ON THE EMBEDDING INTO A RING OF AN ARCHIMEDEAN l-GROUP

ANTHONY W. HAGER AND LEWIS C. ROBERTSON

We shall prove the following about the "ringification" ρA of [2] and [5] of an archimedean l-group A : (a) Any "minimal ring" containing A is ρA; (b) $A \mapsto \rho A$ is a reflector; (c) ρA need not be laterally complete when A is. These constitute the solutions to the problems posed in [2] by Paul Conrad.

1. The embedding into a ring. Let \mathscr{L} be the category which has objects archimedean l-groups A with distinguished positive weak unit e_{A}, and morphisms l-group homomorphisms $h: A \rightarrow B$ with $h\left(e_{A}\right)=e_{B}$. Let \mathscr{R} be the category with objects archimedean f-rings R with identity 1_{R} which is a weak unit, and morphisms l-ring homomorphisms $h: R \rightarrow S$ with $h\left(1_{R}\right)=1_{S}$.
1.1 Theorem. If $A \in \mathscr{L}$, then there is $\rho A \in \mathscr{R}$ and an \mathscr{L}-embedding $\rho_{A}: A \rightarrow \rho A$ with the universal mapping property: If $h: A \rightarrow R$ is an \mathscr{L}-morphism, with $R \in \mathscr{R}$, then there is a unique \mathscr{R}-morphism $\rho h: \rho A \rightarrow R$ with $(\rho h) \circ \rho_{A}=h$.

It seems appropriate to credit this theorem to Conrad and the present authors: In [2], Conrad creates a "ringification" $c_{A}: A \rightarrow c A$ by embedding A into its essential closure $D(Q)$ (Q being the Stone space of the polar algebra of A) with $e_{A} \mapsto 1$; then $c A$ is the subring generated by A. He then shows that any f-ring B (archimedean or not) in which A is large (see $\S 4$) with e_{A} an identity for B, is essentially $c A$; this uniqueness is a weak version of the mapping property of 1.1. (Actually, Conrad proceeded more generally, with a fixed order basis rather than simply a weak unit; this will not concern us at present). In ignorance of [2], we proved Theorem 1.1 in [5], but assuming scaler multiplication on the groups and rings. The appendix to [5] discusses these things, and points out that the scalar multiplication is not needed.

We shall see in 3.2 below, that for each $A,\left(\rho_{A}, \rho A\right) \cong\left(c_{A}, c A\right)$. The consequences are discussed there.

Remark on reflections. There is the obvious forgetful functor $F: \mathscr{R} \rightarrow \mathscr{L}$, and 1.1 says exactly that F has a left adjoint ρ for which the adjunctions ρ_{A} are embeddings. In fact, F is one-to-one. (I.e., each \mathscr{L}-object admits at most one compatible multiplication making the weak unit the ring identity; this is proved in 2.2 of [2], and again, differently, in $\S 4$ of [5].) This permits inter-

[^0]preting \mathscr{R} as a subcategory of \mathscr{L}, and with this interpretation, 1.1 says that \mathscr{R} is reflective in \mathscr{L}. (Terminology from, e.g., [6].)

While we shall use this terminology below- A will be called the \mathscr{R}-reflection of A, and ρ_{A} the reflection embedding-we would like to point out that 1.1 and (a) of the introduction ($=3.1$ below) permit another proof of the uniqueness of multiplication: Given $R \in \mathscr{R}$, the identity $1_{R}: R \rightarrow R$ is a "minimal \mathscr{L}-embedding" of $R \in \mathscr{L}$ into $R \in \mathscr{R}$, hence by 3.1 has the universal mapping property of 1.1 . Thus, if R^{\prime} denotes the \mathscr{L}-object R with another multiplication, we have

for a unique \mathscr{R}-morphism f. Clearly $f=1_{R}$, which says the multiplications of R^{\prime} and R are the same.
2. Point-separating representation. Wide use has been made of various representations of archimedean l-groups and rings as structures of continuous extended-real-valued functions defined over spaces of ideals or something similar. In our proof [5] of 1.1 (sketched in §3) we employed a version of the Yosida representation [9] (which, it seems to us, has been under-exploited), and we shall need it further here.

Given $A \in \mathscr{L}$, let X_{A} denote the space of ideals of A (also called solid subgroups) which are maximal with respect to the property of not containing the weak unit e_{A}, given the hull-kernel topology.

If X is any topological space, let

$$
D(X)=\left\{f: X \rightarrow[-\infty,+\infty] \mid f \text { continuous, } f^{-1}(-\infty,+\infty) \text { dense }\right\} .
$$

2.1 Theorem. If $A \in \mathscr{L}$, then X_{A} is non-void compact Hausdorff, and there is an \mathscr{L}-isomorphism $A \mapsto \hat{A}$ onto an " l-subgroup of $D\left(X_{A}\right)$ " such that \hat{e}_{A} is the function constantly 1 and \hat{A} separates the points of X_{A}.

If $A \mapsto \bar{A}$ is an \mathscr{L}-isomorphism onto an l-subgroup of $D(X)$, with X compact Hausdorff, such that $\bar{e}_{A} \equiv 1$ and \bar{A} separates points, then there is a homeomorphism $\tau: X \rightarrow X_{A}$ such that $\hat{a} \circ \tau=\bar{a}$ for each $a \in A$.
2.2 Theorem. The representation $A \mapsto \hat{A} \subset D\left(X_{A}\right)$ of 2.1 has the property: If $h: A \rightarrow B$ is an \mathscr{L}-morphism, then there is a unique continuous map $\tau: X_{B} \rightarrow$ X_{A} such that $h(a)^{\wedge}=\hat{a} \circ \tau$ for each $a \in A$.

The proofs of 2.1 and 2.2 are in [5] for vector lattices; the necessary modifications (described in [5]) are easy.
2.3 Proposition. With h and τ as in $2.2, h$ is one-to-one if and only if τ is onto.

Proof. We need to know that (for any A), \hat{A} separates points from closed sets in X_{A} (equivalently, the sets coz $\hat{a}=\{p \mid \hat{a}(p) \neq 0\}$ form a base). This follows by a compactness argument from the point-separating. Then, $\tau\left(X_{B}\right) \neq X_{A}$ is equivalent to the existence of $a \in A, a \neq 0$, with $(\operatorname{coz} \hat{a}) \cap \tau\left(X_{B}\right)=\emptyset$. For such a, we have $\hat{a}(\tau(x))=0$ for each x, hence $h(a)=0$ and h is not one-to-one. The converse is now clear.
3. Strong uniqueness of ρA. The principal result of this section (and the paper) is
3.1 Theorem. Let $A \in \mathscr{L}, R \in \mathscr{R}$, let $h: A \rightarrow R$ be an \mathscr{L}-embedding, and suppose there is no \mathscr{R}-object properly between $h(A)$ and R. Then there is an \mathscr{R}-isomorphism $i: \rho A \rightarrow R$ with $i \circ \rho_{A}=h$.

This is the exact statement of (a) of the introduction. Before proceeding to the proof, we give some corollaries.
3.2 Corollary. For each $A \in \mathscr{L}$, Conrad's ringification $\left(c_{A}, c A\right)$ and $\left(\rho_{A}, \rho A\right)($ of 1.1$)$ are related by a commuting \mathscr{R}-isomorphism (per 3.1).

Proof. Conrad's construct satisfies the condition in 3.1, by 1.1 of [2].
3.3 Corollary. For each $A \in \mathscr{L}$, Conrad's $\left(c_{A}, c A\right)$ has the universal mapping property of 1.1.

Proof. By 3.2 and 1.1.
Thus referring to the questions at the end of [2]: 3.1 and 3.2 yield an an affirmative answer to (1); 3.1 and 3.3 yield an affirmative answer to (2).

We now present the proof to 3.1 , in several steps.
3.4 Given $A \in \mathscr{L}$, consider a diagram

with $A \xrightarrow{h} R$ as in the hypotheses of 3.1 ; the unique \mathscr{R}-morphism ρh with $(\rho h) \circ \rho_{A}=h$ exists by 1.1. Thus, the image $(\rho h)(\rho A) \in \mathscr{R}$, and by minimality, ρh is onto. We seek to prove that ρh is $1-1$. Then ρh will be the \mathscr{R}-isomorphism of 3.1.

Applying 2.2 to the above diagram yields the "dual" commuting diagram

in the category of compact Hausdorff spaces. (Here, $\hat{a} \circ \alpha=\rho_{A}(a)^{\wedge}$ for each $a \in A ; \hat{a} \circ \beta=h(a)^{\wedge}$ for each $a \in A ; \hat{b} \circ \gamma=(\rho h)(b)$ for each $b \in \rho A$.) According to 2.3, α and β are onto because ρ_{A} and h are one-to-one; and, ρh will be one-to-one if γ is onto. We prove this in two steps:
3.5 Lemma. Consider a commuting diagram

in compact Hausdorff spaces. If α is irreducible and β is onto, then γ is onto.
(A continuous function is called irreducible if it is onto, and maps no proper closed subspace of the domain onto the range.)

Proof. $\gamma(Z)$ is compact, hence closed. If γ were not onto, then $\gamma(Z)$ would be be a proper closed subspace; hence $\alpha(\gamma(Z)) \neq X$, because α is irreducible. But $\alpha(\gamma(Z))=\beta(Z)=X$, because β is onto.
3.6 Proposition. For each $A \in \mathscr{L}$, the continuous map $X_{A} \stackrel{\alpha}{\leftarrow} X_{\rho A}$ which "induces', the reflection embedding $A \xrightarrow{\rho A} \rho A$ per 2.2 is irreducible.

Proof. We need to recall the construction of ρA from $\S 6$ of [5]:
Let L be the set of principal ideals ($=$ solid subgroups) which contain the weak unit e_{A}, directed by set inclusion. For each $I \in L, \rho I$ is constructed (below) with the universal mapping property of 1.1. Then, if $J \supset I$, the inclusion "lifts" to an \mathscr{R}-morphism $\varphi_{I}{ }^{J}: \rho I \rightarrow \rho J$, which is shown to be one-to-one. This process provides a direct limit system in $\mathscr{R} . \rho A$ is defined as

$$
\lim _{\rightarrow}\{\rho I \mid I \in L\} \quad \text { (the direct limit in } \mathscr{R} \text {) }
$$

and the reflection embedding $\rho_{A}: A \rightarrow \rho A$ results from the fact that $A=$ $\cup\{I \mid I \in L\}$.

For $I \in L$, the construction of ρI is this: For some $a \geqq e_{A}$, we have $I=$ $\left\{b \in A||b| \leqq n a\right.$ for some integer $n\}$. Letting $R_{a}=\hat{a}^{-1}(-\infty,+\infty)$, each
$b \in I$ is real-valued on R_{a}, and we may view \hat{I} as a subset of $C\left(R_{a}\right)$ (the continuous real-valued functions on R_{a}). Since $C\left(R_{a}\right) \in \mathscr{R}$, there is a least " \mathscr{R}-subobject" of $C\left(R_{a}\right)$ which contains I; this is taken as ρI, with $I \rightarrow \hat{I} \subset \rho I$ the reflection embedding.

Now I has weak unit e_{A} and \hat{I} separates the points of X_{A}. By 2.1, $X_{I}=X_{A}$. Since $\rho I \subset C\left(R_{a}\right)$, there is a compactification of R_{a} over which all functions in ρI extend (with values in $[-\infty,+\infty]$) and with the extensions separating points (take a quotient of the Stone-Čech compactification βR_{a}). By 2.1, this is $X_{\rho I}$. Evidently, there is a map $\alpha_{I}: X_{\rho I} \rightarrow X_{I}=X_{A}$ extending the inclusion $R_{a} \subset X_{A}$.

For $J \supset I, \varphi_{I}{ }^{J}: \rho I \rightarrow \rho J$ is, by 2.2 , "dually induced" by a map $\alpha_{I}{ }^{J}: X_{\rho J}$ $\rightarrow X_{\rho I}$. We now have an inverse limit system of compact Hausdorff spaces. Let

$$
Z=\lim _{\leftarrow}\left\{X_{\rho I} \mid I \in L\right\}
$$

For $I \in L$, let $\Pi_{I}: Z \rightarrow X_{\rho I}$ be the projection and let $\alpha_{I} \circ \Pi_{I} \equiv \alpha: Z \rightarrow$ $X_{I}=X_{A}$. This is easily seen to not depend on the choice of I. We now shall show that α is irreducible, and then that $Z=X_{\rho A}$.

Let F be a proper closed set in Z. We may as well suppose that $F=Z-U$, where U is nonvoid and basic, of the form

$$
Z \cap \bigcap_{i=1} \prod_{I i}^{-1}\left(U_{i}\right)
$$

U_{i} open in $X_{\rho I_{i}}$. For each i, let a_{i} be a generator for I_{i} with $a_{i} \geqq e_{A}$, and let I be generated by $a_{1} \vee \cdots \vee a_{n}$. Since $I \supset I_{i}$ for each i, U collapses to $Z \cap \Pi_{I}^{-1}(G)$, where

$$
G=\bigcap_{i=1}^{n}\left(\alpha_{I_{i}}\right)^{-1}\left(U_{i}\right)
$$

Then

$$
\alpha(F)=\alpha_{I}\left(\prod_{I}(F)\right)=\alpha_{I}\left(\prod_{I}(Z-U)\right)=\alpha_{I}\left(X_{\rho I}-G\right)
$$

Now $\alpha_{I}\left(X_{\rho I}-R_{a}\right)=X_{A}-R_{a}\left(a=a_{1} \vee \cdots \vee a_{n}\right)$ by 6.11 of [3]. Since $G \cap R_{a} \neq \emptyset, \alpha_{I}\left(X_{\rho I}-G\right)$ misses some points of R_{a}, hence is a proper subset of X_{A}. Thus, α is irreducible.

To see that $Z=X_{\rho A}$, we create a point-separating representation of ρA on Z and use 2.2. If $f \in \rho A$, then $f \in \rho I$ for some I and is viewed as a $[-\infty,+\infty]$-valued function on $X_{\rho I}$. Let $\hat{f}=f \circ \Pi_{I}$; this is independent of I. We want to show that

$$
\hat{f}^{-1}(-\infty,+\infty)=\prod_{I}^{-1}\left(f^{-1}(-\infty,+\infty)\right)
$$

is dense, and it is easy to check that irreducible maps inversely preserve dense sets. So, it suffices that Π_{I} be irreducible. But $\alpha_{I} \circ \Pi_{I}=\alpha$ is irreducible,
and so is α_{I} (from the end of the last paragraph); thus Π_{I} must be. To see that the \hat{f} 's separate points, suppose $p \neq q$ in Z. For some coordinate I, $p_{I} \neq q_{I}$, and there is $f \in \rho I$ with $f\left(p_{I}\right) \neq f\left(q_{I}\right)$; then $\hat{f}(p) \neq \hat{f}(q)$.

The proof of 3.6 is complete.
4. On irreducibility and strong uniqueness. We make a few remarks on the material of the preceding section. The first gives an algebraic version of the irreducibility condition, and the second points out a generalization of 3.1.
4.1 Proposition. Let $h: A \rightarrow B$ be an \mathscr{L}-embedding. Then, $h(A)$ is large in B if and only if the $\operatorname{map} \alpha: X_{B} \rightarrow X_{A}$ "dually inducing" h (per 2.2) is irreducible.
("Large" means that each nonzero ideal of B meets $h(A)$ non-trivially, or that whenever $0<b \in B$, then there are $a \in A$ and an integer n, with $0<$ $h(a)<n b$.)

Proof. First, irreducibility of α is easily seen to be equivalent to: For O open and nonvoid in X_{B}, there is an open nonvoid V in X_{A} with $\alpha^{-1}(V) \subset O$. The sets O and V may be taken to be basic; a convenient basis for an X_{A} is $\left\{\operatorname{coz} \hat{a} \mid a \in A^{+}\right\}$(as in the proof of 2.2).

So, let $h(A)$ be large in B, let $0=\operatorname{coz} \hat{b}$ be given and choose a and n with $0<h(a)<n b$. Obviously, $\operatorname{coz} h(a)^{\wedge} \subset \operatorname{coz}(n b)^{\wedge}=\operatorname{coz} \hat{b}$. But $h(a)^{\wedge}=\hat{a} \circ \alpha$, and $\operatorname{coz} h(a)^{\wedge}=\alpha^{-1}(\operatorname{coz} \hat{a})$. Thus $V=\operatorname{coz} \hat{a}$ has $\alpha^{-1}(V) \subset O$.

Conversely, let α be irreducible and let $0<b \in B$. Choose n and open O with $\hat{b} \mid O \geqq 1 / n$. Now take $V=\operatorname{coz} \hat{a}_{1}\left(a_{1} \in A^{+}\right)$with $\alpha^{-1}(V) \subset O$, and let $a=a_{1} \wedge_{\hat{b}}\left(\right.$ so $\left.\hat{a}=\hat{a}_{1} \wedge 1\right)$. Then $\operatorname{cozh}(a)^{\wedge}=\alpha^{-1}(\operatorname{coz} \hat{a})=\alpha^{-1}\left(\operatorname{coz} \hat{a}_{1}\right) \subset$ $O \subset \operatorname{coz} \hat{b}=\operatorname{coz}(n b)^{\wedge}$. Clearly, $0<h(a)<n b$.

Combining 4.1 with the obvious generalizations of 3.4 and 3.5 (whose proofs work here), we have
4.2 Proposition. Let \mathscr{S} be a subcategory of \mathscr{L}, and let $A \in \mathscr{L}$ have an \mathscr{S}-reflection $S_{A}: A \rightarrow s A$ with S_{A} an \mathscr{L}-embedding. If $S_{A}(A)$ is large in $s A$, then any \mathscr{L}-embedding $h: A \rightarrow S$ for which there is no \mathscr{S}-object properly between $h(A)$ and S is, up to \mathscr{S}-isomorphism (as in 3.1), the \mathscr{S}-reflection.

Remarks. (a) We do not suppose \mathscr{S} is reflective, only that there be S_{A} : $A \rightarrow s A(s A \in \mathscr{S})$ with the required universal mapping property (as in 1.1).
(b) Conrad showed that for his $\left(c_{A}, c A\right), c_{A}(A)$ is large in $c A$. But without knowing reflectivity (one of Conrad's questions), we don't see how to get the conclusion of 4.2 (another of his questions).

The conclusion of 4.2 (or 3.1) seems a striking property. It is well known to fail for "almost reflections" like Dedekind or lateral completion, and is very uncommon for topological embedding - reflections. (The only such examples we know are in Hausdorff uniform spaces; those epi-reflective subcategories
which contain all complete spaces.) On the other hand, we know of no embed-ding-reflection in \mathscr{L} for which it fails.
4.3 Question. It it true that whenever \mathscr{S} is an embedding-reflective sub)category of \mathscr{L}, then for each reflection $S_{A}: A \rightarrow s A, S_{A}(A)$ is large in $s A$?
5. Lateral completeness. We present two examples of laterally complete l-groups A for which ρA fails to be laterally complete; thus Conrad's question (3) is answered negatively. The first example below was contributed by the referee, who called it "the discrete version of the (second) example . . ."; this is quite simpler then the second example. The second example (our original one) is, however, a vector lattice, and since we don't see how to get a simpler vector lattice example, we include it here. (These examples are also orthocomplete with ρA failing to be (the first directly, the second by [8]) ; this was part of Conrad's question).
5.1. Example. Let T be the subgroup of the additive reals R generated by 1 and π. For each i, let T_{i} be a copy of T and let

$$
A=\prod_{i=1}^{\infty} T_{i}
$$

Then A is laterally complete, but the subring A^{\prime} of $\prod_{i=1}^{\infty} R_{i}$ generated by A is not laterally complete. And $A^{\prime}=\rho A$ either by 3.1 or by 1.1 of [2] (since A is large in $\prod_{i=1}^{\infty} R_{i}$).
5.2. Example. Let A be the lateral completion of the vector lattice P of continuous piecewise linear functions on the unit interval. We shall see that A is not laterally complete. We require a description of A.

Let X be the projective cover of the unit interval [4]: X is compact, extremally disconnected, and there is an irreducible map $\alpha: X \rightarrow[0,1]$. (Or, X is the Stone space of the Boolean algebra of polars of P.) A familiar $[\mathbf{7} ; \mathbf{1}]$ representation of P is created, with

$$
\bar{P}=\{p \circ \alpha \mid p \in P\} .
$$

(As in §3, the sets $(P \circ \alpha)^{-1}(-\infty,+\infty)$ are dense, by irreducibility of α). Then the lateral completion A emerges as the set of all $f \in D(X)$ such that for some disjoint family \mathscr{U} of clopen sets with $\cup \mathscr{U}$ dense, $f \mid U \in \bar{P}$ for each $U \in \mathscr{U}$ (Theorem 11 of [8]).

The description of these functions can be simplified a bit: First, such \mathscr{U} 's are at most countable because $[0,1]$ has the countable chain condition, and irreducible maps inversely preserve this property. Second, then, if $f \in A$ there is $\mathscr{U}=\left\{U_{n}\right\}$ countable, and for each $n, P_{n} \in P$ such that $f\left|U_{n}=\overline{P_{n}}\right| U_{n}$. Associated with P_{n} is a "partition" of [0,1], say $0=x_{0}<x_{1}<\cdots<x_{k+1}=$ 1 , such that on each $\left[x_{i}, x_{i+1}\right], p_{n}$ is linear. Then $C_{i}{ }^{n}=\mathrm{cl}_{X} \alpha^{-1}\left(x_{i}, x_{i+1}\right)$ is clopen in X (by extermal disconnectivity). Thus, for each i, there is linear q_{i}, such
that $\overline{P_{n}}\left|C_{i}{ }^{n}=q_{i}\right| C_{i}{ }^{n}$. So, the system $\mathscr{V}=\left\{U_{n} \cap C_{i}{ }^{n}\right\}_{n, i}$ consists of disjoint clopen sets, the union is still dense, and for each $V \in \mathscr{V}$ there is a linear q_{V} such that $f\left|V=\overline{q_{V}}\right| V$.

Changing the notation, we have the following characterizing description of those $f \in A$: There is a countable dense disjoint family $\left\{U_{n}\right\}$ of clopen sets, and for each n, linear $q_{n} \in P$, such that $f\left|U_{n}=\overline{q_{n}}\right| U_{n}$.

By extremal disconnectivity, $D(X) \in \mathscr{R}$, so by 3.1 or by $\S 1$ of [2] ρA is the smallest \mathscr{R}-subobject (i.e., l-subring) of $D(X)$ which contains A. This, it is easy to see, consists of those $f \in D(X)$ for which there is a positive integer d and a countable, dense, disjoint family $\left\{U_{n}\right\}$ of clopen sets, and for each n a polynomial p_{n} of degree $\leqq d$, with $f\left|U_{n}=\overline{p_{n}}\right| U_{n}$.

Thus we see that ρA is not laterally complete: Take any such infinite system $\left\{U_{n}\right\}$, let \mathscr{X}_{n} be the characteristic function of \mathscr{U}_{n}, and for each n choose a polynomial p_{n} of degree $\geqq n$. Then each $\mathscr{X}_{n} \overline{P_{n}} \in \rho A$ but $\vee_{n} \mathscr{X}_{n} \overline{P_{n}} \notin \rho A$.

References

1. S. Bernau, Unique representations of lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.
2. P. Conrad, The additive group of an f-ring, Can. J. Math. 26 (1974), 1157-1168.
3. L. Gillman and M. Jerison, Rings of continuous functions (Princeton, 1960).
4. A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482-489.
5. A. W. Hager and L. C. Robertson, Representing and ringifying a Riesz space, Proceedings, 1975 Rome Symposium on ordered groups and rings: Symposia Mathematica 21 Bolgona (1977), 411-431.
6. H. Herrlich and G. Strecker, Category theory (Boston, 1973).
7. F. Maeda and T. Ogasawara, Representations of vector lattices, J. Sci. Hiroshima Univ. (A) 12 (1942), 17-35.
8. A. I. Veksler and V. A. Geiler, Order and disjoint completeness of linear partially ordered spaces, Siberian Math. J. (Plenum translation) 13 (1972), 30-35.
9. K. Yosida, On the representation of the vector lattice, Proc. Imp. Acad. Tokyo 18 (1942), 339-342.

Wesleyan University,
Middletown, Connecticut

[^0]: Received March 15, 1977 and in revised form, May 15, 1978.

