G) = {ei : 1 ≤ i ≤ |S |}
∪ {x j

t z
j
1,t, z j

i,tz
j
i+1,t, z j

k,ty
j
t : 1 ≤ j ≤ α, 1 ≤ i ≤ k − 1, 1 ≤ t ≤ s}.

In the following theorems, we present cycle-(super)magic total labellings of
uniform subdivided graphs.

Theorem 2.3. Let G be a Cn-supermagic graph with magic constant c. Then its uniform
subdivided graph G is Cn+sk-magic for n ≥ 1, s ≥ 1 and k ≥ 1.

Proof. Let p = |V(G)|, q = |E(G)|, v = |V(G)| and e = |E(G)|. Since G admits a Cn-
supermagic labelling, there exists a labelling λ : V(G) ∪ E(G) → {1, 2, . . . , p + q}
such that every subcycle isomorphic to Cn has a magic constant, say c, under the
labelling λ.

Now we define a labelling g : V(G) ∪ E(G)→ {1, 2, . . . , v + e} for the uniform
subdivided graph G of graph G as follows.
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• For 1 ≤ i ≤ p: g(xi) = λ(xi) for all xi ∈ V(G).
• For 1 ≤ i ≤ q − sα: g(ei) = λ(ei) + 2kαs for all ei ∈ S .
• For 1 ≤ j ≤ α, 1 ≤ i ≤ k, 1 ≤ t ≤ s: g(z j

i,t) = p + q + (i − 1)sα + α(t − 1) + j.
• For 1 ≤ j ≤ α, 1 ≤ i ≤ k − 1, 1 ≤ t ≤ s:

g(z j
i,tz

j
i+1,t) = v + e − (i − 1)sα − (t − 1)α − j + 1,

g(x j
t z

j
1,t) = λ(x j

t y
j
t ),

g(z j
k,ty

j
t ) = v + e − (k − 1)sα − (t − 1)α − j + 1.

It is easy to verify that, under the labelling g, the graph G is a Cn+sk-supermagic
graph with magic constant ć = c + ks(v + e + p + q + 1). �

By Theorem 2.3, we have following corollary.

Corollary 2.4. Let G be a Cn-supermagic graph with magic constant c. Then its
uniform subdivided graph G is Cn+sk-magic with magic constant ć = c + ks(v + e +
p + q + 1).

Theorem 2.5. Suppose that G has a Cn-supermagic labelling. Then its uniform
subdivided graph G is Cn+sk-supermagic for n ≥ 1, s ≥ 1 and k ≥ 1.

Proof. Let p = |V(G)|, q = |E(G)|, v = |V(G)| and e = |E(G)|. Since G is Cn-supermagic,
there exists a labelling λ : V(G) ∪ E(G)→ {1, 2, . . . , p + q} such that every subcycle
isomorphic to Cn has a magic constant, say c, under the labelling λ.

Define a labelling g : V(G) ∪ E(G)→ {1, 2, . . . , v + e} for the uniform subdivided
graph G of graph G as follows.

• For 1 ≤ i ≤ p: g(xi) = λ(xi) for all xi ∈ V(G).
• For 1 ≤ i ≤ q − sα: g(ei) = λ(ei) + 2kαs for all ei ∈ S .
• For 1 ≤ j ≤ α, 1 ≤ i ≤ k, 1 ≤ t ≤ s: g(z j

i,t) = p + (i − 1)αs + α(t − 1) + j.
• For 1 ≤ j ≤ α, 1 ≤ i ≤ k − 1, 1 ≤ t ≤ s:

g(z j
i,tz

j
i+1,t) = p + 2skα − (i − 1)sα − j + 1,

g(x j
t z

j
1,t) = λ(x j

t y
j
t ) + 2ksα,

g(z j
k,ty

j
t ) = p + 2skα − (k − 1)sα − j + 1.

It is easy to verify that, under the labelling g, the graph G is a Cn+sk-supermagic
graph with magic constant ć = c + 2ksαn + ks(2p + 2ksα + 1). �

For n ≥ 3,Wn = Cn + {a} denotes the wheel with centre {a} and rim of order n. The
subdivided wheel Wn(r, k) is the graph obtained from the wheel Wn by replacing each
radial edge avi, 1 ≤ i ≤ n, by an avi-path of size r ≥ 2 and each external edge vivi+1 by
a vivi+1-path of size k ≥ 2. In [10], Lladó and Moragas showed that subdivided wheels
Wn(r, 1) admit a C2r+1-supermagic labelling for odd n ≥ 3. In the following theorem,
we discuss cycle-supermagic labelling of wheels Wn and Wn(1, k).

Theorem 2.6. For odd n ≥ 3, the wheel Wn admits a C3-supermagic labelling.
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Table 1. Ramsey numbers of paths and wheel-like graphs.

Graph Cn-supermagic α, s Reference
Fan Fn C3 n − 1, 1 [8]
Antiprism An C3 2n, 1 [8]
Tri. ladder T Ln C3 2n − 2, 1 [14]
Wheel Wn C3 n − 1, 1 [10]
Ladder Ln C4 n − 1, 2 [14]
Grid P3 × Pn C4 2n − 2, 1 [7]

Proof. For the graph G � Wn, the vertex set is V(G) = {a} ∪ {vi : 1 ≤ i ≤ n} and the
edge set is E(G) = {avi : 1 ≤ i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n}, where all indices are taken
modulo n. Thus, v = |V(Wn)| = n + 1 and e = |E(Wn)| = 2n.

Now we define the labelling λ : V ∪ E → {1, 2, . . . , 3n + 1} as follows:

λ(a) = n + 1
λ(vi) = i, 1 ≤ i ≤ n

λ(vivi+1) =
{

3n + 1 − i if 1 ≤ i ≤ n − 1
3n + 1 if i = n

λ(avi) =

 1
2 (4n + 4 − i) if 2 ≤ i ≤ n − 1, i even
1
2 (3n + 4 − i) if 1 ≤ i ≤ n, i odd.

It is clear that for every subcycle C3 of the wheel Wn, the sum of all vertex and edge
labels is 1

2 (15n + 13). Hence, for n ≥ 3, the wheel Wn is C3-supermagic. �

By Theorems 2.5 and 2.6, we have the following corollary.

Corollary 2.7. For k ≥ 2 and odd n ≥ 3, subdivided wheels Wn(1, k) admit a C3+k-
supermagic labelling with magic constant ć = (15n + 13)/2 + 2k2n + 8kn + 3k.

In Table 1 above, we present the cycle-supermagic behaviour of some families of
graphs.

We can use Theorems 2.3 and 2.5 to determine cycle-(super)magic labellings for
uniform subdivided graphs for the families of graphs shown in Table 1.

Corollary 2.8. The following families of graphs are cycle-(super) magic.

(1) For k ≥ 1, n ≥ 3, the uniform subdivided graph F(n, k) of the fan Fn is C3+k-
(super)magic.

(2) For k ≥ 1, n ≥ 3, the uniform subdivided graph A(n, k) of the antiprism An is
C3+k-(super)magic.

(3) For k ≥ 1, n ≥ 3, the uniform subdivided graph T L(n, k) of the triangular ladder
T Ln is C3+k-(super)magic.

(4) For k ≥ 1, n ≥ 3, the uniform subdivided graph L(n, k) of the ladder Ln is C4+2k-
(super)magic.
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(5) For k ≥ 1, n ≥ 3, the uniform subdivided graph G(n, k) of the grid graph G �
P3 × Pn is C4+k-(super)magic.

In the following section, we prove that nonuniform subdivided fans and triangular
ladders are cycle-supermagic.

3. Cycle-supermagic labellings of nonuniform subdivided graphs

3.1. Cycle-supermagic labellings of subdivided fans. For n ≥ 3, a fan Fn � Pn +

K1 is a graph with vertex and edge sets

V(Fn) = {c} ∪ {xi : 1 ≤ i ≤ n},
E(Fn) = {cxi : 1 ≤ i ≤ n} ∪ {xixi+1 : 1 ≤ i ≤ n − 1}.

For n ≥ 3, the spoke-subdivided fan F(n, k) is the graph obtained by subdividing every
edge cxi of the fan Fn by k ≥ 1 vertices.

Theorem 3.1. For k ≥ 1, n ≥ 3, the spoke-subdivided fan G � F(n, k) is C3+2k-
supermagic.

Proof. Let v = |V(G)| and e = |E(G)|, so that v = n(k + 1) + 1 and e = 2n − 1 + nk. We
denote the vertex and edge sets of G � F(n, k) as follows:

V(G) = {c} ∪ {xi : 1 ≤ i ≤ n} ∪ {z j
i : 1 ≤ i ≤ k, 1 ≤ j ≤ n},

E(G) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xizi
1 : 1 ≤ i ≤ n}

∪ {z j
i z

j
i+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n} ∪ {z j

kc : 1 ≤ j ≤ n}.

We define the labelling λ : V ∪ E → {1, 2, . . . , 3n + 2kn} as follows:

λ(c) = n + 1,

λ(xi) =

 1
2 (i + 1) if i ≡ 1 (mod 2),

b 1
2 (n + i + 1)c if i ≡ 0 (mod 2),

λ(z j
i ) = n + j + (i − 1)n + 1, 1 ≤ j ≤ n, 1 ≤ i ≤ k,
λ(xixi+1) = n + 1 + i + 2kn, 1 ≤ i ≤ n − 1,
λ(xizi

1) = 3n − i + 2kn + 1, 1 ≤ i ≤ n,

λ(z j
i z

j
i+1) = n + 2kn − j − n(i − 1) + 2, 1 ≤ j ≤ n, 1 ≤ i ≤ k − 1,

λ(z j
kc) = n + 2kn − j − n(k − 1) + 2, 1 ≤ j ≤ n.

It is easy to check that for every subcycle Ci
3+2k, 1 ≤ i ≤ n − 1, of the spoke-subdivided

fan F(n, k), the sum of the labels of the vertices and edges is b 1
2 (17n + 9)c + 6kn +

2k(2n + 2kn + 3). Hence, F(n, k) is C3+2k-supermagic. �

For n ≥ 3, a subdivided fan F (n, k) is a graph obtained by subdividing every edge
of the fan Fn by k ≥ 1 vertices.
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Theorem 3.2. For k ≥ 1, n ≥ 3, the subdivided fan G � F (n, k) is C3+3k-supermagic.

Proof. Let v = |V(G)| and e = |E(G)|, so that v = n(2k + 1) − k + 1 and e = (k + 1)
(2n − 1). The vertex and edge sets of G � F (n, k) are

V(G) = {c} ∪ {xi : 1 ≤ i ≤ n} ∪ {y j
i : 1 ≤ i ≤ k, 1 ≤ j ≤ n − 1},

∪ {z j
i : 1 ≤ i ≤ k, 1 ≤ j ≤ n}

E(G) = {xiyi
1 : 1 ≤ i ≤ n − 1} ∪ {xizi

1 : 1 ≤ i ≤ n}

∪ {y j
i y

j
i+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − 1}

∪ {z j
i z

j
i+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n}

∪ {y j
k x j+1 : 1 ≤ j ≤ n − 1} ∪ {z j

kc : 1 ≤ j ≤ n}.

Now we define the labelling λ : V ∪ E → {1, 2, . . . , n(4k + 3) − 2k} as follows:

λ(c) = n + 1,

λ(xi) =

 1
2 (i + 1) if i ≡ 1 (mod 2),

b 1
2 (n + i + 1)c if i ≡ 0 (mod 2),

λ(y j
i ) = n + j + (n − 1)(i − 1) + 1, 1 ≤ j ≤ n − 1, 1 ≤ i ≤ k,

λ(z j
i ) = n + j + (i − 1)n + k(n − 1) + 1, 1 ≤ j ≤ n, 1 ≤ i ≤ k,

λ(xiyi
1) = v + e − 2(n − 1) + i − 1, 1 ≤ i ≤ n − 1,
λ(xizi

1) = v + e − i + 1, 1 ≤ i ≤ n,

λ(y j
i y

j
i+1) = v + e − (n − 1)(i + 1) − j, 1 ≤ j ≤ n − 1, 1 ≤ i ≤ k − 1,

λ(y j
k x j+1) = v + e − (n − 1)(k + 1) − j, 1 ≤ j ≤ n − 1,

λ(z j
i z

j
i+1) = v + e − (k + 2)(n − 1) − j − n(i − 1), 1 ≤ j ≤ n, 1 ≤ i ≤ k − 1,

λ(z j
kc) = v + n − j + 1, 1 ≤ j ≤ n.

It follows easily that, for every subcycle Ci
3+3k, 1 ≤ i ≤ n − 1, of the subdivided fan

F (n, k), the sum of the labels of the vertices and edges is b 1
2 (n + 3)c + 3k(v + e − n + 3)

+ 3(v + e + 1) − n. Hence, F (n, k) is C3+3k-supermagic. �

3.2. Cycle-supermagic labellings of subdivided ladders. Let G � T Ln be a
triangular ladder graph with V(G) = {ui, vi : 1 ≤ i ≤ n} and E(G) = {uivi : 1 ≤ i ≤ n}
∪ {uiui+1, vivi+1, ui+1vi : 1 ≤ i ≤ n − 1}. For n ≥ 3, a diagonal-subdivided triangular
ladder TL(n, k) is a graph obtained by subdividing each edge ui+1vi of T Ln by k ≥ 1
vertices.

Theorem 3.3. For k ≥ 1 and n ≥ 3, the diagonal-subdivided triangular ladder G �
TL(n, k) is C3+k-supermagic.

Proof. Let v = |V(G)| and e = |E(G)|, so that v = 2n + k(n − 1) and e = 4n − 3 + k
(n − 1). We denote the vertex and edge sets of G as follows:
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V(G) = {ui : 1 ≤ i ≤ n} ∪ {vi : 1 ≤ i ≤ n} ∪ {z j
i : 1 ≤ i ≤ k, 1 ≤ j ≤ n − 1},

E(G) = {uivi : 1 ≤ i ≤ n} ∪ {uiui+1 : 1 ≤ i ≤ n − 1}
∪ {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {u j+1z j

1 : 1 ≤ j ≤ n − 1}

∪ {z j
i z

j
i+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − 1} ∪ {z j

kv j : 1 ≤ j ≤ n − 1}.

Now we define the labelling λ : V ∪ E → {1, 2, . . . , 6n + 2k(n − 1) − 3} as follows:

λ(ui) = 2i − 1, 1 ≤ i ≤ n,
λ(vi) = 2i, 1 ≤ i ≤ n,

λ(z j
i ) = 2n + (n − 1)(i − 1) + j, 1 ≤ i ≤ k, 1 ≤ j ≤ n − 1,
λ(uivi) = 4n − 2i + 2k(n − 1) + 1, 1 ≤ i ≤ n,

λ(uiui+1) = 6n − 2i + 2k(n − 1) − 1, 1 ≤ i ≤ n − 1,
λ(vivi+1) = 6n − 2i + 2k(n − 1) − 2, 1 ≤ i ≤ n − 1,
λ(u j+1z j

1) = 4n − 2 j + 2k(n − 1), 1 ≤ j ≤ n − 1,

λ(z j
i z

j
i+1) = 2n + (n − 1)(2k − i + 1) − j + 1, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − 1,

λ(z j
kv j) = 2n + (n − 1)(k + 1) − j + 1, 1 ≤ j ≤ n − 1.

It is easy to check that, for every subcycle Ci
3+k, 1 ≤ i ≤ 2n − 2, of the diagonal-

subdivided triangular ladder TL(n, k), the sum of the labels of the vertices and edges
is 14n + 6k(n − 1) + k(4n + 2kn − 2k + 1). Hence, TL(n, k) is C3+k-supermagic. �

4. Conclusion

In this paper, we described cycle-(super)magic labellings of uniform subdivided
graphs. Moreover, we studied cycle-supermagic labellings for nonuniform
subdivisions of some particular families of graphs, namely fans and triangular ladders.
We believe that if a graph has a cycle-(super)magic labelling, then its nonuniform
subdivided graph also has a cycle-(super)magic labelling. Therefore, we propose the
following open problem.

Open problem. If a graph has a cycle-(super)magic labelling, determine whether or
not its nonuniform subdivided graph has a cycle-(super)magic labelling.
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