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Abstract

A group G is called normally (subnormally) detectable if the only normal (subnormal) subgroups in
any direct product G, X --- X G, of copies of G are just the direct factors G,. We give an internal
characterization of finite subnormally detectable groups and obtain analogous results for associative
rings and for Lie algebras. The main part of the paper deals with a study of normally detectable
groups, where we verify a conjecture of T. O. Hawkes in a number of special cases.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 E 15; secondary 20 D 35,
16 A 99,17 B 05.

1. Introduction

During the Warwick Symposium on Soluble Groups in 1977, T. O. Hawkes asked
the following question: under which conditions is a finite group “normally
detectable”? Here a group G is called normally detectable if in any direct product
G, X -+« XG,, where G, = G for i = 1,...,n, the direct factors G,,...,G, are
the only normal subgroups isomorphic to G. Hawkes conjectured that this is the
case if and only if G is directly indecomposable and |G/G’| and |Z(G)| are
coprime. It is easy to see that these two properties are necessary for G to be
normally detectable. Even more, a well-known result of Remak [6] states that
exactly under these conditions on G the groups G, are the only direct factors of

© 1987 Australian Mathematical Society 0263-6115/87 $A2.00 + 0.00
147

https://doi.org/10.1017/51446788700028172 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028172

148 Peter Hauck 21

G, X --+ X G, which are isomophic to G. Thus the validity of Hawkes’ conjec-
ture would mean a significant generalization of Remak’s theorem. However, the
motivation for studying this problem stems from the theory of finite soluble
groups; Hawkes was led to the concept of a normally detectable group in
connection with certain Fitting class constructions. For details the reader is
referred to the forthcoming book of Doerk and Hawkes [3].

In this paper we shall deduce a series of partial results on Hawkes’ conjecture.
“A final answer, however, is not obtained. We shall show that a finite group G is
normally detectable if either one of the conditions stated above is somewhat
strengthened. For instance, if the coprimeness condition on |Z({)| and |G/G’| is
required not only for the directly indecomposable group G but also for certain
non-nilpotent factor groups of G, then G is normally detectable (Theorem 6.5).

On the other hand, if, apart from direct decompositions, some specific factori-
zations of the form G = NS, where N is a non-nilpotent normal subgroup of G
and S is a non-nilpotent subnormal complement for N in G, are also excluded,
then a group G with (|Z(G)|, |G/G’)) = 1 is normally detectable (Theorem 6.2).
We also show that Hawkes’ conjecture is valid for groups which satisfy certain
conditions on the structure of the automorphism group or on the size of the socle,
etc. (Theorem 6.9). In the course of proving these results, we not only obtain
information about the structure but also about the kind of embedding of a
possible counterexample to Hawkes’ conjecture (Theorem 6.8).

In contrast to the case of normally detectable groups, subnormally detectable
groups (which are defined in the obvious way) are much easier to handle. It turns
out that a finite group G is subnormally detectable if and only if G is directly
indecomposable and (JG/G’|, |[Fit(G)|) = 1 (Theorem 4.2).

It is the transitivity of the subnormality relation which makes our method
(iterated embeddings) work smoothly. Therefore, it is not surprising that similar
arguments provide a short proof of the fact that a finite group G # 1 can never be
characteristicin G; X -+ XG, (G,= G fori=1,...,n)in case n > 2 (Proposi-
tion 7.1).

Finally, the result on subnormaily detectable groups carries over to Lie algebras
and associative rings; this is shown in Theorems 7.3 and 7.5.

The groups considered in this paper are not assumed to be finite; however, we
have to impose certain finiteness conditions. Usually, the minimal condition on
subnormal subgroups is needed. For most of the results on normally detectable
groups we even have to assume that the group in question possesses a finite
composition series.

Part of this work was done while the author enjoyed the hospitality of the
University of Kentucky, U.S.A. and the Australian National University (as a
Visiting Fellow). Special thanks are due to J. C. Beidleman, B. Brewster, and J.
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Cossey for several stimulating discussions on the subject of this paper, and to
L. G. Kovacs for some valuable suggestions.

2. Notation

Iterated commutators are assumed to be normed from the left. The notation
S<4G means that § is a subnormal subgroup of G, and the defect of a
subnormal subgroup S of G is defined to be the smallest integer d such that there
exists a chain § = §,<S,4--- 4S, = G. For a subgroup S of G, S denotes the
smallest normal subgroup of G containing S and Core;(S) denotes the largest
normal subgroup of G contained in S. Fit(G) stands for the Fitting subgroup of a
group G and Soc(G) for the socle of G, the subgroup generated by all minimal
normal subgroups of G.

For a direct product G; X --+ X G,, the natural projection onto G, is always
denoted by =,. Quite frequently we shall use k-tuples J, = (jy,..., j;) of positive
integers as indices for the factors in a direct product. Correspondingly, the
projections are denoted by =, . If m and k are positive integers, m* stands for the
cartesian product {1,...,m} X --- xX{1,...,m} (k times). For J = (jj,..., ji)
e m* and I = (iy,...,i,) € o, we write (J, I) for the (k + t)-tuple (j,,---, ji
iry...,i,) € m**". When k-tuples J = (ji,..., j,) are used as indices for groups
(or maps), G,, G, ;. and G, ; denote the same object (where J, =
(J1»--+» ju—1))- If 6 is a permutation on {1,...,k},and if J = (jy,..., j,) € m¥,
then Jo is the k-tuple (ji,, .- ., jio)-

Finally, (a, b) is used as the notation for the greatest common divisor of the
positive integers @ and b.

Group theoretical notations not explained here are consistent with those used
by Huppert {4].

3. Preparatory lemmas

Groups considered in this paper are usually assumed to satisfy certain finite-
ness conditions. The minimal condition on subnormal subgroups is needed
frequently, often together with the maximal condition on subnormal subgroups.
Clearly, these are just the groups possessing a finite composition series. The
purpose of this section is to collect some basic results on nilpotent groups with
finiteness conditions and to prove some elementary statements about certain
subgroups in direct products.
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The following lemma is well known (see e.g. [8, Section 12]).

3.1. LeMMA. (a) If G is a group satisfying the maximal or minimal condition on
subnormal subgroups, then Fit(G) is nilpotent and every nilpotent subnormal
subgroup of G is contained in Fit(G).

(b) If G is a group with finite composition series, then every nilpotent factor group
of a subnormal subgroup of G is finite. In particular, Fit(G) is finite.

3.2. LeMMA. Let G be a finitely generated nilpotent group and N a non-trivial
central subgroup of G. Then there exists a non-trivial homomorphism from G into N.

PROOF. Let T be the torsion subgroup of G. If G # T, then G/T has an
infinite cyclic factor group. If G = T, then G is finite. In both cases the assertion
is clear.

The following lemma contains some basic facts on direct products which will be
used frequently in the sequel.

3.3. LeMMA. Let G be a subgroup of H, X --- X H, and let I be a subset and i an
element of {1,...,n}.

(a) If G is subnormal in Gmy X --- X G, of defect d, then Gm,/(G N H,) is
nilpotent of class at most d.

(b) If Gis normalin H, X --- XH,, then Gm,/(G N H)) < Z(H,/(G N H)).

(c) If G is characteristic in H; X -+ XH,, then Gm,/(G N H,) is centralized by
every automorphism of H,.

In parts (d)—(f) let H; = G forallj = 1,...,n.

(d) Let G satisfy the maximal or minimal condition on subnormal subgroups. If G
is subnormal in Hy X --+- X H,, and if there exists no non-trivial homomorphism
from G into Fil(G), then G ;) = 1ifandonly if G N X, H; = 1.

(€) Let G satisfy the maximal condition on subnormal subgroups. If G is

subnormal in Hy X --- X H,, and if there exists no non-trivial homomorphism from
Ginto Z(G), then G c ;7)) < Fit(XjE,Hj) ifand only if G N X, e Hi=1

(£) If G is normal in H, X --- XH,, and if there exists no nontrivial homomor-
phism from G into Z(G), then G(X ;< ;m;) = lifand only if G N X, erH =1

PrOOF. Clearly, G N H,AG,.

(a) Let hyp, by, ..., b,y € Gm, be arbitrary. Thereexist h;, € Gm;, j=1,...,n,
J#i, k=1,...,d,such that g, = h,I1, . h, € Gfork=1,...,d. Since G is
subnormal in Gm, X --- X G, of defect d, we conclude that [h,q, h;y,..., h,y] =
[Ri0: 81r-- - 841 € G N H,.
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(b) and (c) Let h; € G7, and a € Inn(H,) or a € Aut(H,), respectively. Then
a induces an automorphism a on H; X --- X H, in the obvious way (and & is
inner if a is inner). Choose h; € H;, j=1,...,n, j # i, such that g =TI7_, h;
€ G.Then{h, a] = [g,al€ G N H,.

(dand (UGN X, H=1, then G; < Fit(H)) for all j € I by (a) and
3.1(a). This proves (d) and one part of (). For the second part of (e), suppose that
G(X,< ;) is nilpotent but that G N XerH;#1. 60 X, HAGE, ;™)
implies that G N Z(G(Z; ¢, 7)) # 1. As an epimorphic image of G, the nilpotent
group G(X; < ; m;) is finitely generated. By 3.2, there exists a non-trivial homomor-
phism from G, ;m) into G N Z(G(X; < ;7)) < Z(G), which is a contradic-
tion.

(f) This follows from (b).

3.4. DEFINITION. Let G be a subgroup of H; X --- XH,. Then G is called
triviglly embedded in H, X --- XH, if GN X,  H=1 for some i€
{1,...,n}.

The following observation is immediate from 3.3(d) and (f).

3.5. REMARK. Let G be a subnormal subgroup of G, X --- XG,, where G; = G
fori = 1,..., n. Assume further that one of the following conditions is satisfied:

(a) G satisfies the maximal or minimal condition on subnormal subgroups, and
there exists no non-trivial homomorphism from G into Fit(G);

(b) G is normal in G, X --- XG,, and there exists no non-trivial homomor-
phism from G into Z(G). Then the following statements are equivalent in pairs.

(i) G is trivially embedded.
(ii) There exists i € {1,...,n} such that GN G; = 1 forall j # i.
(iii) There exists i € {1,..., n} such that GIIG,.

Trivial subnormal embeddings are easy to describe.

3.6. LEeMMA. Let H,,..., H, be groups which satisfy the maximal or minimal
condition on subnormal subgroups.

(a) If G is trivially subnormally embedded in H, X --- XH,, i.e. G N X H,
=1 for some i € {1,...,n}, then Gm,= G, and there exist homomorphisms
a; Gm, — Fit(H)) forallj + i such that G = {g; - 11,,,8;2;|8; € Gm;}.

(b) For some i€ {1,...,n), let G, be a subgroup of H, For j+i, let
a;: G, Fit( H;) be homomorphisms. Then the subgroup G = {g;-11,.,8,2,|8; € G;}
of Hy X - -+ XH, is isomorphic t0 G;, and G N X, H; = 1. Moreover, if G, is
subnormal in H;, then G is subnormal in H; X --- XH,.
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PROOF. The straightforward proof is left to the reader.

We conclude this section with a description of those subgroups of a direct
product of isomorphic groups which are isomorphic to one of the direct factors.
This result is due to Remak [7, Satz 3).

3.7. LemMA (Remak). Let G be a group with G = G; via isomorphisms
9. G- G, i=1,...,n If a;y G- G, i=1,...,n, are homomorphisms
with N_,kera, =1, then the subgroup G, = {I1'_,ga,p g€ G} of G,
X -+ X G, is isomorphic to G. Conversely, every subgroup of G, X - -+ X G, which
is isomorphic to G is obtained in this manner.

4. Subnormally detectable groups

4.1. DEFINITION. A group G is called subnormally detectable if the following
holds: whenever G, is subnormal in G, X - -+ X G, for some positive integer n,
where Gj = Gfor j=0,1,...,n,then G, = G, forsome i € {1,...,n}.

The following theorem characterizes those subnormally detectable groups that
satisfy the minimal condition on subnormal subgroups.

4.2. THEOREM. Let G be a group satisfying the minimal condition on subnormal
subgroups. Then the following statements are equivalent:

(1) G is subnormally detectable;

(ii) G is directly indecomposable, and there exists no non-trivial homomorphism
from G into Fit(G).

PROOF. We show first that (i) implies (ii). If G = 4 X B, 4 # 1 # B, then let
A;=A, B,=B,and G, = A4, X B, for i =1,2. Since G = 4; X B,4G, X G,, G
is not subnormally detectable. If a: G — Fit(G) is a non-trivial homomorphism,
let G,={(g,8x)|g€EG})<GXG. Then Gy =G and kera X 1< G, <
G X Fit(G). By 3.1(a), (G X Fit(G))/(kera X 1) is nilpotent. Hence G, is sub-
normal in G X G. Since Ga # 1, G is not subnormally detectable.

Now assume (ii) and suppose that G is not subnormally detectable. Then there
exist groups G, Gy, ..., G, (n > 2) isomorphic to G such that G,<d4G, X - -+ XG,
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and such that Gym, # 1 for i = 1,..., n. Among all such subnormal embeddings
choose one with n maximal. This is possible: by 3.3(d), Gom; # 1and G, N G; # 1
are equivalent; because of the minimal condition on normal subgroups, each
Gy N G; contains a minimal normal subgroup of G,; finally, by the minimal
condition on normal subgroups again, Soc(G,) is a direct product of finitely
many minimal normal subgroups. We now define groups G,; = G, i, j=1,...,n,
such that each G, is subnormally embedded in G,; X --- X G,, in the same way as
G, is embedded in G, X --- XG,. Clearly then, G, is subnormal in (G,
X o XG )X oo X(Gy X -+ XG,,). By the maximal choice of n, at least
n®> —n of the projections Gym, are trivial. But then 1 # Gum < Gom,
X «++ XGym, implies that for each i there exists exactly one index j(i) such that
Gom, iy * 1. It follows that

(*) Goﬂﬂ(Gl N Gl,j(l)) X e X(G,, n Gn,j(n))'

Note that G, N G, ;;, # 1 for all i (3.3(d)) and that G,m; satisfies the minimal
condition on subnormal subgroups (since Gym;<4G;). Consequently, there exists

some m € {1,...,n} such that Gym, is not isomorphic to a proper subnormal
subgroup of any Gym, i =1,...,n. We note further that Gym, = G,m; for all

i,j=1,...,n this is immediate from the fact that G, is embedded in
G, X -+ X G, in the same way as G, is embedded in G;; X - -+ X G,,. Employing
(*), we now obtain Gym,, G, N G, (LG j(my = GoTj(my- By the choice of

m, Gy, is not isomorphic to a proper subnormal subgroup of Ggym,,,,. Hence,

G, NG, iimy= GuTy jmy- But this implies that G, = (G,, N G, ;i) X (G, N
X 4 jtmy Om;)> contradicting the indecomposability of G,,,.

If we use the fact that for finite nilpotent groups G the prime divisors of |G|
coincide with those of |G/G’|, then the following corollary is an immediate
consequence of Theorem 4.2.

4.3. COROLLARY. Let G be a finite group. Then the following statements are
equivalent:

(i) G is subnormally detectable;

(i) G is directly indecomposable and (|G/G’|, |[Fi(G))) = 1.

Theorem 4.2 also yields the following somewhat more general statement.

4.4. COROLLARY. Let G be a group satisfying the minimal condition on subnormal
subgroups. Assume that G is directly indecomposable and that there exists no
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non-trivial homomorphism from G into Fit(G). If G is subnormal in H; X --- XH,,

where each H; is isomorphic to a subnormal subgroup of G, then there exists
ie{l,...,n} such that G = H,.

5. Subnormal embeddings

For our approach to Hawkes’ problem on normally detectable groups it is
necessary to obtain some general information about subnormal embeddings of a
group G (with finite composition series) in a direct product of groups isomorphic
to G. The aim of this section is to provide a proof of the following result.

5.1. THEOREM. Let G be a group with finite composition series. Assume further
that G, is subnormal in G, X --- XG,, where G, = G for j = 0,1,..., n. Then one
of the following holds:

(a) G is nilpotent;

B GoNG, #1andGyN X, G, =1 forsomei € (1,...,n};

(c) G, is non-trivially subnormally embedded (in the sense of 3.4); in this case,
G = NS, where N4G, SG, NN S =1, N#1, S is not nilpotent, and
S€/Corey(S) is nilpotent; in particular, [N, S] < Fit(G).

Since in nilpotent groups all subgroups are subnormal, the embeddings consid-
ered in Theorem 5.1 are classified for nilpotent groups by Lemma 3.7.

The trivial embeddings of 5.1(b) are described in Lemma 3.6. In view of
Theorem 4.2 one might be led to conjecture that all subnormal embeddings for
directly indecomposable groups arise like those in 3.6. However, in 5.12 we give
an example of a finite group G (due to John Cossey) which shows that this is not
the case (even if Z(G) = 1); hence case (c) of Theorem 5.1 actually occurs.

On the other hand, it is easy to construct examples of groups G (with trivial
center) that satisfy the structural properties given in 5.1(c) without admitting a
non-trivial subnormal embedding in a direct product of groups isomorphic to G.
We note further that Theorem 5.1 also yields a proof of Theorem 4.2 for groups
with finite composition series. However, this approach is more elaborate than the
direct argument in Section 4.

To prove Theorem 5.1 we observe that G, N G; = 1 forall j =1,..., n implies
that G is nilpotent (3.3(a)). Therefore, we can assume that the non-nilpotent
group G, is non-trivially subnormally embedded in G, X --- X G, and have to
show that G is factorized in the form given in 5.1(c). This will be accomplished in
Theorem 5.10, where also a concrete description of N and S can be found.
Actually, it is this description which is most essential for the investigations on
normally detectable groups in Section 6.
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First of all, however, we have to introduce some notation. We assume in the
following that all groups considered possess a finite composition series, although
the full strength of this assumption is not always needed.

5.2. NOTATION. Let G be a non-nilpotent group with finite composition series.
Suppose that G,<4G; X --- XG,, where G=¢G for j=0,1,..., n. These hy-
potheses are tacitly assumed throughout 5.2 to 5.9.

(a) With Gy, ..., G, given, we define groups G, = G, /€N, J, € 1, in such a
way that G, is subnormally embedded in G, ; X - -+ X G, , in the same way as
G, is embedded in G, X --- XG,. Hence, for all / € N, G, is subnormal in
X ed G, where we use the lexicographical ordering in n.

(b) For I € N, define #,C o by B, = {J, € |Gym;, « Fit(G;)} and set b, =
|%,|. (7, denotes the projection onto G; cf. Section 2.) By 3.3(a), B, C {J, €
n’|G0 N G,, # 1}. Since G is not nilpotent, b, > 1 for all /. Now Gym; < Gomy
X +-+ XGym, , implies that b, < b,,, for all I. Hence there exists some positive
integer s, such that b = b; for all j > s, because G, is a group with finite
composition series. (Actually, it can easily be shown that b, = b; forall j > s, is
equivalent to b, = b, ;) We choose s; minimal with respect to thlS property and
set b=b, . We call b the branching number of the iterated embedding. (This
notation is justified by the following fact: as mentioned above, %, C {J, € |
Gy N G, #+ 1}. If G does not admit a nontrivial homomorphism into its center
(the case we are mainly interested in), then we actually have 4, = {J, € ¥|G, N G 7,
# 1} by 3.3(e).)

() For k> sy, let B, = (J},...,J2}. Fori=1,...,b,let J} = (ji,..., ji).
Since b, = b, . ;, and since Gorr,. < Gomps X - XGovr,. there exists exactly
one mdex _]sl+1 € {1,...,n}such that o= (11, . jsﬁ_l) Analogously, js +25
jjl +3s--. are defined for i=1,...,b For i=1,...,b, we denote by J' the
sequence (jilk € N). Let &, = {J’|i =1,...,b}. Fmally, for 1 < /< k and
i=1,...,b,set J = (ji>--., ji); thus J; = J[l,k]'

(d)Let keN andlet i€ (1,...,b}. Then Gym;; = = (Gomy)wy;  is a homo-
morphic image of G,m;;. Application of the maximal condition on normal
subgroups to the ascending chain kerw; N G, yields the existence of some
(smallest possible) index s(i) with Gow,. = Govr,, for all j = s(i). We set
s =max{s(i)]i=1,...,b} and call s the statzonary level of the iterated embed-
ding. We show in 5.3 that s>

(e) For k > s, define B} = {Jk € B, |Gomy; = Gomyy, .} and BE* = (J{
€ %, |Gomy; is not isomorphic to a proper subnormal subgroup of any Gy,
j=1,...,b}. It will be shown in 5.7 that J; € #}* for some k > s if and only if
Ji € #r* for all | > s. Therefore, it makes sense to define B%* = {J' € B | J;
€ BF* for all k > s}. We have been unable to decide whether an analogous
result holds for #}.
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(f) For k > s and for i € {1,..., b}, define the normal subgroup N, of G, by
Ni=kerm, NGu=G;N X {G,,.;,,l.l €W, J#Ji1 k) It follows from
(d) that Nj =kerm; N Gy=GyN X{Gy ,|JEW, J+Jj ) for al
125

53.LEMMA. 5 > 5

PROOF. Suppose that the assertion is false. Then, by definition of s and s,
there exist h,i € {1,...,b}, h # i, such that J{ = J! for some k > s, but such
that ji,, # j!,,. Since Gym;; = Ggmy; _, it follows from the maximal condition on
normal subgroups in Gomy; that Gomy; N X, . Gy ;=1 Analogously, Gy
N X/*Jk Gr, =1 A fortiori, G, N G;; ;=1 for all j=1,...,n. By 3.3(e),
this nnphes that Gym;; ~and Ggmy | are nilpotent, contradicting the fact that
Jivr i1 € Bisr

54. LEMMA. For i € {1,...,b} and for m > 1, the sequence (j/|l > m) is a
member of #,. Moreover, GOWJ;-('_) is isomorphic to a subnormal subgroup of
Gy foranyr = s(i) — 1.

0 J[im.m+ r

PROOF. Let r > s(i) — 1. We have Gym;, = Gomy:, as m+ r > s(i). Since
Jiiy € B,y and Gomyi Gy my = GO’TJ,m ,..,p» We conclude that Gomy,  is
not nilpotent. The assertion follows.

55.LEMMA. Leti € {1,...,b} andletk > s

(@) The following statements are equivalent:

@) Ji € BY;

(i) Gymy; = Gomstysiion for some | >

(i) Gomyy = Gomyy, pon foralll >

iv) Ji e Qk, and N}/ is complemented by Gymy; in Gy

) Letlsm<k+landlets<I< k. IfJ. e .@ then J| € B. Moreover,
Gomy; = GOWJ(»- mas=1y’ o A . .

(c) Let J{ € B} be such that J;, = (J}, J(). Then J,, = (J\,_1yi, i) for all

> 2, andJ} € B} foralll > s. Moreover, if o denotes the k-cycle (,...,k) in

the symmetric group S,, then Jjo" € B and Gymy; = Gomiyior = GoTl gior yigry for
allr.

PROOF. (a) It follows from 5.4 that (i), (ii), and (iii) are equivalent. Suppose
Ji € #}. Then Gymyy/(Ni 0 Gymyy) = Gymyy = Gymyy. Now Gy, being an epi-
morphic image of G, satisfies the maximal condition on normal subgroups.
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Ti+s
as J; € #}. Since G; satisfies the minimal condition on subnormal subgroups,

(iv) follows.

If (iv) holds, then Go7;; = G, /Ny = Gymy, = Gomy, 5 thus J; € B

(b) By 54, Ggmy = Gomgi i 8Gy Tr 0 = Goy L = Gy =
Gomy: (note that m < k + 1 and J; € #F). On the other hand, Gy7;: is isomor-
phic to a subnormal subgroup of Gomst veony by 5.4. The minimal condition on
subnormal subgroups implies that Gomlyi mvey = Gpvr,s,. Setting m =1+ 1<
k + 1, we obtain Gomyy,, 1p0 = Goys = Gomyy. Hence J; € #*.

(c) We prove J,; = (J(,n-1yx» J&) by induction on m. The case m = 2 holds by
hypothesis, and so we assume that m > 3. Let Ji; = (J(,_1)x, /), J € n*. By the
induction hypothesis, Gy, @ .y = Gomyy,, and this group is not nilpotent.
On the other hand, Gym;, <9G,,  m. . Hence Gy, mpi =Gy my gy is
not nilpotent. Since k£ > s, we conclude that J = J;.

Let / > s be arbitrary and choose m such that mk > . Since J\, = J ks 1.2mi»
part (a) shows that J), € #%,. By part (b), J/ € #*. That Gy, = Gy, =
GoT(51 47, sio7y hOlds follows from the preceding arguments, from part (b), and from
5.4. In particular, Jio" € #}.

i — [ . . =~ f- .
Hence, Ny N Gymy; = 1. Furthermore, G, /Np = Gymy;, = Gomyy = Goyy,

5.6. LEMMA. Letk > sandi € {1,...,b} be such that J} € B}. Then
(@) (Gymy ) %1/ Coreg,,(Gymy,) is nilpotent,
(b) [Gymy;, Ni] < Fit(G,).

PRrOOF. Recall that, by 5.5(a), Gy7;; is a complement to Ny in G;.

(a) Clearly, G, 1 G;; | AGomy,. By 3.3(a), Gomy, /(G N Gy ) is nilpotent. More-
over, [N/, Go N Gy;, 1< N{ N G;; =1 according to the definition of N;. Thus
Gy N Gy, 4Gy, and Gy / CoreG!’,((Govr,;‘) is nilpotent. Since Gy, is subnormal
in G;;, the conclusion follows from 3.1(a).

(b) This is clear from (a).

57. LeMMA. Let i€ {1,...,b). If Ji € BE* for some k > s, then J| € B}*
fqr all 1> s. Moreover, if m>1, then Gymy = Gomy; in particular,
J[‘m,m+s—1] € g:*

ProOF. This follows immediately from the definition and from 5.4.

5.8. LEMMA. Letk > s. Then @ + B}* C Bt.

PRrOOF. Since G is not nilpotent, #, # &. Therefore, Zf* # & by virtue of

the minimal condition on subnormal subgroups. Now let J/ € #**. As in the
proof of the implication (i) = (iv) in 5.5(a) it follows that Gym; N N = 1. Hence

https://doi.org/10.1017/51446788700028172 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028172

158 Peter Hauck [12]

GOWJ’-; = (GO'”J,")NI:/NI:ﬂﬂGJi/NI: = GJLWJ’:;” = GO’”J[",‘H fos)” From J,: € BE* we
conclude that Gym,, = Gy ,1.e. that J € BE.
& Lk+1,k+3]

5.9. LEMMA. Let i € {1,...,b} be such that J} € B}**. Then there exists | > s
andJ!' € B}* (forsomeh € (1,...,bY) withJl\, | ;= J} and Gym;i = Gymp.

PROOF. It follows from 5.7 that J{ ., 1 (,+1ys) € #** for all positive integers u.
Since #** is a finite set, there exist positive integers a < b such that
Jas+1,a+ 151 = Jbsa 1,64 1ys- St I =5(b — a) > s and J = J{;; 1 ;) € 0. Then
Gy = Gymy = Gym, by 5.7. Hence, J € #2*, say J =J! for some h e
{1,...,b}. It remains to show that J/ =J};,, ;. Using 54, we infer from

Hass1,a+1s) = Jfbssr,04n) that Gomp = Gomy = Gomp, .0,
Gy yh gi . This proves the assertion in the case b = a + 1. So we may
O (I s Jas+10a+1)e)) ; )
assume that b > a + 1. Now Gy7, is nilpotent for all I € n(s~¢~2),
) S 0% (Jas+1,a+ 110 7)
1 1
I# Jiairyse1,6sp beCUSE Jioi1 oiy € F, and Gomy
Gomjp is not nilpotent. Since Gomp yi .\ o ny < Gpgp g '
Gy,  for all T € n¢~X8=9) we conclude that Gym ,n is
_0 (Jas+1,a+1sp ) i J7 ,ﬁasu,(anmvl)
nilpotent for all I € nC~DE=9 [ % Ji .\ 4. It follows that Jjj,, 5, = J/.

Jia+ys+1.8s)

~

The following theorem rests upon the results obtained so far in this section. It
exhibits a particular nice factorization and implies the validity of Theorem 5.1
(note the remarks following the statement of 5.1).

5.10. THEOREM. Let G be a group with finite composition series. Let G,dd
G, X - -+ X G, be a non-trivial subnormal embedding (cf. 3.4), where G; = G for all
j=0,1,..., n. Then either G is nilpotent or the following statements hold (with the
notation of 5.2(a)). There exists some positive integer | and J, = (ji,..., j) €1
such that

(@) G, = N, - Gym,, where N, = G; N X{G, ;,|J €0, J +J}

(b) N; N Gomy, =1

(c) Gqmy, is a non-nilpotent subnormal subgroup of G,

(d) N, is a non-trivial normal subgroup of G,

© (GOWJ,)GJI/ CoreGJI(GO'rr,l) is nilpotent; in particular, [N, Gym, ] < Fi(G,)

) GoN Gy, =G, NG, 4G,

(® G,,=(G, N X{G, ;1T €W, J+J6™}) Gym; for 1< m<]I, where
Jpo=0Up--sipyande=Q1,...,1)€ S,

PROOF. Let G be non-nilpotent. According to 5.2, let &, = {J},..., J¢) for

k > s. Now G, satisfies the minimal condition on normal subgroups. Since
GoNGy>GyN Gy forallk >sandalli=1,...,b, we deduce the existence
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of some integer ¢ > s such that

(*) GoNGy=G,NGy forallk >tandfori=1,...,0b.

Since, by 5.8, #** # &, we can choose / and J," € B}¥* asin 5.9. By 5.5(c), we
may replace / by al (a € N) without violating the statement of 5.9. Hence,
without loss of generality, we have [ > .

Set J,=JF. Then (a) and (b) follow immediately from 5.8 and from 5.5(a).
Statement (c) is a consequence of J, € #** C %,. The fact that the embedding of
G, inG;, X -+ X@G, , is non-trivial yields (d). Part (e) is proved in 5.6.

By the choice of J,, and because of (x), we have G, N G, = G, N G, ;. Thus
Gy N G,94G,; N G, ; = G, N G;. Hence the minimal condition on subnormal
subgroups implies the validity of statement (f).

Finally, let 1<m </ Set N, =G, N X{G, ,|J€n, J+Jo™}. Then
Gom; /(Gom; NN, ) = Gomy, g0my = Go7y, g,y = Gomy. Furthermore, G; /N,
= G, 7y, jom = Golyom = Gom;, Where the latter isomorphism is given by 5.5(c).
Employing once again the minimal condition on subnormal subgroups in G, , we
obtain (g).

5.11. REMARK. Let G be a finite non-nilpotent group satisfying the hypotheses
of Theorem 5.10. Assume further that, for every prime divisor p of |G/G’|, the
Sylow p-subgroups of G are abelian. Then G is directly decomposable (in a
non-trivial way). In view of 5.10, this follows from the following simple fact: if
the finite group G has abelian Sylow p-subgroups for every prime divisor p of
|G/G’|, and if G is of the form G = NS, where Nd4G, S<44G, NN S =1, and
S /Core;(S) is nilpotent, then G = N x S for some § < G. This is proved by
induction on |G|. By standard reductions, we may assume that Core;(S) = 1 and
that § < 0,(G) for some prime p. (O,(G) denotes the largest normal p-subgroup
of G.) Define T =[S, N}S < O,(G). Then T is N-invariant. Since p divides
|G/G’|, the Sylow p-subgroups of G are abelian. Consequently, T is abelian, and
p does not divide |N/Cy(T)|. Therefore, T = [T, N] X C(N) [4, 1I11.13.4(b)].
Let S = (s,...,5,,). There exist x; € [T, N] such that s,x, € C7(N) for i =
1,..., m. Define § = <s1x1, cees s,,,x,,,> < Cr(N). Since [T, N] £ N, we conclude
that G= NS = NS. Let y =TI" (s;x,)% =17, 54117, x% € N N §, where
a; € Z (note that T is abelian). Then 172,57 € NN § = 1; hence y =172, x{
e[T,N]nS < [T, N]n Cr(N) = 1. Consequently, S is a complement for N in
G. Clearly, then, G = N x §, as § < C(N).

5.12. ExaMpLEs. (a) (J. Cossey) The following example exhibits a directly
indecomposable finite group G with trivial center which possesses a non-trivial
subnormal embedding in G X G (in the sense of 3.4).
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Let G be generated by x;, x,, x5, y;, ¥, according to the following defining
relations:

x13 = x% = xg = [xl,x3]3 = [xz,x3]3 =)’12 =)’22 =1,

[x1,%,] =1, [x1,%5,x]=[x5,x5,x,]=1fori=1,2,3,
[x2, i) =[x, 1) =[x, 2] =[x, ) = [y, ] = 1,
[xi, ) =x1, [x0, 0] =x,.
Then |G| = 2?3, Z(G) = 1, and G is directly indecomposable. (If ¥ denotes the
indecomposable faithful Z.-module over GF(3) of dimension 2 and H the
semidirect product of V with Z, then G is the direct product of two copies of H
with amalgamated factor group Z,.)

Let G* be a copy of G with generators x*, y* that correspond to x,, y;. Itis
easy to check that G, = <xl, x{¥, x3x¥, i, y1*> is a subnormal subgroup of
G X G* which is isomorphic to G (x, corresponds to x;, xf to x,, x3x¥ to X3,
y; to yy,and y¥F to y,). Clearly, Go,N G+ 1 # G, N G*.

(b) Groups G with the structural properties described in 5.1(c) need not admit
non-trivial subnormal embeddings in direct products of groups isomorphic to G.

Let P = (x,y|x*=y* =[x, p,x] =[x, y, y] = 1) be an extraspecial group
of order 27 and exponent 3, and let z denote the automorphism of P which
inverts x (and [x, y]) and leaves y invariant. Let R be the semidirect product of
P and (z). Then N = (x,[x, y], z) is a normal subgroup of index 3 in R.
Moreover, R acts on a cyclic group () of order 7 with kernel N, and [¢, y] = ¢.
Finally, let G be the semidirect product of () and R with respect to this action.
Then Z(G) = 1. Since (¢) and {[x, y]) are the only minimal normal subgroups
of G, it is easy to verify that G does not allow non-trivial subnormal embeddings
in direct products of groups isomorphic to G. However, statement 5.1(c) is
satisfied with N as above and with § = (y, 7).

It remains an open question as to how those groups G can be characterized
which admit a non-trivial subnormal embedding in a direct product of groups
isomorphic to G.

We conclude this section with a result on the subnormal embeddings of a group
which does not admit a non-trivial homomorphism into its center. This will be of
use in our investigations on normally detectable groups.

5.13. PROPOSITION. Let G be a group satisfying the maximal condition on
subnormal subgroups which does not admit a non-trivial homomorphism into its
center. Let GyddG, X -+ XG,, where G;=G for j=0,1,...,n. If N is a
minimal normal subgroup of G, andifi € {1,...,n), then either Nm, = 1, or N,
is a minimal normal subgroup of G,,.
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PRrOOF. Suppose that Nar, # 1. Then, if 1 # M, < N, is a normal subgroup of
Ggm,, it follows that 1 # M = {n € N |nm € M,} is a normal subgroup of G,,.
Hence N, is a minimal normal subgroup of Gym,. Aiming for a contradiction, we
assume that Nw; is not a minimal normal subgroup of G,. Then N= £ G,.
Moreover, N N X7_,(Gy N G;) = 1; for otherwise, N < X7_,(G, N G)), and
hence N, < G, N G, < G, a contradiction.

Now [Nm, N Gy, Gym]=[Nm N Gy, Gyl < Nm N G, Therefore, Nm N
G,4Gym,. Since N7, £ G, is a minimal normal subgroup of Gm;, we conclude that
Nm, N G, = 1. By 3.3(a), Gym,/(G, N G,) is nilpotent, say of class ¢. Then [N,
Gy .., Gom] < Nm;N Gy N G, =1 (here Gym; occurs ¢ times). Hence N7, is
contained in the hypercenter and, as a minimal normal subgroup, even in the
center of Gym. Consequently, [N,G,J< NN X4 G, Since Nm #1 and
NN X iui G,;4Gy, N is contained in Z(G,). By 3.3(a) again, G,/ Xj';l(GO N G))
is nilpotent. Moreover, N = N( X7_1(Go N G/ (X]_((Gy N G))) <
Z(Gy/ X,'Ll(Go M G;)); this holds because N N Xj’.'=1(GO NG)=1and N <
Z(Gy). As a nilpotent factor group of G,, G/ Xj’.‘= (Go N G)) is finitely gener-
ated. By means of 3.2 we deduce the existence of a non-trivial homomorphism
from G,/ X j’.‘sl(Go N G)) into N < Z(G,), the desired contradiction.

6. Normally detectable groups

6.1. DEFINITION. A group G is called normally detectable if the following holds:
whenever G, is normal in G, X :-- X G, for some positive integer n, where
G, =G for j=0,1,...,n then G, = G, forsome i € {1,...,n}.

The following conjecture is due to T. O. Hawkes.

CONJECTURE. A finite group G is normally detectable if and only if
(1) G is directly indecomposable, and
@ U6/GL12(G)) = 1.

It is clear that (1) and (2) are necessary for a group to be normally detectable:
for (1), the same argument as in the proof of the implication (i) = (ii) of Theorem
4.2 works. For (2), assume that there is a non-trivial homomorphism a: G — Z(G).
Then G, = {(g, ga)|g € G} is a normal subgroup of G X G, G, = G.

We are not able either to prove or disprove Hawkes’ conjecture. This section is
devoted to the proofs of several partial results. We show that if one of the
conditions (1) or (2) is somewhat strengthened, it follows that the group in
question is normally detectable (Theorems 6.2 and 6.5). Moreover, for various
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types of groups we are able to prove that Hawkes’ conjecture holds (Theorem
6.9).

To obtain these results, we not only need information about the structure but
also about the type of embedding of a possible counterexample (Theorem 6.8).
Theorem 5.1 already shows that a group which is a counterexample to Hawkes’
conjecture has to admit a certain factorization. In fact, in dealing with normal
embeddings we can describe this factorization more precisely than for general
subnormal embeddings.

The following theorem collects this information. Beforehand, we mention that
in a group G with finite composition series the center Z(G) and the commutator
factor group G/G’ are finite. Hence for such groups the condition (|G/G’),
|Z(G)]) = 1 is meaningful and equivalent to the non-existence of a non-trivial
homomorphism from G into Z(G).

6.2. THEOREM. Let G be a group with finite composition series. Assume that G is
directly indecomposable and that ((G/G’|, |Z(G)))=1. If G is not normally
detectable, then the following hold.

(a) G=NS, Nn S=1, NdG, SNG.

(b) N and S are not nilpotent.

(c) SC/Coreg(S) is nilpotent; in particular, [N, S] < Fit(G).

(@) [N, S] £ Soc(G).

(€) [N, S] is not characteristic in G; more precisely, there exists an automorphism
a of G such that (a) = H/M for some H < G, M<dH, which does not leave [N, S]
invariant.

PrOOF. We note first that G # 1 since G is not normally detectable. The
condition (|G/G’), |Z(G)]) = 1 then implies that G is not nilpotent. By assump-

tion, there is a non-trivial normal embedding G,4G, X -+ XG,, where n > 2,
where G, = G for j=0,1,...,n, and where Gym, # 1 for i=1,...,n. In the
sequel we use the notation from 5.2. In particular, &, = {J},..., J}} for every
I > s. By 5.7 and 5.8 we may assume that there is some a, 1 < a < b, such that

Br*=(J}....,Jt}foralll > s

Now the proof is carried out in a number of steps.

(1) For all /> s and all J; € #}*, there exists J/ € 4, such that G; N
(Soc(G) N [N/, Gomp Dy i # 1.

[N,,Gowj.] #1as Gy is dlrectly indecomposable, and N/ # 1 # Gg7,. Since
[N,,Govr,.]dN, Gymy; = Gy (5.8 and 5.5(a)), there exists a minimal normal
subgroup N of G contained in [N/,Gomy). Let J € o be such that Naj; ; # 1.
By 5.13, Nmj; ; < G;. Hence, according to 3.3(e), J € &,, say J = J/. This
proves (1).
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Q) Forall/ > sandalli € {1,...,a} (ie. J/ € #}*), put
€(4}) = {4/ € 2,16, 0 (Soc(Gy) N[N/, Gomy]) s # 1}

and c(J) = |€(J))| By (1), c(J/) > 1for all /> s and for all i € {1,...,a)}.
We choose ¢ > s and i € {1,...,a)} such that ¢(J;) < ¢(J2) for all m > s and
forall j € {1,..., a}. Without loss of generality, we may assume that i = 1.

(3) There exists some r > s and J* € &, such that

Gy, N(Soc(Gp, ) N[ MYy, Gomp, |) 7, i # 1
and
Gp N(Soc(Gp) N[N, Gomp]) ., o = 1.
Fork =1,...,s,let (a,,,) denote the following statement:

If G, ﬂ(Soc(G,}H) N []V,ﬂk,GO'zr,}H])vr,}W, # 1 for some J € ',

a
( ok then GJ}-;—k—l n(Soc(GJ,x“H) N [Mtk—laGOWJ}H 1])7{,1 ", # 1.

Suppose, («,,,) holds. We know that Jj; ,.) € #**; in fact, Gomp, = Gamp

17
since Gamy | = Govr,b”” Gymp,, (Lemma 5.7). Hence

GJ}ﬂ (SOQ(GJ1 ) N [Ma—l’GOWJ}H])WJ}HJ * 1
if and only if G, +1]ﬁ(Soc{GJ[2 +l])ﬁ[N[2 1) Gomp,,. D7p, ., # 1, where
N[2 1= Gflzm; X {GJI ],]I en, I+ J[,Jr2 (+s+1))- Therefore, (a,, ;) im-
plies that c(J{2 +1)) S c(J ) By the minimal choice of ¢(J!), we have equality.
This means that all J/ € €(J}!) begin with j}, ;.

Proceeding in the same manner, we see that in presence of (a,,),-..,(a,,;)
(i€ {l,...,s}), all J/e ¥(J}') begin with (j.,,..., L ,). In particular, if
(a,+1),...,(a,+s) are fulfilled, then J € ¥(J)if and only if J = J{,,, ,, ;. But
[N}, Gomp] < N/, whence [N/, Gomplmp n T =1 by definition of N,!. How-
ever, this contradlcts the defmmon of €(J}!). Consequently, there exists some
we {l,...,s} for which (a,,,) fails to bold. If we set r =t + w — 1, then
assertion (3) follows.

(4) Let r and J* € B, be as in (3). Then

GJ’I m(SOC(Gj}) N [N,1+1,G07TJ}+1, er])771r1+1,1:k # 1.

Since [N, +1,Govr,x A <Gy, ,Gump, 1< Gp by 3.3(b), it follows from (3) that
there exists a minimal normal subgroup M of G, such that M < [N}, Gomp,
and Mm; o # 1. By 513, Mmu ;< Gp. Now every prime divisor of
A +1,G077,1 I is also a divisor of |G01r,1 /CoreG1 (Govr,: )l and hence of
IG/G|. Since (G/G', 1Z(G)) = 1,it follows that Mvr,x S Z(GJ}) Using the
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fact that Gymn is subnormal in G, of defect at most r, we conclude that
[Mmy e Gomp, ..., Gomp) < [Gp, Gomys, . .., Gomp] < Gomy (here Gymp occurs r
times). On the other hand, this iterated commutator is contained in G .
According to 3.3(¢), Ga N Gy« # 1if and only if (j}, 1, J}) € %, ,. Hence, if
Gomp N Gp, o # 1 then (J,, J5) =J) ., (note that Gompn N N = 1). But
this would lead to the contradiction M@y, = Mmp < N,lﬂvr,’lml = 1. Thus
[Mﬂ‘,}HJ:(,GO‘ITJ}, . ,GO'ITJ:] = 1. But then [M, N,I]‘TT_,}“’J‘I( = [M'IT_,:HJ:, erl * 1,
for otherwise the minimal normal subgroup M, ,« of G = N} - Gymp would
be central. This proves (4).
(5) Let r and J¥ € %, be as in (3). Then

GJ,l ﬂ(SOC(GJ}) N [N,l, GO'IT_,}] Gjl’“)wjrxﬂJsk # 1.
It follows from the Three Subgroups Lemma [4, 111.1.4] that

1 1] = 1 1 1 G
[N+1’GOWJ}H’Nr] = [Nr+l9G07rJ}’Nr] < [Nr’GOWJ,l] o

r

because N! is normalized by N, ;. The assertion follows from (4).

(6) With G, N}, Gomp in place of G, N, S, statements (a)—(e) of the theorem
are fulfilled.

Apart from the non-nilpotency of N, assertions (a), (b), (c) are clear from the
considerations in Section 5. That N! is not nilpotent is a simple consequence of
(IG/G’), 1Z(G)]) = 1: minimal normal subgroups of G, contained in PAS Gomp]
are central in G in case N} (and hence G, /Coreg (Gym;)) is nilpotent. By (5),
[N,l,GowJ}]wJ}w g * 1If [N, Gomp] is contained in Soc(G ), then 5.13 yields
Gy N (Soc(Gp) N [N}, Gompl)mp, g« # 1, contradicting (3). The same contradic-
tion arises directly from (5) if [N}, Gomp] is assumed to be invariant under G
(or even characteristic in G1). This shows that (d) and (e) hold, thus completing
the proof.

Let G be a group with finite composition series. Theorem 6.2 shows that
leaving condition (2) in Hawkes’ conjecture as it stands while strengthening
condition (1) in such a way that, apart from direct decompositions, factorizations
as in Theorem 6.2 are also not allowed, forces G to be normally detectable. In
Theorem 6.5 we prove that it is also possible to strengthen condition (2) in such a
way that directly indecomposable groups are then normally detectable.

To this end we introduce the following definition.

6.3. DEFINITION. Let G be a group. A factor group G of G is called essential if
either G = G, or if the following conditions are satisfied:

(1) G is not nilpotent;

(2) G is directly decomposable (in a non-trivial way);

(3) G is isomorphic to a subnormal subgroup of G.
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Theorem 6.5 will be a consequence of the following lemma, where again the
notation of 5.2 is used.

6.4. LEMMA. Let G be a group with finite composition series. Assume that
GodGy X - -+ XG,, where G;= G for j =0,1,...,n. Assume further that there
exists some J = J; = (jy,.-., j;) € W (I = 2) such that the following conditions are
satisfied.

(1) G, = N - Gym;, where NJG; and N N Gy, = 1,

(2) Gym;AGym, for some i€ (1,...,1— 1}, where J;= (jy,...,J;). Then
Gom;QG, @y, or (1Z(Gymp)l, |Gym,/(Gymy)']) # 1. Moreover, if i =1—1, then
Gomy <G, or (1Z(G)], IG/G') # 1.

PrROOF. Note that Z(G, ;) and G,7,/(G;m,)" are finite. Clearly, G,7,4G; ;.
Using the modular law we conclude from (1) and (2) that G,m;, = (N N G;m;) X
Gomy;. Now, [N N G, m,Goml< NN Gymy. Since, for any n € NN G, =,
Gom; and (Gym;)" centralize N N G,m,, it follows that [N N G, m;, Gem/] <
Z(G,m,;). Thus, if Gym, is not normal in G, =, = (N N G, m;)- Gom,, there
exists some n € NN G, m, such that 1 +# [n,Gom,;] C Z(G;m;). But then
¢: Gym;, > Z(G,m,), defined by (mx)e =[n,x] for m € G;m, N N and for
x € Gym,, is a non-trivial homomorphism. This proves the first part of the lemma.

Now let i =7 — 1. We have shown that 1 # [n,Gym,] C Z(G,,_m;) for some
n € N, unless Gym,;<G,. If [n,Gym;] € Z(G), then 7, ¢ is a non-trivial homomor-
phism from G, into Z(G,), where ¢ is defined as above. Hence
(1Z(G)), |IG/G’) # 1. So we may assume that there exists some y € G, such
that [Ggm;, n, y] # 1. Since Z(G,_m,;)4G,, it follows that [Gym), n, y] C
2(G;,_m)N Gy < Z(G; ). Then p: G, m, > Z(G,_ ), defined by (mx)p =
[x,n, y] for x € Gym; and for m € G;_m; N N, is a non-trivial homomorphism;
this yields (|Z(G)|, |G/G’]) # 1 again.

6.5. THEOREM. Let G be a directly indecomposable group with finite composition
series. Assume that (|Z(G)|, |G/G’') = 1 for all essential factor groups G of G.
Then G is normally detectable.

PRrROOF. By way of contradiction, we assume that G is not normally detectable.
Since (|Z(G)}, |IG/G’) = 1, G is not nilpotent. We choose J, = (j,..., j;) as in
Theorem 5.10 and note that (a)—(g) of 5.10 are satisfied. For 1 <i </, let
J.=(Jj1---, J;)- We now prove by induction on i (1 < i < /) that
(*) G,m, = (Gjivr,l N le) X Gymy s
where N, = G, N X{G, ;|J € o', J # J;}. The case i =/ then yields a con-
tradiction to the assumption that G, is directly indecomposable (note 5.10(c),
(d)). Clearly, by the modular law and by parts (a) and (b) of 5.10, G, is a
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semidirect product of the normal subgroup G,m, N N; and the subnormal
subgroup Ggm,. Since Gy, G, m;, (*) holds for i = 1. Let 1 <i < [ and suppose
that () holds for i — 1. Employing 6.4, we see that either (+) holds for i, or that
(G,,_m,/(G;_m,)|, |Z(G,,_m;)) # 1. But the latter alternative is impossible
since, by induction hypothesis, G, m, is an essential factor group of G, =G.
This completes the induction argument.

In the sequel we are going to enlarge our knowledge of the type of embedding
of a possible counterexample to Hawkes’ conjecture. For the proof of Theorem
6.8, which contains the relevant facts, two lemmas are needed.

General hypothesis for 6.6 and 6.7 G denotes a non-trivial directly inde-
composable group with finite composition series, where we assume that
(|G/G’|, |Z(G)]) = 1. In particular, G is not nilpotent. Let G,4G, X --- XG,
be a non-trivial embedding, where n > 2, where G; = G for j =0,1,...,n, and
where Gym; # 1 for i = 1,..., n. Moreover, we use the notation from 5.2.

6.6. LEMMA. Let r be a positive integer and let J. = (jy,..., j,) € n'. Suppose
that {I,(,)}f 1 is a (lexicographically ordered) set of I(i)-tuples, 1(i) € N, i =
1,...,t, t €N, such that G, < X'=1G,I” For those i € {1,...,t} for which
,,,,, Jn Iisy) 18 1Ot nilpotent, assume that there exists m(i) € N and K,y € 0"
such that GOW(!Z ----- JerTigiys Kmgi) = = Gym Undyy)) = = Gy, (O 1/(.) m(.)) (If r=1, then

,,,,, J.. 1y Stands for Gomp.) Then Z (Gom; ) < Z,(G;

Proor. If Gym;, ., ;5 .) is not nilpotent, then, putting N, ;= G, ; N
X{G 1.6 | K € “m(') K+ K, .}, we have G;m; L, M Gm 1) D Neigiy)
= G, 1 Ko = OoT,.1,,) DY the assumed properties of Km(,) Similarly,
Goms, 1)/ (GoT(s, 1) D Neiy) = Gomy 1, Kni) = = Gymy,.1,,- 1t follows that
GO’_T(J,.J,(,-))_m N, iny=1 and that G, 'n'(J 1y = (G0, 1) O M) X GoTy, 1y
This implies that Z_(Ggm; L)) < Zao G, 1)) The same statement holds
trivially if G;m, ; ., is nilpotent. We conclude that Z_ (Gem,) <
(X ,_1Zoo(G077'(J,,1,(,,))) NGy < (X[, Z,(Gmy, L) N Gy < Zo(Gymy ).

6.7. LEeMMA. Let J' = (ji, ji,...) € B, for some i € {1,...,b}. Suppose that
j=Jji#jl forallh € (1,...,b}, h # i. Then the following statements hold.

@) ji#jforalll>1.

(b) s(i) =1, i.e. Gy = Ggmy; foralll>'1

PROOF. (a) Suppose the assertion is false. If r > 1 is an 1nteger such that

Jji., =J, then it follows from the hypothesis and from 5.4 that ji = ji,,, for all
positive integers k and m. Hence we may choose such an integer r with r > s
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(where s is the stationary level of the iterated embedding of G; cf. 5.2(d)). Let
1 < k < r — 1 be arbitrary. If, for some I € n*, Gomji ..., ji..,0y 18 DOt nilpotent,
then, by 5.4, Gym ;i 1) is not nilpotent (note that k + 2 < r + 1). Since j;,; =,
we deduce from the hypothesis that I = (Jj3,..., ji.1) = (Jlrar-- s Jlns1)- Let

o denote the r-cycle (1,...,r) in the symmetric group S,. Then 5.5(c) yields

L OTTER J T e GO’”(J' ko1t = GoTlis GoW(jL“ ,,,,, D = Goiok ji )
= C.;OWJ:’ and GO'”(]kf»l vvvvv Jtevshdieks) GOW(-""’( Jhevdke) = GOW-" Hence Lemma
6.6 is applicable. We conclude that

(*) Z (Gymy, ) < Z (Gymp, ) foralll <k <r.

Moreover, a similar argument as above shows that if (j/,..., j., ,J) € B, ., .1,
where t>1, u>r—1, and Jen, then J=(j,, i1 - +»Jjirusr,) and
Gomjio oy = Goi il = Gomy (5. 5(c)) In partlcular Ji € B, It fol-
lows from 5.5(a) that G, is a semidirect product of N/, , and Gy, .

We now aim to apply Lemma 6.4. Clearly, Gym;: AGm;: . Let 1 k<sr If
(Gymy, /(G Y} |1 Z(Gymy:, ) # 1, then, by means of () and the fact that
the prime divisors of |Z_(Gm; )| and those of |Z(G.m; )| coincide, there
exists a non-trivial homomorphism ¢ from G, into Z(Gjm: ). Now,
[Gi9, Gy, 1< Z(Gyimys, ) N G < Z(Gi)- Hence, if [G;9, g] # 1 for some g €
G, then p: Gy = Z(Gj), defined by yp =y, g] for all y € G0, is a
non-trivial homomorphism, contradicting (|G/G’|, |Z(G)|) = 1. Therefore, G, ¢
< Z(Gy:, ). But this leads to the same contradiction. Consequently,
(Gymy, /(Grmpi, Y|, 1Z(Gpmyi, ) =1 for all 1 < k < r. So we apply Lemma
6.4 to deduce that Gym;; 4Gy . Thus G, = N\, X Gymj; . Since the embed-
ding of G, in G; X --- X G, is non-trivial, this contradicts the hypothesis that G
is directly indecomposable.

(b) Let I > 1 be arbitrary and set Ny ;= G, N X {G;; | J € 0™, J #Jh ).
By hypothesis, Gym:/(Gomi N Gp) = Gt 1s nilpotent, where # = X{m ; ;|
Jenl J+Jh,} It follows from 3.3(e) that G, N N, , = 1. This implies that
Gom; N Ny, is central in G;;. If this group is non-trivial, then there exists a
non-trivial homomorphism from the nilpotent group Gym;:/(Gym; N G;;) into
((Gomy N Ny ) X(Gomy 0 G))/(Gomy N Gy) = Gomyy NNy, < Z(Gy) (Lemma
3.2). This contradicts (|G/G’|, |Z(G)]) = 1. Consequently, Gom; N N, , = 1, i.e.
Goﬂ:h: = GO‘NJ;‘.

6.8. THEOREM. Let G be a group with finite composition series. Assume that G is
directly indecomposable and that (|G/G’|, |Z(G))=1. If G is not normally
detectable, and if GydGy X --- XG, (where n> 2, G;= G for j =0,1,.
and Gym, # 1 fori = 1,..., n) is a non-trivial embeddmg, then the following hold

(a) The stationary level s of the iterated embedding is at least 3.

(b) The branching number b of the iterated embedding is at least n + 1. In
particular, b > 3.
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(c) If b = 3, then, up to interchanging the indices 1 and 2, there is only one
possible embedding. This is of the following type: B, = {(J,J?, J*)}, where

=1,1,1,1,...), J2=(1,2,1,1,...), and J> = (2,1,1,1,...). Moreover, in
this case s(1) > 2, s(2) =2, s(3)= 1 and Bx* = {J'}; in fact, B} = {J}} for
allk > s

PRrOOF. (a) Using 5.8, we choose J! € #*. Then, by 5.5(a), G i 18 a semidirect
product of N/ and Ggym;:. Since the embedding is non-trivial, both factors are
distinct from 1. The hypothesis that G is directly indecomposable yields s > 1.
Moreover, s = 2 is impossible by the last statement of Lemma 6.4.

(b) Clearly, b > n. By 3.3(e), (f), Gym; # 1 if and only if Gym; £ Fit(G,). Hence,
if b = n, we may assumes that J/ = (i) for i = 1,..., n. It follows from 6.7 that
s(i) =1 for all i, i.e. that s = 1. This contradicts part (a). Thus b > n + 1 > 3.

(c) If b = 3, then n = 2 by part (b). By using 5.4 and 6.7, it is easy to see that,
up to interchanging the indices 1 and 2, J!, J2, J3 € #_ have to be of the form
given above. By 6.7, s(3) = 1. Hence Gym, = Gym, py for all / > 1. We conclude
that Gym, = Gm,, py. This implies that Gymy, = Gymy 5 5y forall [ > 1, ie. that
s(2) < 2. If s(2) = 1, then Gym, = Gym, 4G, = Gymy, and, as s(3) = 1, Gym, =
Gy 4G,my = Gymy, 1.6 Gym = Gym, = Ggmyy. But this leads to a non-trivial
decomposition G, = (G, N G,,) X Gym,, which is a contradiction. Hence 5(2) =
Then s(1) > 2 by part (a).

By 5.4, Gym,: and Gymys are isomorphic to subnormal subgroups of Ggm:.
Therefore, J! € B¢ for all k > s, according to 5.8. If J/e€ &} for some
i € {2,3}, and if k > s, then, by definition of B¢, Gom;; = Gmp. Since 5(2) = 2
and s(3) = 1, it follows that Gym, = Gymp (in case i = 2), or that Gym, = Gymp
(in case i = 3). In the first case, let N =G, N X{Gy,,|J enw, J+J!}.
Then G,,/N = Gymp = Gymy,, and Gomyy /(G N N) = Gomgg 5 1y = Gomyp. It
follows that G,, is a semidirect product of N and G,m,. The last statement of
Lemma 6.4 now leads to a contradiction. The case Gom, = Gy is even easier
and leads in a similar way to a non-trivial direct decomposition of G,.

We have been unable to decide whether the situation in 6.8(c) can actually
occur.

6.9. THEOREM. Let G be a group with finite composition series. Assumes that G is
directly indecomposable and that (|G/G’|, |Z(G)|) = 1. Then G is normally detec-
table, provided that one of the following conditions is satisfied.

V) If a € Aut(G) is such that {a) = H/M for some H < G, MQH, then «
preserves the conjugacy classes in G.

(2) G possesses a unique maximal normal subgroup.
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(3) Soc(G') is a direct product of at most two minimal normal subgroups of G or of
three minimal normal subgroups of G which are not all elementary abelian of the
same order.

(4) Fit(G) < Soc(G).

(5) G is finite and, for every prime divisor p of |G/G’|, the Sylow p-subgroups of
G are abelian. '

ProoF. (1) and (2) follow immediately from 6.2(e) and (a), respectively, and
6.2(c) and (d) imply (4). We note in passing that for case (1) a direct argument
along the lines of the proof of Theorem 4.2 is also possible. This is because
condition (1) implies that G, is normal in X , _ G, for every / € N.

From Theorem 6.8(b) we see that the first condition in (3) forces G to be
normally detectable. Moreover, if G is not normally detectable, and if Soc(G) is a
direct product of three minimal normal subgroups of G, then we are in the
situation of Theorem 6.8(c). It follows that G, N G,, G, N G5, and G, N G,
each contain exactly one minimal normal subgroup of G,. It is a straightforward
matter to show that the minimal normal subgroup of G, contained in G, N G,
(G, N Gy,) coincides with the minimal normal subgroup of G, (G;) contained in
G, N G, (G N Gy,). This implies that all minimal normal subgroups of G are
isomorphic. Since at least one of them is abelian (Theorem 6.2(d)), we have the
situation which is excluded in (3).

Finally, because G is not nilpotent or G = 1, (5) follows immediately from
5.11.

7. Concluding remarks

A. Characteristic embeddings

The method of iterated embeddings works smoothly for transitive relations
such as subnormality. So it is no surprise that this idea provides a short proof for
the following result on characteristic embeddings.

7.1. PROPOSITION. Let G be a group satisfying the minimal or maximal condition
on normal subgroups. If G, is a characteristic subgroup of G, X --- XG,, where
n>2, andes Gforj=0,1,...,n, then G = 1.

Proor. If G, N G, = 1 for some i, then G, N G;=1forall j=1,...,n,since

the symmetric group S, acts in a natural way on G; X - -+ X G,. By 3.3(c), Gy, is
centralized by every automorphism of G,. It follows easily that G is an elementary
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abelian 2-group. But then Aut(G; X --- X G,) acts transitively on the set of
non-trivial elements of G, X :-- XG,. Now any of the assumed finiteness
conditions forces G to be trivial.

So assume that G, N G; # 1 for all j. In the notation of 5.2(2), G, is embedded
as a characteristic subgroup in X ;_,G;, G, = G, for any positive integer /. By
the argument given above, G, N G, # 1 for all J € n'. Hence G, contains direct
products of normal subgroups of unbounded length, which contradicts both the
minimal and maximal condition on normal subgroups.

B. Central products

The following proposition shows that Theorem 4.2 can be extended to the more
general case of central products instead of direct products, at least for groups
admitting no non-trivial central extensions.

We recall that a group G is a central product of the normal subgroups
Npy,...;N if G=N, --- Nyand [N, N,]=1foralli,j=1,... .k, i #].

7.2. PROPOSITION. Let G be a group without non-trivial central extensions. If G is
subnormally (normally) detectable, then the following hold: whenever G is subnor-
mal (normal) in G, --- G,, where G; = G forj = 0,1,...,n, and where G, --- G,
is a central product of G,,...,G,, then Gy = G, for somei € {1,...,n}.

PrOOF. Let G, be subnormal (normal) in G, --- G,. The map
p: G, X - XG,—> G, - G, defined by (gy,...,8,)9 =8 - &, is onto,
and kerp < Z(G, X -+ XG,). Let Gy~ ! denote the full preimage of G, in
G, X -+ XG,. By assumption, Gyp ! = K X kerp, where K = K¢ = G,,.
Clearly, Gyp~! is subnormal (normal) in G; X --- XG,. If G is subnormally
detectable, then K9G, '<94G, X --- XG, implies K = G, for some i.
Consequently, G, = G,. Now assume that G is normally detectable and that
GodG, --- G,. If K is not normal in G, X --- XG,, there exists g € G,
X -+« XG,suchthat[K, g] # 1. For k € K define kp € kerp by[k, g] = k" - kp,
k’ € K. Then p: K — kerp is a non-trivial homomorphism. From ker¢ <
Z(G, X - -+ X@G,) we deduce the existence of a non-trivial homomorphism from
G into Z(G). But this contradicts the fact that G is normally detectable (compare
the remark at the beginning of Section 6). Hence KdG, X --- XG,, and the
desired conclusion follows as in the case of subnormally detectable G.

C. Lie algebras, associative rings

The argument used to prove Theorem 4.2 is valid not only for groups. Instead
of finding the most general version of 4.2 in the framework of universal algebra,
we content ourselves with two important cases.
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We recall that for a (not necessarily associative) ring R the Fitting radical
Fit(R) is defined to be the subring of R generated by all nilpotent ideals of R.
(Here and in the sequel, ideal means 2-sided ideal.)

Subideals are defined analogously to subnormal subgroups. (For associative
rings, these are just the meta-ideals of finite index in the language of Baer [2].)

7.3. THEOREM. Let L be a Lie algebra over R, where R is an associative and
commutative ring with 1. Assume that L satisfies the minimal condition on subideals.
Then the following statements are equivalent.

(1) Whenever L, is a subideal of L; & - -- ® L,, where L, = L forj =0,1,...,n,
then Ly = L, for somei € {1,...,n}.

(ii) L is directly indecomposable (as a direct sum of ideals), and there exists no

non-trivial homomorphism from L into a nilpotent subideal of L.

PRrROOF. One simply translates the proofs of Lemma 3.3(a) and Theorem 4.2 into
the language of Lie algebras.

7.4. COROLLARY. Let L be a Lie algebra over K, where K is a field. Assume that
L satisfies the minimal condition on subideals. Then the following statements are
equivalent.

(i) Whenever L is a subideal of L, ® --- ® L,, where L,=Lforj=0,1,...,n,
then Ly = L, forsomei € {1,...,n}.

(i) L is directly indecomposable, and either L is perfect (i.e. L =[L, L)) or
there exists no non-trivial abelian subideal of L.

(In characteristic 0, L contains no non-trivial abelian subideals if and only if
Fit(L) = 0.)

PrROOF. Because of the fact that, for charK = 0, the Fitting radical is a
nilpotent ideal which contains every nilpotent subideal of L (see Amayo, Stewart
[1, Theorem 6.2.1, Lemma 8.1.3]), the conclusion follows from 7.3.

7.5. THEOREM. Let R be an associative ring which satisfies the minimal condition
on subideals. Then the following statements are equivalent.

(i) Whenever R, is a subideal of R, ® - -- ® R, where R;= Rforj=0,1,...,n,
then R, = R; forsomei € (1,...,n}.

(ii) R is directly indecomposable, and there exists no non-trivial homomorphism
from R into Fit(R).
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PrROOF. By a result of Baer [2, Corollary 5], every subring of Fit(R) is a
subideal of R because R satisfies the minimal condition on ideals. Moreover, it
follows from [2, Proposition 8] that every nilpotent subideal of R is contained in
Fit(R). Now the argument of 4.2 is adaptable.

Although Hawkes’ conjecture on normally detectable groups (and also the
corresponding problem for Lie algebras) remains unsettled, the analogous situa-
tion in associative rings with unit can easily be handled.

7.6. PROPOSITION. Let R be an associative ring with unit. Assume that R is
indecomposable (as a direct sum of 2-sided ideals). If R, is a 2-sided ideal in
R,®--- ®R,, where R, =R for j=0,1,...,n, then Ry =R, for some i €
{1,...,n}.

PROOF. If e is the unit of R, it is easily shown that e is a central idempotent
in R; @ --- &R, Consequently, R, is a direct summand of R, ® --- ®R,. But
then R, = R, for some i (see Lambek [5, 1.4, Proposition 12]).
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