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Abstract

We present TREEFROG, a massively parallel halo merger tree builder that is capable comparing different halo catalogues and produc-
ing halo merger trees. The code is written in C++11, use the MPI and OpenMP API’s for parallelisation, and includes python tools to
read/manipulate the data products produced. The code correlates binding energy sorted particle ID lists between halo catalogues, determin-
ing optimal descendant/progenitor matches using multiple snapshots, a merit function that maximises the number of shared particles using
pseudo-radial moments, and a scheme for correcting halo merger tree pathologies. Focusing on VELOCIRAPTOR catalogues for this work,
we demonstrate how searching multiple snapshots spanning a dynamical time significantly reduces the number of stranded halos, those
lacking a descendant or a progenitor, critically correcting poorly resolved halos. We present a new merit function that improves the dis-
tinction between primary and secondary progenitors, reducing tree pathologies. We find FOF accretion rates and merger rates show similar
mass ratio dependence. The model merger rates from Poole, et al. [2017, 472, 3659] agree with the measured net growth of halos through
mergers.
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1. Introduction

Cosmological simulations underpin theoretical predictions of the
formation and evolution of both galaxies and dark matter halos.
Simulations containing billions of tracers are now common place,
both N-body (e.g., Millennium, MultiDark, TIAMAT, SURFS
Springel et al. 2005; Boylan-Kolchin et al. 2009; Klypin et al. 2016;
Poole et al. 2016; Elahi et al. 2018) and full hydrodynamical sim-
ulations (e.g., EAGLE, ILLUSTRIS, Horizon-AGN Schaye et al.
2015; Vogelsberger et al. 2014; Dubois et al. 2014). These simu-
lations are processed by sophisticated (sub)halo finders to identify
dark matter (sub)halos (see Knebe et al. 2011a; Onions et al. 2012;
Knebe et al. 2013, for a discussion of (sub)halo finding) and syn-
thetic galaxies (e.g. Cañas et al. 2018). The evolution across cosmic
time of galaxies and cosmic structure are reconstructed through
the use of so-called “tree builders”. Following the mass accretion
history of dark matter halos and producing “halo merger trees”,
for instance, is pivotal in producing synthetic galaxy surveys with
Semi-Analytic Models (SAM) of galaxy formation (e.g., Cole et al.
2000; Knebe et al. 2017; Lagos et al. 2018; Baugh et al. 2018, though
SAMs can also use extended Press-Schetcher theory to produce
Monte Carlo trees calibrated against simulations, e.g., Parkinson
et al. 2008; Benson 2017). The role of “Tree Builders” is to identify
the optimal descendants and progenitors of halos/galaxies found
at a given snapshot to later and previous snapshots respectively.
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There are a variety of tree builders in use (e.g. Behroozi et al.
2013; Jiang et al. 2014; Poole et al. 2017), most of which perform
similarly well, at least for reconstructing the accretion history of
field halos (see Srisawat et al. 2013, for an overview of tree build-
ing). The problem of identifying optimal descendants/progenitors
is compounded by imperfect (sub)halo finding as all (sub)halo
finders can momentarily lose subhalos (Avila et al. 2014). The
cadence of the input halo catalogues can also have a severe impact
on the resulting merger history, particularly when coupled with
imperfect (sub)halo finding as (sub)halos can flicker in and out of
existence (Wang et al. 2016). The performance of merger trees can
impact the synthetic galaxy population produced by SAMs (Lee
et al. 2014), though, in practice, only the satellite galaxy popula-
tion is severely effect by flaws in halo merger trees. Srisawat et al.
(2013) identified three features Tree Builders should employ in
some fashion: the use of particle IDs to match objects between
snapshots; using multiple snapshots to identify matches; and a
method to smooth out any large mass fluctuations.

Here we present TREEFROG, a halo merger tree builder that
employs the first two most critical features outlined in Srisawat
et al. (2013)a. When combined with state-of-the-art (sub)halo
finders like VELOCIRAPTOR (Elahi et al. 2019), also minimises
mass fluctuations of orbiting subhalos. The original, highly sim-
plified TREEFROG algorithm was first briefly presented in Srisawat
et al. (2013). Here we present significant updates and a full descrip-
tion of the code.

aFreely available https://github.com/pelahi/TreeFrog.git. Documentation is
found at https://treefrog-halo-merger-tree-builder.readthedocs.io/en/
latest/
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Our paper is organised as follows: in Section § 2, we outline
the code package, present tests of our algorithm in Section § 3 and
conclude in Section § 4 with a summary and discussion.

2. Following the evolution of structure with TREEFROG

TREEFROG at the most basic level is a particle correlator, matching
particles present in one catalogue with those in another using par-
ticle IDs. It relies on particle IDs being continuous across time (or
halo catalogues), so any particle type which has fluid IDs cannot be
used to build a tree or cross-catalogueb. The basics of the particle
correlator was first introduced in Srisawat et al. (2013). Here we
present the software in full and significant updates to the original
code used in Srisawat et al. (2013). Readers interested in tests and
results can skip to Section § 3.

The code can produce a simple cross catalogue or a full halo
merger tree. When building a simple cross-catalogue, one refer-
ence catalogue is compared to another and all matches with high
significance are returned. Full halo merger trees that try to cap-
ture the evolution of cosmic structure across cosmic time require
extra care and can be constructed in two different fashion, either
by walking backwards in time, a so-called progenitor based tree,
or walking forwards in time, a so-called descendant based tree. A
flow-chart of the code is presented in Figure 1 and we describe the
various aspects of our code below. For readers interested in input
interfaces, output, and general modes of operation we suggest
skipping to Section § 2.3.

2.1. Merit function and optimal matches

The first step in producing a cross comparison of halo catalogues
or full halo merger trees is the cross matching of particles in
(sub)halos. The cross-match between catalogues A & B is pro-
duced by identifying for each object in catalogue A, the object in
catalogue B that maximises a merit function. Several merit func-
tions are available. For a simple comparison between two halo
catalogues, the merit is defined as:

NAiBj =N2
Ai

⋂
Bj
/(NAiNBj ), (1)

where NAi
⋂

Bj is the number of particles shared between objects i
in catalogue A and j in catalogue B, and NAi & NBj are the total
number of particles in the respective objects. This merit function
maximises the fraction of shared particles in both objects and is
quite robust (Knebe et al. 2011b).

However, there are instances where several possible candidates
are identified. This is particularly problematic in multi-merger
events that naturally arise when constructing halo merger trees.
During similar mass mergers, loosely bound particles can be
readily exchanged between halos.

We follow Poole et al. (2017) to alleviate these issues by using
the rank of particles as ordered by their binding energy:

SAiBj ,Ai =
NAi

⋂
Bj∑

l

1/Rl,Ai (2)

Here the sum is over all shared particles and Rl,Ai is the rank
of particle l in halo Ai, with the most bound particle in the
halo having R= 1. The maximum value, when all particles are
shared, is Smax

AiBj ,Ai
= γ + lnNAi , with γ = 0.5772156649 being the

Euler-Mascheroni constant.
bAn example would be the use of gas cells from AMR codes.

Figure 1. Activity chart for TREEFROG.

This second merit requires input catalogues to be ordered
according to binding energyc as TREEFROG does not calculate
a ranking. VELOCIRAPTOR natively has this ranking in place.
Catalogues produced by other halo finders must be similarly
sorted, otherwise it is strongly advised that one does not use this
additional ranking merit in Eq. (2).

We combine Eq. (1) with the normalised version of Eq. (2), i.e.
S̃AiBj ,Ai = SAiBj ,Ai/Smax

AiBj ,Ai
, to obtain

MAiBj =NAiBj S̃AiBj ,Ai S̃AiBj , Bi , (3)

where we calculate the rank ordering for both halos in ques-
tion since this ordering can be quite different. This combined
merit maximises the total shared number of particles while also
weighting the match by the number of equally well bound shared
particles.

Finally, not all particles need be used to calculate merits, partic-
ularly if the input catalogues are sorted in a physically meaningful

cTechnically, input catalogues need to be sorted in a physically meaningful fashion for
the desired comparison. For halos, radial sorting is also reasonable.
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way, such as binding energy. One can limit the merit to a fraction
fTF of these particles. Limiting the comparison to the most bound
particles can be key to correctly following major mergers.

2.2. Halo merger trees

Halomerger trees aremore than a simple cross comparison of halo
catalogues. They follow the evolution of halos, the mass accretion
history, tidal disruption and interaction with other halos, ideally
following the formation of a halo across cosmic time till either the
present day or the point at which the object is tidally disrupted as it
falls into a larger halo. Before discussing how trees are constructed,
it is important to lay out some terminology.

• A progenitor/descendant is a (sub)halo present at a previ-
ous/later time that points to a halo present at a later/earlier time
as being its descendant/progenitor.

• A primary progenitor/descendant is where a (sub)halo’s descen-
dant/progenitor points back to it as its progenitor/descendant.
Note that due to issues with the halo finding process and physi-
cal processes involving mass transfer, it is possible for objects to
have more than a single candidate descendant. We discuss this
in more detail later.

• A main branch in a tree is one which traces the evolution of a
halo from its first progenitor to its final descendant, moving for-
wards/backwards via the object’s primary descendant/primary
progenitor links.

• A secondary progenitor is where a (sub)halo has merged with
the main branch of another halo and ceases to exist as an inde-
pendent object. This defines sub-branches of the main branch
and is a natural consequence of structure formation which we
discuss in more detail later.

• A secondary descendant is where a (sub)halo has identified
multiple possible links. All links that have lower merits are sec-
ondary matches. Such matches are a natural consequence of
mass loss, where an object falls into another object and still has
a surviving primary descendant but some of its mass has been
associated with the accreting object, generating a low merit link.

• The first (root) progenitor of a branch is the object that has
no progenitors. The final (root) descendant of a branch is the
object that has no descendants, which typically occurs at the last
snapshot.

Building trees is complicated by the imperfect (sub)halo find-
ing process (see Srisawat et al. 2013; Behroozi et al. 2013; Avila
et al. 2014; Wang et al. 2016; Poole et al. 2017, for discussions
of the pitfalls of tree building). Halo finders can artificially merge
halos at a given snapshot and later separate them, generating miss-
ing links in the tree. This problem is particularly acute for low
mass halos that lie near the particle number threshold used by the
halo finder or for subhalos close to the centre of their host halo.
Stranded (sub)halos lacking a progenitor are less of a problemwith
VELOCIRAPTOR, the (sub)halo finder used in this study, but no
(sub)halo finder is completely immune. Critically, such events can
occur at much higher masses. With fine-scale temporal resolution,
the merger tree will have halos popping in and out of existence.

This can lead to several crucial issues in the resulting tree:

• Truncation: where the (sub)halo finder cannot find an object
for one or more snapshots, leading to premature disruption of
the object, and possibly leaving a large object identified at later

times with no progenitor (leading to the appearance of halo
fragmentation).

• Flip-flopping: where links between two objects are swapped at
one snapshot but corrected in subsequent snapshot(s), leading
to large changes in the object’s properties in the snapshot where
it happens.

• Branch swapping: which is similar to flip-flopping, except the
tree builder does not correct it and so the objects continue
their independent evolution, leaving a single point with a sharp
change in properties.

All trees will suffer from these issues, the degree to which they
do depending in part on the (sub)halo finder. A variety of meth-
ods have been used in literature to handle this cases, some simple
(e.g. Fakhouri & Ma 2008; Genel et al. 2010, which are specific
for simple FOF merger trees), some more complex (e.g. Behroozi
et al. 2013; Poole et al. 2017). TREEFROG uses several techniques
to minimise the occurrence of these issues, the most critical one
being that it searches multiple snapshots for candidate links. We
discuss the specific extra steps taken when producing progenitor
and descendant based tree.

Progenitor Based Tree: The input catalogue is processed by
comparing objects (both halos and subhalos) found at a snap-
shot to those in preceding snapshots, moving backwards in time.
We start by linking a snapshot with the one immediately preced-
ing it, identifying matches for all objects. Objects are allowed to
have multiple progenitors but no object by construction will have
multiple descendants. We rank temporal links such that the pri-
mary progenitor of an object is the one which maximises the merit
looking backwards in time. If two objects share the same pro-
genitor, the one with the lower merit has the link removed. If an
object has a poor merit, typically below Mlim ∼ 0.05, the link is
removed. The remaining, highest merit link is deemed a primary
progenitor/descendant link. For objects with no progenitor, earlier
snapshots are searched until a viable progenitor is found, up to a
maximum number of snapshots �s from the current one.

Descendant Based Tree: The input catalogue is processed by
comparing objects (both halos and subhalos) found at a snapshot
to those found at later snapshots, moving forwards in time. We
start by linking a snapshot with the one immediately following
it, identifying matches for all objects. In the absence of tidal dis-
ruption, objects should have a single descendant. However, mass
loss and tidal disruption are natural processes that complicated
tree building, producing links to several candidate descendants.
Consequently, we allow objects to have multiple candidate descen-
dants. Candidate descendants are split into two categories: pri-
mary and secondary links. A primary descendant link is one where
a halo’s best candidate descendant, that is the one with highest
merit amongst the object’s matches, also ranks the halo as the best
amongst all its matches going backward in time. All other con-
nections are classified as secondary links. Secondary links arise
from the physical tidal disruption andmerging processes as well as
unphysical merging of halos where the halo finder fails to identify
an object. TREEFROG does not attempt to differentiate between
these processes. If an object does not have a primary descendant,
subsequent snapshots are searched till a primary is identified or
the maximum number of snapshots to be searched, �s, has been
reached.

Once an initial tree has been constructed, TREEFROG attempts
to correct the tree for truncation events (and the associated branch
swapping that may result from them) that arise from the loss of the
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Figure 2. Branch Fixes: Diagrams show branch fixes. Original primary and secondary
progenitors are highlighted by navy blue and light blue circles. Halo missing a pro-
genitor is in teal. Solid and dashed lines connect primary and secondary progenitors
respectively. Original connections are in gray, new connections in green.

object by the (sub)halo finder. Objects that lack a primary progen-
itor are corrected for as follows. For an objectAt that does not have
a primary progenitor, we examine the best ranked secondary pro-
genitor, Bt−1 and this secondary progenitor’s primary descendant,
Bt , if such an object exists. If this object Bt has a secondary progen-
itor Ct−1 which itself has no primary descendant and has a merit
MCt−1Bt within a factor of fM ∼ 0.5 ofMBt−1Bt and aboveMlim, we
adjust the links so that instead of (Bt−1 → Bt , Ct−1 →∅,∅→At),
we have (Ct−1 → Bt , Bt−1 →At). A schematic of this branch fix is
shown in the top panel of Figure 2.

We also apply further corrections to objects with no primary
progenitor as a post-processing step that relies on using the full
history of an object, specifically the final descendant of a main
branch. We identify objects that do not have primary progeni-
tors but have secondary progenitors. Specifically, for an object At ,
we examine its best ranked secondary progenitor, Bt−1, and that
object’s best descendant Bt . If both objects end up with the same
final descendant, it is possible progenitors have been incorrectly
assigned due to artificial merging of objects at t − 1. Thus we then
search for an object Cti<t−1 that has a primary descendant after
the merger at t − 1, Cti>t , that belongs to the same final descen-
dant and that has a similar phase-space position and number of
particles as Bt . Specifically, we require:

(xCt<t−1 − xBt )/R(Vmax)Bt ,≤ αR(Vmax)

(vCt<t−1 − vBt )/Vmax,Bt ,≤ αVmax

NCt<t−1 ≥ αNNBt . (4)

Here x & v are the positions & velocities, R(Vmax) & Vmax, are
the maximum circular velocity radius & is the maximum circular
velocity and N is the number of particles belonging to the object.
This phase-space check is a simplified form of halo tracking.
We also limit this patching to well resolved objects, that is those
composed of βNlimNlim where Nlim is the particle limit used by
the (sub)halo finder, βNlim

>∼ 2. Full gravitational evolution and
unbinding, particularly for poorly resolved objects, is best done
using halo tracking tools (like WhereWolf, Poulton et al., in prep).
If this match meets these criteria, we then correct the branches
so that instead of (Bt−1 → Bt , C<t−1 → C>t ,∅→At), we have
(Bt−1 →At , C<t−1 → Bt → C>t). A schematic of this branch fix is
shown in the bottom panel of Figure 2. The parameters α are order
unity and we have found (αR(Vmax), αVmax , αN)= (2.0, 1.0, 0.05)
corrects most events.

2.3. Code structure

TREEFROG is a C++ code that uses OpenMP +MPI APIs for paral-
lelisation but can be compiled in serial mode, solely with OpenMP,
and solely with MPI. The code requires an input file containing
a list of halo catalogue file names, the number of snapshots to
process and an output file name.

The main input file is a simple text file that lists the locations of
the halo catalogues ordered in increasing time.

These halo catalogues can be in native VELOCIRAPTOR output
(ASCII, Binary, and HDF5d) or in a simple ASCII format that was
used in the SUSSING Merger Trees workshop (see Srisawat et al.
2013). Other input formats can be implemented and the input data
must contain a list of particle IDs and possibly particle types for
each halo in the halo catalogue.

MPI domain decomposition is temporal in nature, with each
thread loading the halos from an entire simulation volume for
a certain number of snapshots. Snapshots are distributed to dif-
ferent threads by load balancing the memory footprint on each
MPI process. Specifically, snapshots are split to ensure that each
thread loads either roughly the same number of total halos or the
same total number of particle ids (depending on runtime config-
uration). An MPI thread loads a minimum of 2�s + 1 and each
MPI domain must overlap the neighbouring domains by �s so as
to have a complete list of connections to and from the snapshots
localised to a single mpi domain.

Although there are a variety of modes that TREEFROG can be
operated in, there are three principal ones. TREEFROG can be used
to produce a Descendant Tree, Progenitor Tree or simply cross
correlate two catalogues. It produces the following types of output
formats: ASCII; HDF5 (preferred). The output file(s) consists of a
list of a halo, the number of descendant/progenitor/cross matches
and the ID of these linked objects, for all halos identified at a given
snapshot. In the ASCII format, this is combined into a single con-
tinuous file, whereas in the preferred HDF5 format, each snapshot
is written separately. An ADIOS interface will be included and will
have the same naming convention as the HDF5 output.

Post-processing of the full tree information is done using
python scripts to produce a simple, walkable tree where each
(sub)halo will have links to their immediate progenitor, imme-
diate descendant, first progenitor and final descendant (that is
eliminating all secondary links and merit information), the typ-
ical information need by SAMs. This post-processing removes
secondary links.

dSelf-describing binary format, library found at https://www.hdfgroup.org/
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Table 1. Key TREEFROG parameters

Name Default Value Comments

General Tree Options Related to general tree construction.

Tree_direction 1 Integer indicating direction in which to process snapshots and build the tree.
Descendant [1], Progenitor [0], or Both [−1].

Particle_type_to_use −1 Particle types to use when calculating merits. All [−1], Gas [0], Dark Matter [1],
Star [4].

Default_values 1 Whether to use default cross matching &merit options when building the tree. 1/0
for True/False.

Merit Options Related to calculation of merit function.

Merit_type 6 Integer specifying merit function to use. Optimal descendant tree merit in Eq. (3)
[6], common (progenitor tree) merit in Eq. (1) [1].

Core_match_type 2 Integer flag indicating the type of core matching used. Off [0], core-to-all [1],
core-to-all followed by core-to-core [2], core-to-core only [3].

Particle_core_fraction 0.4 Fraction of particles to use when calculating merits. Assumes somemeaningful
rank ordering to input particle lists and uses the first fTF fraction.

Particle_core_min_numpart 5 Minimum number of particles to use when calculating merit if core fraction
matching enabled.

Temporal Linking Options Related to how code searches for candidate links across multiple snapshots.

Nsteps_search_new_links 1 Number of snapshots to search for links.

Multistep_linking_criterion 3 Integer specifying the criteria used when deciding whether more snapshots
should be searched for candidate links. Criteria depend on tree direction.
Descendant Tree: continue searching if halo is: missing descendant [0]; missing
descendant or descendant merit is low [1]; missing descendant or missing
primary descendant [2]; missing a descendant, a primary descendant or
primary descendant has poor merit [3]. Progenitor tree: [0,1].

Merit_limit_continuing_search 0.025 Float specifying the merit limit a match must meed if using
Multistep_linking_criterion = [1,3].

Table 2. Simulation parameters

Name Box size Number of Particle Mass Softening

Particles Length

Lbox [h−1Mpc] Np mp [h−1M�] ε [h−1kpc]

L40N512 40 5123 4.13× 107 2.6

L210N1536 210 15363 2.21× 108 4.5

Options can be passed either via command line or through a
text file. We list the configuration options that can be passed via
this input text file in Table 1.

3. Results

Here we present how well trees are built. As input we primarily use
a small cosmological N-Body simulation consisting of 5123 parti-
cles (from the SURFS suite Elahi et al. 2018). Simulation details are
presented in Table 2.

We focus on trees produced using two input halo catalogs pro-
duced using VELOCIRAPTOR: a simple 3DFOF (3D configuration
space Friends-of-friends) catalogue that does not contain subha-
los; a 6DFOF (phase-space) halo catalogue; and a full (sub)halo
catalogue using fiducial parameters for VELOCIRAPTOR. Details
of how VELOCIRAPTOR identifies (sub)halos are presented in
Elahi et al. (2019). Here we summarise: the code is a phase-
space (sub)halo finder that identifies structures in a two-step
process: it identifies field halos using either a 3DFOF algorithm
or a 6DFOF algorithm; and then identifies substructures for each
halo by linking dynamically distinct particles using a phase-space
FOF algorithm and searching for major merger remnants using an
iterative 6DFOF.

We show examples from our 3 halo catalogs in Figure 3. The
3DFOF halo extracted from our L40N512 simulation at z = 0 is
composed of ≈ 106 particles with a FOF mass of 4.2× 1014h−1M�
and an overdensity virial mass ofM�ρc = 2.7× 1014h−1M�, where
M�ρc = 4π�ρcR�ρc/3, ρc is the critical density, and R�ρc is the
radius enclosing an average density of �ρc, where � = 200, com-
monly referred to as the virial mass. This 3DFOF object was iden-
tified using the standard 3DFOF linking length of 	x = 0.2Lbox/Np,
where Lbox/Np is the inter-particle spacing. This 3DFOF halo con-
sists of several large density peaks, some of which lie outside the
virial radius centred on the largest density peak. The 6DFOF halo
is the largest object of the initial 3DFOF candidate and the density
peaks that were outside the virial radius of the 3DFOF are now
considered separate 6DFOF halos. The 6DFOF halo contains at
least 4 large density peaks and numerous smaller ones, speaking
to a rich merger history, with several major mergers in the recent
past and likely several mergers in the near future. At z = 0, this
object contains 222 substructures (including the host halo), 3 of
which contain 21% of the initial host 6DFOF halo’s mass. We refer
to this halo as our fiducial case as this object has a complex merger
history, undergoing a quintuple merger.

The trees are built using 200 snapshots spaced evenly in
log a, where a is the scale factor, starting at ai = 0.04 and ending
at af = 1. The cadence is such that at late times the temporal
spacing between snapshots is ∼250 Myr. We produce several
trees for each halo catalogue, varying the merit function and
the number of snapshots searched for links. We focus on the
descendant based tree as walking forwards in time provides a
natural method to correct trees, namely that an object should have
a primary descendant. If an object lacks a primary descendant
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Figure 3. Example halo: We show a 3DFOF halo (left), a 6DFOF halo (middle) and the substructure within the 6DFOF halo (right). For each halo we show R�ρc by a dashed black
circle. In the first two columns, particles are colour-coded according to the 3D density going from blue to green in increasing density. In the right panel, particles are colour-coded
by the group to which they belong. We also draw solid circles for each subhalo showing R�ρc . We show a ruler in each panel.

(or any viable descendant), further snapshots can be searched till
a primary descendant is found. In contrast, progenitor trees are
only corrected for objects that lack a progenitor.

For this analysis, we also make use of MERGER TREE
DENDOGRAM (Poulton et al. 2018). These dendograms capture
the mass accretion history of (sub)halos and their orbital evo-
lution. Ideally the mass accretion history of a halo should be
smooth, increasing with time, whereas subhalos should slowly
shrink, losing most the their mass near peri-centric passage.

3.1. Individual halo

We examine the reconstructed merger history of the fiducial halo
presented in Figure 3 in our three halo catalogues using dendo-
grams in Figures 4, 5, 6, and 7. These figures present the mass
and orbital evolution of branches of a tree and any objects the
main branch may have interacted with (see Figure 4 from Poulton
et al. (2018) which describes in detail the information the dendo-
gram tries to capture). We start with the simplest halo catalogue,
the 3DFOF one and build a descendant tree using a single snap-
shot and a simple merit function to identify links and proceed to
add corrections to the tree and complexity to the input (sub)halo
catalogue.

We present in Figure 4 the dendogram from the tree built on
a simple FOF catalogue with the simplest merit function, Eq. (1),
using all particles to calculate merits. This dendogram shows the
mass accretion history and motion relative to the first progenitor
of the main branch, along with the relative radial position of a
sample of large sub-branches and interacting branches. We also
show the merit between matches via the colour and highlight the
mass accretion history of the 4 largest branches in the inset.

The figure shows that the FOF halo has a simple mass accre-
tion history. The main branch halo continuously grows in mass,
absorbing smaller halos (sub-branches). There are several kinks
it the main branch’s motion. These occur during major mergers,
where the centre-of-mass can shift, moving to the density peak
corresponding to the other halo. The merit of the main branch
remains close to unity till the last snapshot, where by construc-
tion M= 0 as there are no descendants. Using the more complex
ranking merit scheme given by Eq. (3) leaves the tree generally
unchanged as the input catalogue is simple.

The sub-branches here merge well outside the main branch’s
virial radius, a natural outcome of a 3DFOF catalogue. The sub-
branches typically have merits close to unity, till they merge with
the main branch, where the merit becomes very low (typically
<∼ 10−2, the exact value depending on the merit function). The
sub-branch mass evolution is generally smooth, although at least
two sub-branches, number 8 & 9 are truncated. These objects are
actually descendants of sub-branch 7. This object leaves enters
and momentarily re-emerges the FOF envelop of the main branch
twice. Since we do not allow for halo fragmentation, these objects
are left stranded in the tree. These truncation events can be
fixed by searching for descendants across several snapshots and
using the full merit function given in Eq. (3). Using all particles
to calculate the simple merit in Eq. (1) incorrectly links these
stranded halos to small halos with a very low merit, i.e., branch
swapping events.

Using a 6DFOF input catalogue corrects some of the issues
present in the original tree, indicating how the performance of a
tree depends on the input catalogue as seen in Figure 5. Objects
now merge later, there are fewer truncated large sub-branches
but flip-flopping events are still present. There are instances of
the large halos linking to small halos, giving rise to the signifi-
cant drops in mass (see sub-branch 2). Despite a few sub-branches
behaving poorly, 3DFOF/6DFOF trees are relatively stable, with
the critical issue lying with the misleading physics implied by this
tree. Objects should persist till well inside the virial radius. This
either requires tracking of FOF particles using codes like HBT+
(Han et al. 2018) or identifying substructuree.

Figure 6 shows how adding the identification of substructure
significantly complicates the process of tree building. This den-
dogram now contains interacting branches, aka subhalos, as well
as the main branch and sub-branches. We can see objects merg-
ing well within the virial radius of the main halo. The obvious
issues in this halo’s reconstructed history are: the main branch

eThe extra complexity introduced by substructure (both in identifying it and determin-
ing optimal branches) and the relative simplicity of 3DFOFmergers trees is themotivation
behind codes like HBT+, which takes as input the particles in 3DFOF halos and parses them
through an unbinding routine to follow their evolution, building a substructure hierarchy
and a halo merger tree at the same time. The drawback is that the input 3DFOF cata-
logue must have high enough cadence to capture the formation of FOF halos and the code
requires full particle information across cosmic time.
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Figure 4. 3DFOF Example Dendograms:We plot themass accretion history andmotion of the 3DFOF halo shown in Figure 3, along with the relative radial position of a sample of
large sub-branches and interacting branches. The first sub-panel on the left shows the motion and mass accretion history of the main branch. Subsequent sub-panels show the
motion relative to the main branch scaled by the main branch’s virial radius out to 3.5 virial radii. The size of markers indicate the mass of the object, with the size of the markers
in the sub-panel increased by a factor of 5 relative to the main branch so as to make their mass evolution more visible. Colours indicate the merit of a match between a halo and
its descendant/progenitor depending on the direction of the tree construction. Here we show a descendant tree and use the merit given by Eq. (3) but we do not use the most
bound fraction of particles, nor link across multiple snapshots. The range of the colour bar is chosen to emphasise the transition about the nominal acceptable merit of 0.1. The
inset shows the mass evolution of the three largest objects and the main branch. We also show the virial radius in the sub-branch panels by a dashed vertical lines. Any objects
that remain an independent object at the last snapshot are marked in red. Note that here, halos show little variation in merit till they merge. Large variations along a branch are
seen in other trees.

Figure 5. 6DFOF Example Dendogram: Similar to Figure 4 but where we use a 6DFOF input catalogue. Here we again use the merit given by Eq. (3) but we do not use the most
bound fraction of particles, no link across multiple snapshots. Using Eq. (1) does not affect the tree.

starts abruptly and there are several large objects left stranded in
the tree with no progenitor. In some cases, the truncation arises
from the fact that the halo finder loses track of an object for at
least one snapshot. A more subtle issue present is the change in
the motion of the main branch. The distance plotted here is the
relative comoving distance from the position of the first progen-
itor. A change in the motion is suggestive of a branch swapping
event earlier in the object’s history.

The typical cause of these issues are major mergers. The basic
assumption underlying TREEFROG and many tree builders is that
particles orbit an individual object and thus can be used to trace
the evolution of object. Most of the time a halo grows by the
smooth accretion of material or the tidal disruption of smaller
objects and the vast majority of particles in the environment prin-
cipally orbit the potential well defining the main halo. However,
the orbits of particles during major mergers are complex. Some
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Figure 6. 6DFOF+Subhalos+Mergers Example Dendogram: Similar to Figure 4 but for a halo catalogue that contains both halos and substructure. Note that circles in the bottom
sub-panels indicate that this branch has at one point hosted themain branch as a subhalo. Here we again use themerit given by Eq. (3) but we do not use themost bound fraction
of particles, no link across multiple snapshots. Using Eq. (1) in this case does affect the tree, producing smoother mass evolution but introducing kinks in the orbits of objects.
Here, variations in merit are seen along individual branches.

Figure 7. 6DFOF + Subhalos + Mergers with Corrections: Similar to Figure 6 but where we use the merit given by Eq. (3), use a fraction of the most bound particles, link across
multiple snapshots, and apply corrections so as to minimise the number of branch-swapping, flip-flopping and truncation events.

particles are ejected from the system altogether, some have orbits
that swap the potential well they are orbiting and others orbit
both potential wells. The fraction of particles quickly evolving
orbits steadily increase with time, starting with the loosely bound
particles and progressing to increasingly bound particles as the
objects coalesce. Therefore, using all the particles can give rise to
flip-flopping, branch swapping and even truncation, clearly seen
in Figure 6.

These problems are fixed by:

• Searching for links across multiple snapshots.

• Using the most bound particles or ranking particles by how well
bound they are to determine the quality of the match.

• Correcting objects with no primary progenitors.

Figure 7 shows the resulting dendogram once multiple snap-
shots are searched, here 4 snapshots corresponding to ∼1 Gyr or
∼1 free-fall dynamical time, τ ∝ √

3π/32Gρ, ρ = 200ρc. We also
use a fraction of the most bound particles are used, here 0.4 to
calculate meritsf, and we correct for missing progenitors/branch

fThe exact fraction depends on the (sub)halo finder used. Configuration-space
(sub)halo finders will artificially shrink large subhalos as they fall to the centre, whereas
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Figure 8. Particle number at formation:We plot the particle number at which objects
form, that is are identified in the tree as having no progenitor. We show the median,
84% quantiles, and 97.5% quantiles as thick solid, thick dashed, and thin dashed lines
respectively. As lower quantiles are similar in all trees and is close to the particle limit
at which halos are identified, we do not plot them for clarity. We limit our analysis to
snapshots with at least 100 halos. We also show the particle limit at which halos are
identified, Np = 20, by a solid black line as well as twice this value by a dashed black
line.

swapping events across multiple snapshots. Large subhalos that
previously sprang into existence inside the virial radius now are
connected. The motion of the main branch is now in better
agreement with the original main branch motion seen in Figure 4.

3.2. Tree statistics

We now turn to the overall statistics of the tree. Ideally, objects
form when composed of few particles and once formed should
always have a descendant. Yet poorly resolved objects can evap-
orate and be left without a descendant, particularly if the time
between snapshots is short. We examine the statistics of when
objects form and the fraction of objects without a descendant in
Figures 8 and 9 respectively, focusing on the 3DFOF tree, and
the 6DFOF + substructure tree using a single snapshot to identify
links and 6DFOF + substructure tree built using 4 snapshots. We
argue that these statistics are more informative than the common
practice to examine branch lengths (e.g. Srisawat et al. 2013), i.e.,
the number of snapshots a main branch exists for, as the length
of a main branch depends sensitively on the cadence used in
producing the tree.

Clearly the median formation particle number in Figure 8 is
very close to the 20 particle limit used to identify structures for all
three trees, showing little evolution with 50% of all newly formed
objects being composed of ≤ 25 particles. The upper 84% quan-
tiles do show some dependence on cosmic time, increasing from
25 particles up to close to twice the 20 particle limit. This increase
inNp(zform) with cosmic time partly due to the larger physical time
between snapshots at late times which allows halos that lie below
the 20 particle threshold to growmore. However, the fact that both
upper quantiles decrease when using more snapshots to identify
links in the tree (going from 6DFOF.SUBS.t1 to 6DFOF.SUB.t4)
indicates that this is not the sole reason. Mergers between poorly
resolved halos can cause breaks in the tree as one of the halos is lost
for one (or more) snapshots before re-emerging, the result being
a halo with an artificially inflated Np(zform). The reduction in the
upper 97.5% quantile from objects composed of >∼ 100 particles to

phase-space finders might overestimate the mass assigned to the infalling object as the
object is dynamically heated. For phase-space finders like VELOCIRAPTOR, we find using
<∼ 50% minimises branch swapping events.

Figure 9.Non-Ideal Descendant Fraction:Weplot the fraction of objectswith either no
descendant (top) or a descendant found several snapshots later (bottom) for objects
composed of twice the particle limit and those containing fewer particles. We limit our
analysis to snapshots with at least 100 halos.

∼80 when going from using a single snapshot to using 4 snapshots
is clearly evidence of truncation. Using multiple snapshots ensures
that vast majority of objects form close to the particle limit and
even the largest, newly formed objects in the tree are composed of
<∼ 100 particles at all times.

In Figure 9, we see that the fraction of objects lacking descen-
dants remains roughly constant across most of cosmic time for all
trees, decreasing slightly at earlier times. We note that for objects
composed of twice the particle limit used in the halo catalogue,
this fraction is small <∼ 10−3. As we go from the easier problem of
following FOF halos to following 6DFOF halos and their substruc-
ture we find a slight increase in the fraction if a single snapshot
is used. In general, the fraction with no descendants is small and
this population is dominated by poorly resolved objects, with 99%
composed of <∼ 40 particles. Approximately 10% of very poorly
resolved objects composed of < 40 particles have no descendants
for trees built using a single snapshot, with the number increasing
slightly when using 6DFOF halos.

Searching multiple snapshots reduces this fraction, dropping
it by a factor of 2 for objects composed of ≥ 40 particles, and
reducing the amount for objects composed of < 40 particles to a
more reasonable 2%. This fraction increases by a factor of 4 in
the last 4 snapshots where the number of snapshots used to cor-
rect the tree begin to drop, rising from 5× 10−4 to 2× 10−3. This
increase demonstrates the need for searching multiple snapshots
and running simulations past the last desired redshift to correct
the catalogue at these late times, though the exact number of snap-
shots depends on the cadence of the input catalogue. For most
snapshots, roughly 4% of objects composed of ≥ 40 particles have
descendants found more than a single snapshot in the future.

A tree should be constructed so as to have a clear distinction
between the main branch and sub-branches. Several merit func-
tions are in common use to rank matches, separating primary
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Figure 10.Merit statistics:Weplot themerit of primary and secondarymatches across
cosmic time using a single snapshot to identify links. We show the median for our
default merit (Eq. (3) using only the 40% most bound particles), Eq. (3) using all par-
ticles, and Eq. (1) using all particles. For clarity we only show the 16/84%quantiles and
2.5/97.5% quantiles for the default merit, plotted as a dark shaded region outlined by
thick dashed lines and a light shaded region outlined by thin dashed lines respectively.
We limit our analysis to snapshots where there are at least 100 primary or secondary
links and to halos composed of ≥ 40 particles, twice the halo catalogue particle limit.
We also show a dashed black line at a nominal goodmerit ofM= 10−1.

descendant/progenitor links that define the main branch and
secondary descendant/progenitor links that define sub-branches
which merge with the main branch (see Srisawat et al. 2013,
for a sample). The most common merit function maximises the
number of shared particles in some form, sometimes using all
particles (see for instance Knollmann & Knebe 2009), sometimes
using only the most bound set of particles (see for instance Jiang
et al. 2014). Poole et al. (2017) argued for a merit function that
used the particles self-binding ranking (Eq. 2). TREEFROG can use
several merit functions, which we show the results of in Figure 10.

This figure shows that 50% of primary descendants, the merits
are close to 1, regardless of the type of merit function used. For
our fiducial merit function, which is a combination of using some
fraction of the most bound particles and Eq. (3), we find primary
descendant merits of ∼ 0.75 ± 0.1, showing little evolution. Only
∼1% of the population has M<∼ 0.2 and then only at late times.
Secondary descendant merits on the other hand are on average
<∼ 10−1 and evolve strongly with time, a consequence of large, well
resolved halos accreting small (sub)halos through natural bottom-
up growth. The ever increasing mass ratios probed at late times
causes the median secondary merit to drop.

Comparing to other merit functions, we find using all particles
increases primary merits, and removing the ranking merit, that is
using Eq. (1), increases the primary merit further. However, this
increase in primary merit values is counterbalanced by a similar
increase in secondary merits. Simply using Eq. (1) increases the
median secondary merits by a factor of ∼3 relative to the default
merit function. Critically, the separation between primaries and

Figure 11. Merger statistics: We plot the radius and number of particles at which a
(sub)halo mergers with another. Colours indicate the input tree. For each tree, we cal-
culate themedian distance and number of particles at which objectsmerge for objects
composed of twice the particle limit used (40) along with the 16, 84 and 2.5, 97.5 quan-
tiles. These are plotted as a circle with thick and thin error bars respectively, coloured
by halo merger tree. We also determine the contours that contain ≥100 objects and
≥10 objects for each tree, denoted by with thick and thin coloured lines. Outliers from
the contours are plotted colour coded according to halo merger tree.

secondaries is largest using the default scheme. For the fiducial
merit, the distribution inmerits only overlaps at the 2σ level at late
times. Using the shared number of particles increases the overlap
in the population from ∼3% to ∼7% (for a more formal com-
parison of the distances between primaries and secondaries see
Section § A). These changes argues in favour of using Eq. (3) over
Eq. (1).

3.3. Mergers

We examine the details of when sub-branches merge with the
main branch here. The expectation is that when (sub)halos even-
tually merge with other (sub)halos as a sub-branch, this should
occur well within the virial radius of the accreting (sub)halo. The
merger statistics of these trees is shown in Figure 11. Here we
have for every (sub)halo across cosmic time identified secondary
descendants and noted the relative radial distance the primary and
secondary descendant.

As expected, trees constructed from 3DFOF catalogues have a
majority of objects merging outside the virial radius. The overall
distribution of mergers is not only skewed to large radii but larger
objects merging at larger radii, which is unphysical as these objects
should be less prone to tidal disruption. Of course, this is a natu-
ral consequence of using a 3DFOF halo catalogue but is useful for
showing an extreme case.

The merger statistics of the trees built using a full halo + sub-
halo catalogue show that even for a single snapshot linking most
objects merge inside the virial radius and critically, large objects
are found to merge well inside accreting halos. Interestingly, using
more snapshots to identify descendants shifts the median radius at
which objects merge slightly to larger radii. This is a consequence
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poorly resolved halos at the outskirts of larger halos that can flicker
in and out of the halo catalogue as they drop below/move above
the particle limit used in the (sub)halo finder. Without multi-
ple snapshots searched, these objects are left with no descendants
(primary or secondary). Searching multiple snapshots links these
objects to the larger halo as secondary descendants.

An interesting feature in this figure is the presence of large
objects that merge at small radii. Naively, the ideal scenario is
for objects to merge when composed of few particles deep within
another object. However, a natural consequence of major mergers
is that objects can phase-mix while still relatively intact. For mini
mergers, where the accreted object is far less massive than the
accreting object, we expect the smaller object to orbit several times
as it is tidally stripped, shrinking to the point at which it becomes
completely tidally disrupted. Thus, we should see objects with
large accretion masses relative to their accreting host merging
at smaller radii, possibly with large masses, compared to mini
mergers with very small mass ratios. We note that by accretion,
we mean the point at which the object enters the FOF envelope of
another halo.

To explore this dichotomy, we take a random sample of accre-
tion events that fully merge before z = 0 with halos composed
of ≥ 105 particles, splitting the population by the accretion mass
ratio. We split objects based on accretion mass ratios into those
with ratios of ≤ 10−2 (mini mergers) and those with ≥ 5× 10−2

(containing both minor to major mergers), although the precise
split is not critical. The host halo limit and ratio cuts means that
minor/major mergers are composed of >∼ 5000 particles at accre-
tion. We should stress that this sample is biased as we are focusing
on objects that were accreted and thenmerger with the host within
<∼3 Gyr. Many objects do not merge with their host halo within
this time and are not present in this figure, consequently the mass
loss rate of this population is higher than the full population. For
each merged object we determine the average mass change from
one snapshot to the next since accretion till it mergers. We plot the
total population and the median values of accretion mass, particle
number at merger, merger radius and mass change in Figure 12,
which has two key features.

The first feature of note is that on average, so-called
minor/major mergers fully merge at smaller radii than mini merg-
ers (objects with very small accretion mass ratios). The former
events typically merge inside the scale radius of the host halo (see
median values), latter outside. The merger radius does not show a
dependence on particle number at accretion for either population.

Second, on average mini mergers steadily lose mass as they
orbit, on average losing ∼75% of their mass every 250 Myr (as
indicated by the colour). The average fractional mass change does
show some dependence on the accretion mass ratio of mini merg-
ers, with small mini mergers (Np,acc/NH(tacc)<∼ 10−3) show little
average change in mass till merging. In contrast, objects with
large accretion mass ratios typically do not steadily lose mass once
accreted. Instead, they rapidly phase-mix when they enter the cen-
tral regions of the host halo and typically remain in the central
regions due to dynamical friction (Han et al. 2018, also finds large
subhalos are “trapped” in the central regions of their host due to
dynamical friction using HBT+, a 3DFOF tracker). These objects
can fully merge with the host halo while still close to their accre-
tion mass, such as the sub-branch seen in Figure 7. Others are last
identified when composed of a few hundred particles having been
accreted when composed of several thousand particles, with most
of the mass loss occurring in the last step at which the object was
identified.

Figure 12.Minor/Major versus Mini Mergers: We plot the merger particle number of
a sample of objects, exploring the differences between mini and minor/major merg-
ers. Top panel shows the ratio of between the number of particles in the accreted halo
and the accreting halo at the time of accretion. Bottom panel shows the radial posi-
tion where the accreted halo merges with its host. We separate accreted objects into
major (Np,acc/NH(tacc)≥ 5× 10−2) andminor Np,acc/NH(tacc)≤ 10−2 mergers, plotting cir-
cles and squares respectively. We also show the median value for each population
along with the 16/84 quantiles by large points. All points are colour-coded by the
median ratio of the object’s current number of particles to that in the previous time
step for all snapshots post-accretion, a measure of the mass loss rate.

The physical imprint of accretion mass on the dynamics of the
merger is reproduced by the tree, though recovering this bimodal
distribution requires a phase-space finder that does not artificially
shrink halos as they fall inwards. The high mass loss rates of
minor/major merger as they phase-mix means that trees should
cross match only the most bound particles and ranking particles
according to binding energy in order to recover the last inspiral,
although using too few particles can give rising to core swapping,
were a small subhalo takes over the branch.

3.4. Accretion andmerger rates

We end by examining the merger rates and mass growth via merg-
ers. We calculate the “mean merger rate per halo” expressed in
terms of redshift, descendant mass and mass ratio between pri-
mary progenitors and secondary progenitors in Figure 13. For
every halo with mass MD having multiple progenitors, we deter-
mine the mass ratio between the primary progenitor and sec-
ondary progenitors, ξ ≡MP,s,tot/MP,p,tot, where we use the total
exclusive mass associated with the object and bin in mass ratio
bins, averaging over a redshift range of z = 0.5 to 0. We also cal-
culate the “mean accretion rate of FOF halos per halo”, that is
we identify all objects that are progenitors or substructures of
a descendant halo which were FOF halos at the previous snap-
shot, that is we define accretion as a FOF halo entering the
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Figure 13.Mass Accretion Rate:We plot the rate per halo at which objects merge with
a main-branch (solid lines) from z= [0.5, 0] for all objects in L40N512 run in the top
subpanel labelled ‘Mergers’. We also show the median curve and the scatter by a solid
black line and a gray shaded region. The next panels compare the median merger rate
to accretion rate of FOF halos (second subpanel), comparison to L210N1536 (third sub-
panel), and a comparison to several models (bottom subpanel). The models shown
are the FOF merger rate fit from Fakhouri et al. (2010) (FM2010), the FOF merger rate
fit form Poole et al. (2017) (P17 FOF), the Poole et al. (2017) “corrected substructure
accretion rate” (P17 sub), and amodification of the fit (see text for details).

FOF envelop of another, more massive, FOF halo. This FOF halo
can survive as a subhalo or can merge with the accreting FOF
halo. This “FOF accretion rate” is analogous to the “FOF merger
rate” reported in Fakhouri & Ma (2008); Fakhouri et al. (2010);

Genel et al. (2010), who examined the rate at which FOF halos
merge with one another. This is also analogous to the “corrected
substructure merger rate” presented in Poole et al. (2017)g.

Fakhouri et al. (2010) showed that this FOF merger rate has
a nearly universal dependence on ξ , with little dependence on
descendant mass and redshift, and is characterised by:

dNFOF,m

dzdξ
≡ B(M, ξ , z)
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where B is the number of mergers per unit volume, redshift and
mass ratio, n is the number density of halos, andA, α, η, β , ξ̃ , γ are
all fitting parameters. Fits show α, η are small, indicating a weak
dependence on descendant mass and redshift.

We find that both merger and accretion rates have forms sim-
ilar to the FOF merger rate of Fakhouri et al. (2010), a roughly
power-law dependence on ξ with a flattening at large mass ratios
with little descendant mass dependence (as seen by the fact that
the coloured lines overlap in the top subpanel). We also find little
merger rate differences between our small volume L40N512 run
and our larger volume, poorer mass resolution L210N1536 run,
indicating a converged merger rate. The differences between our
rates and the fits of Fakhouri et al. (2010) (and Poole et al. 2017)
are that the rate is lower and the high mass ratio rate is flatter. The
amplitude is closer to the Poole et al. (2017) “corrected substruc-
ture merger rate” fit, though this rate is still higher. The reduced
rate is a result of defining halos as 6DFOF objects rather than
3DFOF objects h. Modifying the “corrected substructure merger
rate“ fit from Poole et al. (2017) to account for the larger num-
ber of 6DFOF objects moves this fit into better agreement with the
measured accretion rate.

There is little difference between the measured merger and
accretion rates despite the fact that a significant amount of time
(and evolution) can elapse before an accreted object fully merg-
ers. The mapping from FOF accretion rates to merger rates is
non-trivial. Merger time scales depend on the orbit, the tidal
mass loss rate, and the initial accretion mass ratio (subhalos with
large ratios should experience little tidal mass loss). Subhalos can
merge through a variety of channels, some artificial (lost by the
(sub)halo finder, numerical evaporation) and some physical (tidal
disruption, phase-mixing). At ξ ≈ 1, one might expect a simple
delay between accretion andmerging as large subhalos will quickly
sink to the centre of the host due to dynamical friction, leaving
the the functional form unchanged. As one transitions from the
regime dominated by dynamical friction to tidal mass loss, near
ξ ∼ 5× 10−2, the mapping from accretion to merging becomes
more complex and we might expect a change in the functional
form. This does appear to be the case, with the largest difference
between these rates occurring between 10−2 <∼ ξ <∼ 10−1. The

The merger rate indicates that halos, on average, experience
more minor mergers than major ones but will acquire more

gBoth accretion and merger are used in the literature, sometimes describing the same
physical process, which can be a bit confusing. Here we refer to mergers as instances where
an object is found to be a secondary progenitor of another object later in time, that is the
object has ceases to exist as an independent object, and is a secondary branch of another
object that continues to exist. Accretion events are specifically when a FOF object enters
the FOF envelop of another more massive object.

h3DFOF objects can artificially join halos by thin particle bridges, effectively pushing
back the accretion time. Using a 6DFOF algorithm removes these particle bridges, mov-
ing the accretion time to the point at which the virialized envelops begin to dynamically
overlap, increasing the number of halos, see Elahi et al. (2019)
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Figure 14.Mass Growth Through Mergers: We show the average fraction of mass by
which halos grow fMtotmerge, where we use the peak accretion mass of the object that
merges to calculate the mass increase in the host halo, as a function of cosmic time
along. We also categorise merger events as minor/major and mini mergers based on
the accretion mass ratio, with minor/major and mini mergers having accretion mass
of > 5× 10−2 & ≤ 5× 10−2 respectively. We plot the average for each of these cate-
gories for our reference simulation, L40N512 (top), and our larger volume, lower mass
resolution simulation, L210N1536 (bottom).

mass during major mergers. Based on the modified fit, we expect
1012h−1M� halos at z = 0 to have experienced ∼ 10 minor merger
events (ξ = [10−3, 5× 10−2]) from z = 1 to z = 0 compared to a
single major merger event (ξ > 5× 10−2), yet halos gain most of
this mass in a single major merger, 18% compared to 5%. The
fit predicts halos should acquire ≈20% and ≈79% of their mass
integrated over cosmic time through minor and major mergers
respectively. In agreement with this prediction, we find 20± 10%
and 31+46

−13% are accreted through these two channelsi.
The total mass accreted in merger events and its evolution

is shown in Figure 14, where we split halos into three different
z = 0 mass bins. At all times, halos principally grow through
minor/major mergers, on average gaining ∼85% of their mass
during such events. The overall amount of mass acquired
through high mass ratio mergers is greater than that acquired
in mini mergers. Initially, it appears objects only grow through
minor/major mergers at high redshift, however, this is partially
due to finite resolution.

The influence of resolution can be seen by comparing
results from our reference L40N512 to our larger volume, lower
mass resolution simulation, L210N1536. In the lowest mass
bin, 1011h−1M�, halos are composed of 700− 7000 particles in
L40N512 compared to 140− 1400 in L210N1536, with the bin
dominated by lower mass objects (as a result of the mass function).
The total mass gained by z = 0 is similar for these halos in both
simulations, 58+31

−20% compared to 54+28
−19, where the uncertainties

iThe prediction ignores “smooth” mass accretion whereas halos in our simulation do
accrete material not contained within smaller halos, accounting for ≈46% of a halo’s mass
growth.

indicate the halo-to-halo scatter. However, the amount of material
accreted through mini mergers in the L210N1536 simulation
is significantly reduced. The halos in L210N1536 are not well
resolved enough to follow mini mergers and only experience mini
mergers at late times, after z < 1, gaining only 2% of their mass
via this channel and only for the largest halos in this mass bin.
Improving the mass resolution results in mini-mergers occurring
as early as z ∼ 3, with halos gaining 14+12

−8 % of their mass through
mini mergers. This will impact the internal mass distribution of
halos as minor/major mergers centrally deposit their mass.

The mass accretion also shows the imprint of a finite sim-
ulation volume, particularly at late times. The largest halos in
the smaller volume L40N512 run have a smaller amount of mass
acquired through minor/major mergers than similar mass halos in
the larger volume L210N1536 run, with few objects experiencing
major mergers after z = 0.5. The total amount of mass acquired
in these minor/major mergers is 26+23

−15% compared to 36+32
−17%.

The inclusion of large-scale power in L210N1536 gives rise to
rarer density peaks, altering the mass accretion rate onto these
peaks. Klypin & Prada (2018) show that the z = 0 halo mass func-
tion at high masses is suppressed in smaller simulation volumes,
particularly at cluster mass scales in agreement with theoretical
predictions (also see for instance Bagla & Prasad 2006; Warren
et al. 2006; Tinker et al. 2010; Schneider et al. 2016; Comparat et al.
2017, for discussion of finite volume effects on power-spectra and
the halo mass function). Finite volume effects on the mass accre-
tion history has yet to be thoroughly investigated and is beyond
the scope of this paper.

4. Discussion and Conclusion

We have presented TREEFROG, a code designed to follow the
evolution of cosmic structures like halos and subhalos. We have
demonstrated that the code tracks (sub)halos across cosmic time,
particularly cases that are typically notoriously difficult for such
codes, namely major mergers. We summarise key features and
results below.

TREEFROG is a tree builder code that can take a variety of
halo catalogue inputs. At its core, it is a particle correlator,
using particle IDs to match halo catalogues. Used in concert with
VELOCIRAPTOR (or any halo finder where the input particle lists
are arranged in a meaningful order), it uses a combination of
merit functions along with a subset of the most bound particles to
determine the best matches. We have shown that searching multi-
ple snapshots for candidate descendants based on the combined
rank ordering/number of shared particles merit using ∼50% of
the most bound particles well reconstructs the accretion histo-
ries of objects with complex interactions (those that experience
major mergers and host significant amounts of substructure), even
for objects which contain substructure and become subhalos of a
larger host.

The combined merit used by TREEFROG better separates pri-
mary progenitors/descendant links from secondary ones, with the
primary and secondarymerit distributions overlapping at the 2.5%
level, unlike the commonly used number of shared particles based
merit, where the distributions overlap at the 7% level. Searching
multiple snapshots for possible descendants is critical, reducing
the number of very poorly resolved objects with artificially trun-
cated lives from∼10% to∼2%. The reduction in truncation events
and other tree pathologies advocates the need to run simula-
tions into the future, past the desired last redshift, a practice also
advocated by Poole et al. (2017).
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The net result is that only a small fraction of objects either
start or end life composed of too many particles. Less than 1%
of objects begin their lives composed of >∼100 particles, above the
halo catalogue particle limit of 20. A negligible fraction of objects,
∼ 10−4, composed of∼40 particles have artificially truncated lives,
ending with no descendant. Typically, these objects are poorly
resolved halos in the process of being tidally disrupted that are
falling towards another halo.

With well built trees, we find a significant difference in the
merger behaviour of small subhalos and major merger remnants.
Mergers, those objects that are accreted by another halo with
accretion mass ratios of >∼ 5× 10−2 fully coalesce or merge at
smaller radii that subhalos, those with accretion masses ratios of
<∼ 10−2, due to the effect of dynamical friction. These objects do
not experience significant tidal mass loss, the slow stripping of
outer less bound material. Instead, they begin to phase-mix, with
the mass assigned to the merger remnant rapidly being assigned to
the host halo once they move close to or inside the scale radius of
the host halo.

We find that the mass accretion history of a host halo is
dominated by major mergers. In agreement with previous studies,
we find 20± 10% of the mass is accreted through minor mergers
and 31+46

−13% through major mergers. The reconstructed merger
rate from our low resolution simulation is in agreement with those
from Poole et al. (2017) using much high resolution simulations.

The general particle correlator nature of TREEFROG means
that it has been used to not only construct halo merger trees but
void trees (Sutter et al. 2014) and even compare halos across simu-
lations with different subgrid physics (e.g. Elahi et al. 2016; Arthur
et al. 2017).

The process of developing TREEFROG has lead to the spin-off
of two standalone packages WHEREWOLF, an halo tracking tool
for halo merger trees which fills in gaps in the tree and follows
objects deemed to havemerged; andORBWEAVER, a tool to recon-
struct orbital evolution, that will be presented in a follow-up paper
(Poulton in prep). The former corrects gaps and mergers in the
tree by tracking particles belonging to the (sub)halo that has a gap
in the tree or has merged, to see if the (sub)halo still exists. The
latter reconstructs the orbital evolution of halos.
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Appendix A. Merit function Comparison
The ideal merit function is one which well separates primaries and secondaries,
or more formally, the merit distribution of primary links differs significantly
from that of secondary links. We can compare distributions in a variety
of ways. One commonly used measure of the similarity of probability dis-
tribution functions is the Bhattacharyya distance, DBC , which is related to
the Bhattacharyya coefficient, BC (Bhattacharyya 1943). For probability dis-
tributions p and q defined over a domain X, the coefficient and distances
are:

BC(p, q)=
∑
x∈X

√
p(x)q(x), (6)

DBC(p, q)= − ln
(
BC(p, q)

)
. (7)

Distributions with no overlap have DBC = ∞.
Another common distance measure is the 1st Wasserstein distance or so-

called Earth Mover’s Distance, which measures the minimum work needed
to be done to transform p→ q (e.g. Rubner et al. 1998). Consider a set
P = (p1, p2, . . . , pm) and Q= (q1, q2, . . . , qn) with a set of distances D= [di,j],
where di,j is the ground distance between pi and qj. The earth mover’s distances
DEMD is determined by finding the optimal flow F = [fi,j] that minimises the
overall cost of moving set P to Q,

min
m∑
i=1

n∑
j=1

fi,jdi,j, (8)

subjected to the constraints:

fi,j ≥ 0, 1≤ i≤m, 1≤ j≤ n, (9)
n∑
j=1

fi,j ≤wpi, 1≤ i≤m, (10)

Figure A.1.Merit Function Comparison:We show the ratio of PDF distances between
our default merit and two other merit functions. Smaller values indicate worse separa-
tion between primary and secondary links.

m∑
i=1

fi,j ≤wqj, 1≤ j≤ n, (11)

m∑
i=1

n∑
j=1

fi,j =min

⎧⎨
⎩

m∑
i=1

wpi,
n∑
j=1

wqj

⎫⎬
⎭ . (12)

The earth mover’s distance is defined as the work normalised by the total flow:

DEMD =
∑m

i=1
∑n

j=1 fi,jdi,j∑m
i=1

∑n
j=1 fi,j

. (13)

The merit function should produce the maximum distance between pri-
mary and secondary distributions. We show the product of the Bhattacharyya
distance and the Wasserstein distance in Figure A.1. This figure clearly shows
how using ranking can improve the separation between primaries and secon-
daries and how using only the most bound particles can significantly improve
classification.

Appendix B. Configuration options
We list the complete configuration options here in Table A.1.

Table A.1. TREEFROG configuration parameters

Name Default Value Comments

Base Tree Construction Options Related to basic operation.

Tree_direction 1 Integer indicating direction in which to process snapshots and build the tree.
Descendant [1], Progenitor [0], or Both [−1].

Particle_type_to_use −1 Particle types to use when calculatingmerits. All [−1], Gas [0], Dark Matter [1], Star [4].
Default_values −1 Whether to use default cross matching &merit options when building the tree. 1/0 for

True/False.

Input/Output Options Related to input/output formats.

Input_tree_format 2 Integer flag indicating input halo catalogue format. ASCII SUSSING format (see
Srisawat et al. 2013) [1], VELOCIraptor catalogues [2], ASCII nIFTy format, ASCII
VOID catalogue format (see Sutter et al. 2014).

VELOCIraptor_input_ 2 Integer flag indicating input format of VELOCIRAPTOR catalogue. ASCII [0], Binary [1],
HDF5 [2].format

VELOCIraptor_input_ 0 Flag indicating whether halos and subhalos are written in separate files. All (sub)halos
together [0], separate [1].field_sep_files
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Table A.1. Continue.

Name Default Value Comments

VELOCIraptor_input_ 1 If VELOCIraptor run in MPI mode, more than one file produced. Multiple files [1],
one files [0].num_files_per_snap

Output_format 2 Integer flag for output format. ASCII [0], HDF5 [2].

Output_data_content 1 Integer flag for data contained in the output. BASIC (only descendant or
progenitor IDs) [0], Standard (IDs plus merit) [1], Verbose (IDs, merit, and
number of particles in structure).

Merit Options Related to calculation of merit function.

Merit_type 6 Integer specifying merit function to use. Optimal descendant tree merit in Eq. (3)
[6], common (progenitor tree) merit in Eq. (1) [1].

Core_match_type 2 Integer flag indicating the type of core matching used. Off [0], core-to-all [1],
core-to-all followed by core-to-core [2], core-to-core only [3].

Particle_core_fraction 0.4 Fraction of particles to use when calculating merits. Assumes somemeaningful
rank ordering to input particle lists and uses the first fTF fraction.

Particle_core_min_

numpart 5 Minimum number of particles to use when calculating merit if core fraction
matching enabled.

Shared_particle_signal_to_

noise_limit 1 Mininum significance σN of number of shared particles between object i and j, such
that links with Ni⋂ j < σN

√
Ni , Ni⋂ j < σN

√
Nj , that is where number of shared

particle is below Poisson fluctuations, are removed.

Temporal Linking Options Related to how code searches for candidate links across multiple snapshots.

Nsteps_search_new_links 1 Number of snapshots to search for links.

Multistep_linking_criterion 3 Integer specifying the criteria used when deciding whether more snapshots should
be searched for candidate links. Criteria depend on tree direction.Descendant
Tree: continue searching if halo is: missing descendant [0]; missing descendant
or descendant merit is low [1]; missing descendant or missing primary
descendant [2]; missing a descendant, a primary descendant or primary
descendant has poor merit [3]. Progenitor tree: [0,1].Merit_limit_continuing_

search 0.025 Float specifying the merit limit a match must meed if using
Multistep_linking_criterion = [1,3].

Temporal_merit_type 1 Integer specifying howmerits at different times are weighted.Descendant Tree:
Adjusts weights according to ranking and ignore temporal information for
descendant trees [1], Adjust weights using ranking and temporal information
[0]. Progenitor Tree: Adjust weights using temporal information [0].

Merit_ratio_limit 4.0 For objects with secondary descendants but no primary descendant where
secondary descendant’s primary progenitor also possibly primary progenitor of
another object, maximummerit ratio between the secondary descendant’s
primary progenitor and current object for which ranking is altered, leaving
secondary now primary and previous primary now primary descendant of
different object.

Additional Options

Max_ID_Value 134217728 TREEFROG assumes particle IDs range from [0,MaxID] and uses this information for
internal indexing. Set this value or invoke some form of mapping that maps
input IDs to this form. Code will allocate memory of size MaxID to quickly access
particle group ids.

Mapping 0 Integer specifying the type of mapping to use on input particle IDs. No mapping
[0], generate a id to index map (computationally intensive) [−1], or [1] a user
defined mapping. If number of particles is large, suggestion is to invoke [−1].
This needs to only be done once and the code will save the map.

Temporal_haloidval 1000000000000 For temporally unique halo IDs,

HaloID_snapshot_offset 0 Offset applied to all temporal halo id values. Halo IDS have added to them (input
snapshot number+HaloID_snapshot_offset)*Temporal_haloidval.

HaloID_offset 0 Offset applied to all halo id values. Halo IDS are then input index+1+HaloID_offset.

Appendix C. Associated tools
TREEFROG comes with a PYTHON-2/3 tool-kit, specifically routines to manip-
ulate the output data produced by the various codes. Typically, these produce

DICT containing NUMPY arrays, allowing for quick analysis and plotting.
The repositories also come with examples of producing metric plots. The codes
are PYTHON-3 (compatible with PYTHON-2) and make use of NUMPY, H5PY,
SCIPY, MATPLOTLIB, and SCIKIT.LEARN.
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