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CURVATURE, GEODESICS AND THE BROWNIAN MOTION
ON A RIEMANNIAN MANIFOLD I1

EXPLOSION PROPERTIES
KANJI ICHIHARA

§1. Introduction

Let M be an n-dimensional, complete, connected and non compact
Riemannian manifold and g be its metric. 4, denotes the Laplacian on M.

The Brownian motion on the Riemannian manifold M is defined to
be the unique minimal diffusion process (X, {, P,, x € M) associated with
the Laplacian 4, where {(») is the explosion time of X,(0) i.e. if {(0) <
+ oo, then lim X,(0) = oo.

In thetﬁf);%vious paper [3], the author has discussed recurrence and
transience of the Brownian motion X on M. This paper may be considered
to be a continuation, in which the relation between explosions of the
Brownian motion X and geodesics, curvature of the Riemannian manifold
M will be investigated. It should be remarked that Yau [7] has given a
sufficient condition for no explosion of the Brownian motion in terms of
the Ricci curvature.

Let us begin with the Brownian motion X° = (X9,¢°, P%, xe M,) on a
model (M,, g,) where the model (M, g,) is defined to be a Riemannian mani-
fold R* = [0, +o0) X S*°! given a metric dr* 4 g,r)'d¢, (r,0) € (0, +o0) X
S™-1, See Ichihara [3] for the precise definition. Then by the same
reasoning as in Ichihara [3] Section 1, we obtain from Fellers tests for
explosions, Mckean [5],

ProrositioN 1.1. It holds whether

P {’= +o0} =1 on M
or Py{{" = +o00} =10 on M

according as
Received July 23, 1980.
115

https://doi.org/10.1017/5002776300001998X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001998X

116 KANJI ICHIHARA
f go(r)“"“drfrgo(s)"“ds = 4o or < 4oo.

§2. Tests for explosions of the Brownian motion on a Riemannian
manifold M

Let normal, minimal geodesics be defined as in Ichihara [3]. Ric,
and K, denote the Ricci, and sectional curvatures respectively. K (r),

r =0 is the radial sectional curvature of a model (M,, g, defined in
Ichihara [3].

Our main theorems are stated as follows.

TreorEM 2.1. If for some p € M there exists a model (M,, g,) satisfying
the following two conditions (1) and (i), then no explosion for the Brownian
motion X is possible. i.e.

Pl = +oo}=1 on M.
(i) For every minimal geodesic m(r) : [0, £(m)) — M, m(0) = p,
Ric,(i(r)) = (n — DK(r)  on [0, £&(m)) .

@) [ amdr [ glords = oo

THEOREM 2.2. Let M be simply connected. If for some pe M there
exists a model (M,, g,) satisfying the following two conditions (i) and (ii),
then explosion for the Brownian motion X is sure. i.e.

P{L<+ow}=1 on M.
(i) For every normal geodesic m(r) : [0, + c0) — M, m(0) = p,
K, (m(r), X) < K(r) for every unit vector X e N(m(r)) on [0, + o)

@) [ e ridr [ g ids < oo

In order to prove the above theorems, we shall introduce the following
notations.

o,(w) = inf{t > 0|d(p, X (@) Z p}, >0
u(x) = Efe}, 2, ={xeM|d(p,x) < p}

where d(x,y) is the distance induced by the Riemannian metric. oI, u)
and Y% denote the corresponding ones of the Brownian motion on a model
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(M,, g,) centered at p = the origin 0.

The following proposition will be proved in a similar way to that of
Ichihara [2].

ProposiTioN 2.1. For each pe (0, +c0), u, € C~(2,) and 4dyu, — u, =0
in ¥,. Furthermore in case of a model (14, g,)

lim #(y) =1
yess

for each x€d(29), the boundary of .

Proof of Theorem 2.1. Since M, is rotationally symmetric about 0,
u)(x) is a radial function. i.e.

u(x) = ul(r) for x = (r,0) e M, .
Thus u) € C~([0, p)) satisfies

du(r) | (n—1) dg(r) duy(r) _
dr® g dr dr

u(r)

on (0, p). Note that u)(r) is, by definition, an increasing function of r.
Set @,(x) = ul(d(p, x)). Therefore following an argument similar to Yau
6], Appendix, we can obtain under the assumption (i) that

Ayt (x) < dyud(r)
for r = d(p, x) < p, in the distribution sense. Consequently
Ay, — 0, < 4y u) — u), =0 in 2,.
Set

D,(x) = u,(x) — @,(x),

then it holds that
4,0, — @, = dyu, — u,) — dya, —a,) =0.

i.e.

4,9, = 0, in %,

in the distribution sense.
We shall show that for each o >0

P,(x)Z0 in ¥

P
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Suppose on the contrary that with some p, > 0
sup @,,(x) > 0.

Z€Z gy
Since (x) @, is continuous in ¥, and

(%) lim @, (y) < 0 for each xed,
Ve T

from Proposition 2.1, there exists a point x,€ 2, such that

?, (%) = sup &, (x) > 0.
z€ L pg

Set
C={xe2,|D,(x) > 0}.

Denote by C,, the connected component containing the point x, of the set
C. Then from the facts (x) and (xx),

lim®,(y) <0  for each x€dC,,.

Y-
YECx,

Since @, is weakly 4,-subharmonic in C,,, applying the strong maximum
principle in Littman [4] we obtain

?,(x) =9, (x) for each x¢ C,,,
which is a contradiction. Thus we have shown that for each p > 0,

P(x)<0 in2Y,.
ie. u,(x) < a,(x) for every xe 2, .

Under the assumption (ii) in Theorem 2.1, the Brownian motion X°
on the model (M, g,) is conservative. (See Proposition 1.1.)

ie. P’ = +}=1 on M,.
Moreover

up(r) = up(x) = Eife+}
converges to

Ei{e *}

for each x = (r, 8) € M, because ¢) —>{* as p — +oo. Thus we see that
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lim &{(r) = 0 for every r = 0.

p—+oo

Hence it follows from the inequality proved above that

limu,(x) =0 for every xe M.

o=t
Since ¢, - { as p — + oo, we see that

0 = lim u,(x) = E,{e"%} for every xe M.
ptoo

Thus we can conclude
P{{=+o}=1
on M. q.e.d.

Proof of Theorem 2.2. We first note that under the assumptions exp,
maps T,(M) diffeomorphically onto M as shown in Ichihara [3]. Thus we
have geodesic polar coordinates (r, 6) € (0, +o0) X S"~! centered at p.

Now define v = v(r), r = 1 to be the positive increasing solution:

Me

v= U, v, =1

K
1l

0
v,(r) = L gi(s)-"*'ds L g, (Bdt, m=1

1 _d wer du(r)\ _
of o dr (go(r) 7) —ur), r>1

Then it can be easily seen that
u(r) < exp {v(n)}

for every r = 1 and so u(r) is bounded above from the assumption (ii) of
Theorem 2.2.

Set ¥(x) = v(d(p, x)). Then with the geodesic polar coordinates (r, 6)
and G(r,6) = +det(g,,)(r,6) where g = g,,dx,dx;, we have

ey dhu(r) 1 oG(r, 6) du(r)
48() dar’ + G(r,6) or dr lr=aoo’

By virtue of Hessian comparison theorem, Greene and Wu [1]

dxu(r) (n — 1) dg(r) du(r) B .
= dr’ + 2 dr  dr lraes v(d(p, x)) = B(x) .
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Now applying Itd’s formula to the function e ‘fi(x), we obtain from the
above inequality that
v)E e, p, £ t.} + Efe ™, 0, > 7.} = U(x)

for each xe 2, — 2, where 7,(0w) = inf{t > 0|d(p, X,(v)) £ 1}. Letting p —
+ o0, we have

Woo)E e <t} + Efe, >} = Ux).

because g, —{ as p — + oo,
We shall show

(%) Efe ", e, < Pfr, < —>0 as d(p,x) > +oo.
Set

ﬁgwwa

j" gs)"'ds

1

V() = V(%) = ¥,(d(p, %))

and
$,(x) = P{r, <o} for each p>1.
Then it is easy to see that
dy4,=0 in 3, — 3,

(1 ifdpH=1
7(x) = {0 if d(p, %) = p

and

R P
Furthermore Hessian comparison theorem [1] gives that
4,¥,<0 inJ3,— 3.
Consequently we can deduce by virtue of the maximum principle,

3 ()T, (x) xeX, — 3.
Le. Pz, < ,} < ¥,d(p, ) .

Since ¢, —»{ as p — + oo, we get
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" amymar
a(p, z)

[ &y rviar

Pir, < < for d(p,x) > 1,

which gives the desired result (x). Thus we obtain from (x)

limEfe ¢ < e} =1

Z— oo

and so

lim P{¢ < oo} = lim E.{fe-%} = 1.

T— o0 L0

By the strong Markov property
PL < 400} = E{Py, {t < oo}
for every p > d(p, x) and hence
= lim B{P,, ¢ < +oo}} = Ef{lim P, ¢ < +oo}} = 1.

p—too p—+

This completes the proof. q.e.d.

§3. Some examples

In [7], Yau has shown that no explosion for the Brownian motion is
possible if the Ricci curvature of M is bounded from below by a constant.
We shall extend this result as follows.

1. If for a fixed p e M and every minimal geodesic m(r) : [0, £(m)) —
M, m(0) = p,
Ric, (m(r)) = — Cir* — G, on [0, £(m))
with positive constants C, i = 1, 2, then no explosion for the Brownian

motion X is possible.

Proof. In order to prove this, it is enough to show the existence of
a model (M,, g,) which satisfies the conditions (i) and (ii) in Theorem 2.1.

Set K(r) = — C,r* — C,, re[0, +o0) and let gi(r) e C([0, + o)) be the
unique solution of the following Jacobi equation.

dg(r) _ _ Ky(r)g,(r) 8(0) = 0, j;_g'o_(o) =1.
dr? dr

Then the Sturm comparison theorem asserts that g(r) > r for every r > 0.
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Thus we have obtained a model (M, g,) satisfying (i) in Theorem 2.1.
It remains to verify the condition (ii). In order to do it, we shall
introduce the function

&8.(r) = exp {krt}

with a positive constant k2. Define

1 dg() 5
Kl = —_— = — 4k -_ 2k .
M==2" ar "

For a fixed positive number r,, it is easily seen that with a sufficiently
large &

(*) K(r) < K(r) foreveryr=r,
and
1 dg 1 dg
(%) L(r) = (ro) .
&) dr ’ gury) dr 0
From the equations (d’g(r)/dr’) = — KJ(r)g(r), i =0, 1, we have, for

every r = r,,

0 = g(r) dzg;ﬁ") - dzfl‘;ﬁ") & + (K — Km)eradr)

_ d dgo(r) d dgl(r )
=2 (e %0 — 2 (28D 1 &) - Kraesn).

Hence we see from (x)

600 — g0 RO [ (K(5) - Kosiode)ds < 0.

Therefore it follows from (x*) that
g(r) G _ o) 980 ¢
dr dr

1 dg() o 1 dgr)
g(r) dr — g(r) dr

ie.

for every r = r,.
Set

e = ewrduf gordv =0 1.
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Then these functions satisfy

j d’'G(r) +B()de(r)

on [r07 +OO)

d 2
[Gi(ro = 40y =0
_ 1 dgn)
where B,(r) = 20 dr

Since B(r) = By(r) on [r,, +) and G, is an increasing function, we have

1= 27

Solving this differential inequality, we can easily see that
Gi(r) = G(r)

for every r = r,.
Thus in order to verify the condition (ii), it suffices to show

Gy(+o0) =

We now compute
G.(+00) = jw drf; exp{— (n — Dkrt + (n — Dke}dt
- j“’ dr j” exp{(n — Dkrt)-exp{— (n — Dkt)ds .
Using the following inequality

r’ exp{— (n — Dke)dt

el ) 2
> (Vo —Dkr 4+ — (n— Dkry,
=S} (n—Dkr + T = Dkr exp{— (n — 1kr’}

we have
> fw (n — Dkr + 1)'dr = +oo.
This completes the proof. q.e.d.
The next example will be shown in a way similar to the proof of

Example 1.
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2. Suppose M is simply connected and negatively curved. If for a
fixed p e M and every normal geodesic m(r) : [0, 4+ o0) — M, m(0) = p
Ky(m(r), ) < — Cr? for every r > G,

with positive constants C;, 1 = 1, 2 and §, then explosion for the Brownian
motion X on M is sure.

3. Let S, be an embeded hypersurface in R**! defined by

Xn+1 :f(xl’ - ",xn)'

Suppose f is a radial function, then the Brownian motion X on 8, is
conservative

ie. P{Ll=+o}=1 on S,.

Proof. Since f is a radial function, using polar coordinates (r,d) of
R", we have

da} + - + dx} + dxi,, = dr* + r'd6® + fidr®
= (1 + f)dr + r°de .
As in Example 4 [3], we can obtain the geodesic polar coordinates (s, )
with
dxl + - +dx) + dx,, = ds' + gi(s)'de”

where
p@) = [VI+fidu, rz0
0

s =p(r)

and g,(r) is the inverse function of p. i.e. s = p(g\(s)).
Notice that

1

Bo) = 1 %) Vit

g(s) ds

is convergent to zero as s — +oo. Set g,(s) = ¢, then we have

1
r

_ 1 dg(s) _
BO="w @

Consequently it holds that for some r, > 0,

B(s) = B((s)  on [r, +00).
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Now applying the comparison argument in page 123 we get that
o) [ e du | aerodv < | g du | g dv.

It is easy to see that the right hand of the above inequality (xxx*) is
divergent to + oo when r tends to +co. Thus we have

[ aoymrdr [ gy ds = +oo
which implies P,{{ = + o} =1 on §,.
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