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ABSTRACT 
The rate of icing in the wet growth conditions 

typical of ship icing and icing in freezing precipitation 
depends on the rate at which the heat liberated in the 
freezing process is transferred to the environment. A 
theoretical model for the heat transfer from the front 
half of a rough cylinder, based on boundary-layer theory, 
is described . 

Comparisons with empirical data show that the 
model simulates well the overall heat transfer rate from 
the front half of a cylinder with distributed roughness . 
The theory provides improved agreement between the 
results of a numerical icing model and icing wind 
tunnel tests. 

INTRODUCTION 
The icing of structures at the earth's surface often 

occurs under conditions where the flux of water droplets 
impinging the surface is sufficiently high tha t all the 
water does not freeze and the excess water runs off 
from the surface. This kind of wet growth icing is a 
serious problem for objects such as power line cables, 
masts and superstructures of a ship . Under wet growth 
conditions the rate of icing depends on the rate at 
which the latent heat liberated in the freezing can be 
transferred to the environment, ie the icing rate on an 
object under wet growth conditions is determined largely 
by the heat transfer coefficient around the front half 
of the object. 

When icing occurs, the resulting ice surface is 
often quite rough . Moreover, the roughness characteristics 
may change both in space and in time during the icing 
process. Increasing roughness causes an earlier transition 
from a laminar to a turbulent boundary-layer and 
increases the heat transfer rate in the turbulent part of 
the boundary-layer. 

Attempts have been made to take the effect of 
roughness into account in the icing models, by using 
simple fits to experimental data on heat transfer from 
rough cylinders (Lozowski and others 1983; Makkonen 
1984). However, there is clearly a need for theoretical 
description of the effect of roughness in the icing 
models. 

In this paper a boundary-layer model for 
calculating the local heat transfer coefficient around the 
front half of a cylinder is described. The emphasis is to 
simulate the overall heat transfer from the front half of 
a cylinder, although detailed distribution of the local 
heat transfer coefficient must be modeled for this 
purpose . The application is mainly where icing occurs 
under conditions where the shape of the object remains 
nearly cylindrical during the icing process (transmission 
line cables, for example). 
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THE MODEL 
Boundary-layer equations 

The theory is described in detail by Makkonen 
(\985 ). Here, only the basic principle of the model is 
given . The model assumes an infinitely long cylinder of 
diameter D, and considers a steady two-dimensional 
incompressible boundary-layer on its surface from e = O· 
(stagnation line) to e = 90·. Under these assumptions the 
boundary-layer equation of the forced flow reduces to: 

au au 
u -- + v ~+~~ (I) 

p dx p ay ax ay 

where u and v are the flow velocity components, p is 
the air density, p the pressure and v the kinematic 
viscosity of air and TO is the shear stress at the wall 
(y=O). 

It is assumed that the velocity distribution outside 
the boundary-layer is: 

where 

u CD (x) = 1.58 sin (1.233e(x» U 

e(x) 
2x 
D 

and U is the free stream velocity. 

(2) 

(3 ) 

Equation 2 is based on the observed pressure 
distributions around rough cylinders (Guven and others 
1980; Nakamura and Tomonari 1982) which show little 
dependency on the cylinder Reynolds number and the 
roughness element height. Integrating (1) with respect to 
y from y= 0 (wall) to y= CD and taking into account the 
continuity equation and the Bernoulli equation, the 
momentum-integral Equation 4 is obtained. 

(4) 

where 51 is the displacement thickness and 52 is the 
momentum thickness , respectively (Kays and Crawford 
1980: 50). 

Using the approximate solution of Equation 4 for 
the momentum thickness in a laminar boundary-layer, 
and deducing the energy-integral equation for a laminar 
boundary-layer by multiplying Equation I by u and 
applying the same integration, it can be shown (Kays 
and Crawford 1980) that the local cylinder Nusselt 
number NUJ. on a cylinder with a diameter D in the 
laminar regIOn is: 
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o J 
The power-law for the normal velocity distribution 

in the turbulent boundary-layer, which follows from 
Prandtl's mixing length theory, results in the following 
equation for the shear stress TO ' evaluated at the wall 
surface (Kays and Crawford 1980): 

TOT (x) = 0.0125 p u! (x) 62 (X):'" (x) (6) 
[ ]

~. 25 

When Equation 6 is substituted in the momentum-integral 
Equation 4 the solution for the momentum thickness 62 for 
the turbulent boundary-layer (Kays and Crawford 1980) is: 

(x)dx 
]

0 .8 

(7) 

The stanton number St for a fully rough flow (Kays and 
Crawford 1980) is: 

c {(x)/2 
St(x) = -------

Prt + Ic{(x)/2 St -:(x) 
(8) 

where Stl< is the Stanton number based on the friction 
veloicty, c is the specific heat of air, and Pr t is the 
turbulent Prandtl number which is approximately constant at 
0.9 for gases (White 1974). The local friction coefficient c{ 

To(X) 
c {(x) 

P'" [u !(x)/ 2] 

is related to the momentum thickness 
equivalent sand grain roughness height 
Crawford 1980) by: 

c {(x)/ 2 
0.168 

[In(84662T(X)/ k.)] 2 

(9) 

62 and to the 
k. (Kays and 

(10) 

The parameter Stl< in Equation 8 is formulated using the 
roughness Reynolds number: 

Re.(x) (11 ) 
v 

and the Prandtl number Pr (Owen and Thomson 1963) by: 

(12) 

According to Owen and Thomson (1963) ex = 0.52 is a good 
approximation. The friction velocity UT in Equation II is 
defined as: 

u (x) = ! To)X) (13) 
T P 

where T is evaluated from Equation 6. Finally, using 
°T 

Equations 6-13 the Stanton number St is calculated and then 
the local Nusselt number for the turbulent region is 
obtained as: 

St(x)u ",(x)pcpD 

ka 
(14) 

where c is the specific heat and ka is the thermal 
conductiJity of air. 
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The calculation procedure 
The properties of air, p, c , v, and ka' are temperature 

dependent, and the mean of the free-stream temperature 
and the surface temperature (O°C) is assumed to represent 
the boundary-layer temperature in the model. The other 
input parameters for the model, in addition to the free
stream temperature, are the free-stream velocity U, the 
cylinder diameter D, the roughness element height k and 
the equivalent sand-grain roughness k •. 

If the roughness elements are not of uniform size, then 
the maximum probable height should be used as k. The 
calculation starts at the stagnation point (a = x = 0), where 
the velocity u'" is zero. At that point the local Nusselt 
number Nu(O 0) is assumed to be equal to /Re, where Re 
is the cylinder Reynolds number (Re = UD/v). 

The calculation then proceeds by steps of 50, and the 
momentum boundary-layer thickness and the local Nusselt 
number NUL are calculated through numerical integration for 
each angular step taking into account the velocity 
distribution. At the first calculation point where the 
transition criterion shows turbulent flow, the value of NUL 
is excluded and the point of transition x

tr 
(and the 

transition angle atr) is determined by simultaneous linear 
interpolation of both the criterion parameter ReI< and its 
critical value. 

The criterion parameter applied in the model is the 
local roughness Reynolds number 

u (x,k) k 
(15) 

v 

where k is the height of the roughness elements. 
The transition from laminar to turbulent flow occurs 

in the model at the angle atr at which 

Rek(x tr) = 600 exp [-0.9 >.(x)] (16) 

where 

>.(x) 
6~ (x) du",(x) 
~---

v dx 
(17) 

Beyond the transition point a > atr the calculation is based 
on the theory for the turbulent boundary-layer (Equation 
14 for the Nusselt number). 

When the calculation of the local Nusselt number is 
completed for all the calculation points a = 0-90

0
, the 

overall Nusselt number for the front half of the cylinder, 
NUm is determined as the mean of the local values of Nu. 

RESULTS AND DISCUSSION 
Three examples of model simulations of the variation 

in the local Nusselt number Nu are shown as solid lines in 
Figure I. At the smallest cylinder Reynolds number, Re = 

4.8 x 104, the flow is laminar at all angles and the heat 
transfer coefficient decreases slowly with increasing angle a. 
At the higher Reynolds number, Re = 2.8 x 105, the 
transition from laminar to turbulent flow occurs at a = 60

0
, 

and then decreases. The curve for the highest Reynolds 
number Re = 8.8 x 105 in Figure I shows a qualitatively 
similar behaviour. The angle of maximum Nu at Re = 8.8 
x 105 is - 58

0 
which is almost the same as that for Re = 

2.8 x 105: In fact, test simulations showed that the angle of 
maximum local heat transfer coefficient is between 55

0 
and 

61 0 at all combinat.ions of U, D, k and k. which are 
possible on ground- based structures, and which produce 
turbulent flow at the cylinder surface. A conclusion of this 
is that the "horns", typical of an ice shape under wet 
growth conditions on a non-rotating cylinder, tend to start 
forming at about 58

0
, regardless of the growth conditions 

and the cylinder size. 
In the comparisons with Achenbach's (1977) data 

(Figures I, 3 and 4), the cylinder Reynolds numbers and 
Nusselt numbers are based on the free-stream temperature 
of the experiment. The experimental points fall very close 

to the theoretical curve except at high surface angles, where 
no attempt was made in the model to take into account the 
separation of the boundary-layer. Comparisons between the 
theory and experiments with the two other roughness types 
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Fig.1. Local heat transfer coefficient Nu".Re on a rough 
circular cylinder at various cylinder Reynolds numbers. 

in Achenbach's (1977) experiments and with variable 
Reynolds number showed generally similar agreement as in 
Figure 1. 

The emphasis in the present model is in estimating 
the overall heat transfer coefficient of the front half of a 
rough circular cylinder to be used in icing models intended 
to simulate the total icing rate of the object. The main 
interest here is, therefore, the dependence of the mean 
Nusselt number NUm on the meteorological cond.itions, 
cylinder size and roughness. A feature of the theoretical 
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Fig.2. Ratio of the mean Nusselt number on a front half of 
a rough cylinder Nu",(k.) to its value Num(O) on a smooth 
cylinder as a function of the equivalent sand roughness 
k.. It is assumed in the model that the actual roughness 
element height k = k •. 
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Fig.3. Mean Nusselt number Nu of the front half of a 15 
cm diameter cylinder as am function of the cylinder 
Reynolds number. 

model which deserves particular attention in this connection 
is that the cylinder Reynolds number Re is not a similarity 
parameter as far as the mean heat transfer from the front 
half of the cylinder is concerned. For example, it turns out 
that the transition angle etr is practically independent of the 
cylinder diameter D, but depends on the velocity U. It 
should be noted that owing to this non-similarity, the 
results in Figure I are valid for D = 15 cm only. 

Roughness affects the Nusselt number only when the 
boundary-layer flow is turbulent, and, therefore, the points 
in Figure 2 at which the mean Nusselt number Nu (k) 
deviates from its value Num(O) for a smooth cylind:r 
(Num(O) is approximately equal to 0.75 x /"Re) indicate the 
critical roughness which causes transition on the cylinder 
surface. When k. increases and the transition occurs, there 
is first an abrupt increase in modelled NUm' With further 
increase in k., etr decreases, with consequent increase in the 
mean Nusselt number. Simultaneously local Nusselt numbers 
in the turbulent region increase. Hence, there is first a 
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Fig.4. Mean Nusselt number of the front half of a 15 cm 
diameter cylinder calculated by the model vs the 
experimental value by Achenbach (1977). 
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rapid increase in NUm wit~ increasing k., but as the 
transition angle approaches 0 , NUm increases more slowly 
because there is no more noticeable increase in the 
proportion of the surface where the boundary-layer flow is 
turbulent. Figure 2 shows that the relative effect of 
roughness on the heat transfer coefficient increases with the 
free-stream velocity, so that the ratio NUm (I mm)/ Num(O) 
is about 2 in typical conditions of icing of stationary 
structures. It can also be seen in Figure 2 that NUm is not 
very sensitive to small variations in k., except close to the 
critical k. at which the transition occurs. 

Figure 3 shows a comparison between the observed 
and calculated mean Nusselt numbers NUm for one 
roughness of Achenbach's (1977) measurements. In the 
figure two curves representing parametrizations of the heat 
transfer coefficient in two recent icing models are also 
shown. The small differences between the model predictions 
and the experimental values may be caused by neglecting 
the separation of the boundary-layer in the laminar case 
and by the fact that a part of the turbulent boundary-layer 
is not in the fully rough regime, for example. The model 
seems to be able to simulate the mean Nusselt number NUm 
well in the whole range of Re (at fixed D), and to 
describe the experimental data more precisely than the 
previous parametrizations used in the icing models. 

The comparisons between the model results and the 
experimental data by Achenbach (1977) are summarized in 
Figure 4. The model results show significant deviations from 
the experimental values only at very high Reynolds numbers 
and at Reynolds numbers at which the error caused by 
inaccuracy in the transition angle has a great effect on 
NUm· 

Ice accretions formed in the wet growth conditions 
have typically roughness element heights of the order of 
1-3 mm, and at these roughnesses the model indicates that 
NUm is not very sensitive to k.. This means that the 
formulation by Makkonen (1984) (Figure 4) in a wire icing 
model is probably a good estimate for NUm' at least at high 
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Fig.5. Ice mass on a fixed cylinder based on the theoretical 
model by Makkonen (1984) including the present heat 
transfer theory vs experimental ice mass by Stallabrass 
and Hearty (1967). The duration of icing is one hour, 
the liquid water content 3.2 gm-3 , the median volume 
droplet diameter 200 JLITl and the wind speed 22.4 ms-I. 
Air temperature varies between -16·C and -4·C and the 
cylinder diameter between 3.8 cm and 45 .7 cm. The 
estimated equivalent sand grain roughness of 2 mm is 
used in the model simulations. 
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wind speeds, at which the major part of the boundary-layer 
is turbulent. 

If the roughness element height of the ice accreted 
can be estimated, the use of the present heat transfer model 
as part of an icing model results in good predictions of the 
icing rate. This is demonstrated in Figure 5 which shows a 
comparison between the experimental ice loads on fixed 
cylinders by Stallabrass and Hearty (1967) and the theory. 
The theoretical results in Figure 5 were obtained by 
modifying the time-dependent wire Icmg model by 
Makkonen (1984), so that the ice accreted is distributed on 
the front half of the cylinder only, and that the present 
heat transfer model is included. The regression line in 
Figure 5 is surprisingly close to direct proportionality, 
considering the uncertainty in the roughness element height 
and the deviations of the experimental ice deposits from the 
cylindrical shape. 

The model proposed is also useful in the modeling of 
icing under dry growth conditions (rime formation), because 
the heat balance of the Icmg surface is needed in 
calculating the density of rime. The ice density, on the 
other hand, affects the rate of formation of ice loads on 
transmission line cables, as an example (Makkonen 1984). 

The present model can readily be modified to describe 
heat transfer from non-cylindrical objects as well, by 
changing the pressure distribution to correspond to the 
shape in question. Doing this in practice requires more data 
on pressure distributions around objects of various shapes 
and rough surfaces. 
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