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Abstract

A group G is called normally (subnormally) detectable if the only normal (subnormal) subgroups in
any direct product Gl X ••• XGn oi copies of G are just the direct factors Gt. We give an internal
characterization of finite subnormally detectable groups and obtain analogous results for associative
rings and for Lie algebras. The main part of the paper deals with a study of normally detectable
groups, where we verify a conjecture of T. O. Hawkes in a number of special cases.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 E 15; secondary 20 D 35,
16 A 99, 17 B 05.

1. Introduction

During the Warwick Symposium on Soluble Groups in 1977, T. O. Hawkes asked
the following question: under which conditions is a finite group "normally
detectable"? Here a group G is called normally detectable if in any direct product
Gx X • • • XGn, where G, = G for i = 1, . . . ,«, the direct factors Gx,...,Gn are
the only normal subgroups isomorphic to G. Hawkes conjectured that this is the
case if and only if G is directly indecomposable and |G/G' | and |Z(G)| are
coprime. It is easy to see that these two properties are necessary for G to be
normally detectable. Even more, a well-known result of Remak [6] states that
exactly under these conditions on G the groups G, are the only direct factors of
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148 Peter Hauck [2]

6 j X • • • X Gn which are isomophic to G. Thus the validity of Hawkes' conjec-
ture would mean a significant generalization of Remak's theorem. However, the
motivation for studying this problem stems from the theory of finite soluble
groups; Hawkes was led to the concept of a normally detectable group in
connection with certain Fitting class constructions. For details the reader is
referred to the forthcoming book of Doerk and Hawkes [3].

In this paper we shall deduce a series of partial results on Hawkes' conjecture.
A final answer, however, is not obtained. We shall show that a finite group G is
normally detectable if either one of the conditions stated above is somewhat
strengthened. For instance, if the coprimeness condition on |Z(G)| and \G/G'\ is
required not only for the directly indecomposable group G but also for certain
non-nilpotent factor groups of G, then G is normally detectable (Theorem 6.5).

On the other hand, if, apart from direct decompositions, some specific factori-
zations of the form G — NS, where N is a non-nilpotent normal subgroup of G
and S is a non-nilpotent subnormal complement for N in G, are also excluded,
then a group G with (|Z(G)|, |G/G'|) = 1 is normally detectable (Theorem 6.2).
We also show that Hawkes' conjecture is valid for groups which satisfy certain
conditions on the structure of the automorphism group or on the size of the socle,
etc. (Theorem 6.9). In the course of proving these results, we not only obtain
information about the structure but also about the kind of embedding of a
possible counterexample to Hawkes' conjecture (Theorem 6.8).

In contrast to the case of normally detectable groups, subnormally detectable
groups (which are defined in the obvious way) are much easier to handle. It turns
out that a finite group G is subnormally detectable if and only if G is directly
indecomposable and (|G/G'|, |Fit(G)|) = 1 (Theorem 4.2).

It is the transitivity of the subnormality relation which makes our method
(iterated embeddings) work smoothly. Therefore, it is not surprising that similar
arguments provide a short proof of the fact that a finite group G + 1 can never be
characteristic in G1 X • • • X Gn (G; = G for i = 1,...,«) in case n > 2 (Proposi-
tion 7.1).

Finally, the result on subnormally detectable groups carries over to Lie algebras
and associative rings; this is shown in Theorems 7.3 and 7.5.

The groups considered in this paper are not assumed to be finite; however, we
have to impose certain finiteness conditions. Usually, the minimal condition on
subnormal subgroups is needed. For most of the results on normally detectable
groups we even have to assume that the group in question possesses a finite
composition series.

Part of this work was done while the author enjoyed the hospitality of the
University of Kentucky, U.S.A. and the Australian National University (as a
Visiting Fellow). Special thanks are due to J. C. Beidleman, B. Brewster, and J.
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Cossey for several stimulating discussions on the subject of this paper, and to
L. G. Kovacs for some valuable suggestions.

2. Notation

Iterated commutators are assumed to be normed from the left. The notation
S<<G means that S is a subnormal subgroup of G, and the defect of a
subnormal subgroup S of G is defined to be the smallest integer d such that there
exists a chain S = S0<S1< • • • <Sd = G. For a subgroup S of G, SG denotes the
smallest normal subgroup of G containing 5 and CoreG(5) denotes the largest
normal subgroup of G contained in S. Fit(G) stands for the Fitting subgroup of a
group G and Soc(G) for the socle of G, the subgroup generated by all minimal
normal subgroups of G.

For a direct product Gx X • • • xGn, the natural projection onto Gt is always
denoted by w;. Quite frequently we shall use /c-tuples Jk = (jx,..., jk) of positive
integers as indices for the factors in a direct product. Correspondingly, the
projections are denoted by ITJ . If m and k are positive integers, m* stands for the
cartesian product ( 1 , . . . , m} X • • • X ( 1 , . . . , m } (k times). For J = (jx,..., jk)
G m* and / = (ix,...,/,) e m', we write (/, / ) for the (k + t)-lup\e (jly..., j k ,
ix,...,/,) e m*+/. When fc-tuples J — (jx,..., jk) are used as indices for groups
(or maps), Gj, Gh jk, and GJo jk denote the same object (where /0 =
(Jv • • • > Jk-i))- If <* is a permutation on ( 1 , . . . , k}, and if J = (jv ..., jk) e mk,
then Jo is the fc-tuple(jla,..., j k o ) .

Finally, (a,b) is used as the notation for the greatest common divisor of the
positive integers a and b.

Group theoretical notations not explained here are consistent with those used
by Huppert [4].

3. Preparatory lemmas

Groups considered in this paper are usually assumed to satisfy certain finite-
ness conditions. The minimal condition on subnormal subgroups is needed
frequently, often together with the maximal condition on subnormal subgroups.
Clearly, these are just the groups possessing a finite composition series. The
purpose of this section is to collect some basic results on nilpotent groups with
finiteness conditions and to prove some elementary statements about certain
subgroups in direct products.
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The following lemma is well known (see e.g. [8, Section 12]).

3.1. LEMMA, (a) If G is a group satisfying the maximal or minimal condition on
subnormal subgroups, then Fit(G) is nilpotent and every nilpotent subnormal
subgroup of G is contained in Fit(G).

(b) If G is a group with finite composition series, then every nilpotent factor group
of a subnormal subgroup ofG is finite. In particular, Fit(G) is finite.

3.2. LEMMA. Let G be a finitely generated nilpotent group and N a non-trivial
central subgroup of G. Then there exists a non-trivial homomorphism from G into N.

PROOF. Let T be the torsion subgroup of G. If G # T, then G/T has an
infinite cyclic factor group. If G = T, then G is finite. In both cases the assertion
is clear.

The following lemma contains some basic facts on direct products which will be
used frequently in the sequel.

3.3. LEMMA. Let Gbe a subgroup ofH1X • • • XHn and let I be a subset and i an
element of { 1 , . . . , « } .

(a) / / G is subnormal in G ^ X • • • XGirn of defect d, then G"nt/{G n Ht) is

nilpotent of class at most d.
(b) IfG is normal in Hx X • • • XHn, then G-nJifi O #,) < ZiH^G n #,)).
(c) IfG is characteristic in Hx X • • • XHn, then Girt/{G n Ht) is centralized by

every automorphism of Ht.
In parts (d)-(f) let Hj = Gfor allj = 1, . . . ,«.

(d) Let G satisfy the maximal or minimal condition on subnormal subgroups. If G
is subnormal in HXX • • • XHn, and if there exists no non-trivial homomorphism
from G into Fit(G), then G ( I y e / w , ) = 1 if and only ifGn XjeI Hj = 1.

(e) Let G satisfy the maximal condition on subnormal subgroups. If G is
subnormal in i/x X • • • XHn, and if there exists no non-trivial homomorphism from
GintoZ(G), thenG(LjeIWj)^ Fit(XjeJHj) if and only if G n Xj<-IHj = 1.

(f) / / G is normal in H^X • • • XHn, and if there exists no nontrivial homomor-
phism from G into Z(G), then G(Ljelirj) = 1 if and only ifGn XjeI H} = 1.

P R O O F . Clearly, G n /f^

(a) Let hi0, hn,..., hid e GTT, be arbitrary. There exist hjk e GiTj, j = 1 , . . . , « ,

j ¥= i, k = 1 , . . . , d, such that gk = hikT\j +, hJk e G for k = 1 , . . . , d. Since G is

subnormal in Gmx X • • • X Gmn of defect d, we conclude that [hi0, ha,..., hid] =

[hi0, f, «JeGn Ht.
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(b) and (c) Let «, e Gmi and a e Inn(#,) or a e Aut(//,), respectively. Then
a induces an automorphism a on Hx X • • • X Hn in the obvious way (and a is
inner if a is inner). Choose hj e Hj, j = 1 , . . . , n, j # i, such that g = FI"=1 hj
e G. Then [/i,, a] = [ g , o ] € C n Ht.

(d) and (e) If G n X_.e/ # , = 1, then Gwy < Fit(#,) for all ; e / by (a) and
3.1(a). This proves (d) and one part of (e). For the second part of (e), suppose that
G(E7<E/w,) is nilpotent but that Gn XJeIHj±l. G n XJel Hj^G&j e j itj)
implies that G n Z(G(Lj e / w,-)) ^ 1. As an epimorphic image of G, the nilpotent
group G(Lj e 7 wy) is finitely generated. By 3.2, there exists a non-trivial homomor-
phism from G(£.j(BliTj) into G n Z(G(Eye/wy)) < Z(G), which is a contradic-
tion.

(f) This follows from (b).

3.4. DEFINITION. Let G be a subgroup of Hx x • • • XHn. Then G is called
trivially embedded in Hxx ••• XHn if G n X . ^,. if,- = 1 for some / e
{1, . . . ,»}•

The following observation is immediate from 3.3(d) and (0-

3.5. REMARK. Let G be a subnormal subgroup of Gx x • • • X Gn, where Gt = G
for i = 1 , . . . , n. Assume further that one of the following conditions is satisfied:

(a) G satisfies the maximal or minimal condition on subnormal subgroups, and
there exists no non-trivial homomorphism from G into Fit(G);

(b) G is normal in Gx X • • • XGn, and there exists no non-trivial homomor-
phism from G into Z(G). Then the following statements are equivalent in pairs.

(i) G is trivially embedded.
(ii) There exists i e ( 1 , . . . , n} such that G n G}•= 1 for all j J= i.

(iii) There exists /' e { 1 , . . . , n } such that G<<Gj.

Trivial subnormal embeddings are easy to describe.

3.6. LEMMA. Let Hx,..., Hn be groups which satisfy the maximal or minimal
condition on subnormal subgroups.

(a) If G is trivially subnormally embedded in HXX • • • xHn, i.e. G n X ^ . Hj
= 1 for some ie ( 1 , . . . , «} , then Gw,,= G, and there exist homomorphisms
ay G7r, -• Fit(Hj) forallj # i such that G = {g, • n7^,g,a7 |g, e Girt}.

(b) For some i G ( 1 , . . . , n), let G, be a subgroup of Ht. For j * i, let
ay Gj-* Fit(Hj) be homomorphisms. Then the subgroup G = { gt • IT,•,*, g;«7|g, e G(}
of HXX • • • XHn is isomorphic to G,, and G O X ^ . Hj = 1. Moreover, if G,
subnormal in Ht, then G is subnormal in HXX • • • XHn.

is
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PROOF. The straightforward proof is left to the reader.

We conclude this section with a description of those subgroups of a direct
product of isomorphic groups which are isomorphic to one of the direct factors.
This result is due to Remak [7, Satz 3].

3.7. LEMMA (Remak). Let G be a group with G = G, via isomorphisms
(p,: G —> G,, i = 1 , . . . , n. / / a , : G —» G, i = 1 , . . . , n, are homomorphisms
with n,"= 1kera, = 1, then the subgroup Go = {n,"=1ga,<p,|g e G} of Gx

X • • • XGnis isomorphic to G. Conversely, every subgroup ofG1X • • • X Gn which
is isomorphic to G is obtained in this manner.

4. Subnormally detectable groups

4.1. DEFINITION. A group G is called subnormally detectable if the following
holds: whenever Go is subnormal in Gx X • • • XGn for some positive integer n,
where G, = G for j = 0 , 1 , . . . , « , then Go = G, for some / e { 1 , . . . , « } .

The following theorem characterizes those subnormally detectable groups that
satisfy the minimal condition on subnormal subgroups.

4.2. THEOREM. Let G be a group satisfying the minimal condition on subnormal
subgroups. Then the following statements are equivalent:

(i) G is subnormally detectable;
(ii) G is directly indecomposable, and there exists no non-trivial homomorphism

from G into Fit(G).

PROOF. We show first that (i) implies (ii). If G = A X B, A + 1 # B, then let
At s A, Bt = B, and G, = Ai X 5, for i = 1,2. Since G = A1 X B2<GX X G2, G
is not subnormally detectable. If a: G —* Fit(G) is a non-trivial homomorphism,
let Go = {(g, ga)\g G G} < G X G. Then Go = G and kera X 1 < Go <
G X Fit(G). By 3.1(a), (G X Fit(G))/(kera X 1) is nilpotent. Hence Go is sub-
normal in G X G. Since Ga =£ 1, G is not subnormally detectable.

Now assume (ii) and suppose that G is not subnormally detectable. Then there
exist groups Go, Gv...,Gn(n^ 2) isomorphic to G such that G0<<G1 X • • • X Gn
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and such that Gomt i= \ for i = 1 , . . . , n. Among â \ such subnorma\ embeddvngs
choose one with n maximal. This is possible: by 3.3(d), GoiTj ¥= 1 and Go n G• # 1
are equivalent; because of the minimal condition on normal subgroups, each
Go n Gj contains a minimal normal subgroup of Go; finally, by the minimal
condition on normal subgroups again, Soc(G0) is a direct product of finitely
many minimal normal subgroups. We now define groups Gtj•.= G, i, j = 1 , . . . , « ,
such that each G, is subnormally embedded in Ga X • • • X Gin in the same way as
Go is embedded in Gx X ••• XGn. Clearly then, Go is subnormal in (Gu

X ••• X G J X • • • X(Gn l X • • • x G n n ) . By the maximal choice of n, at least
n2 - n of the projections G^j are trivial. But then 1 =£ Gow, ̂  Gona

X • • • X GoiTin implies that for each i there exists exactly one index j(i) such that
GoiriJ(i) * 1. It follows that

(*) G 0 «4(Gi n Gljm) X • • • x ( G n n G n J ( n ) ) .

Note that G, n G, 7(/) * 1 for all / (3.3(d)) and that G07r, satisfies the minimal
condition on subnormal subgroups (since G07r.<<G,). Consequently, there exists
some m e { 1 , . . . , « } such that Gowm is not isomorphic to a proper subnormal
subgroup of any Goir,, i = 1 , . . . , « . We note further that Gow, = G-ir-,- for all
i,j = l,...,n: this is immediate from the fact that Go is embedded in
Gj X • • • X Gn in the same way as Gj is embedded in G/1 X • •• X Gy,,. Employing
(*), we now obtain Goirm<<Gm n Gm;/(m)<Gm7rm y(m) = Govj<my By the choice of
m, G07rm is not isomorphic to a proper subnormal subgroup of GoirJ(my Hence,
Gm n Gm>y(m) = Gwirm^m ) ; But this implies that Gm = (Gm n GmJ(m)) X (Gm n
X ^ (m) Gmy), contradicting the indecomposability of Gm.

If we use the fact that for finite nilpotent groups G the prime divisors of \G\
coincide with those of |G/G' | , then the following corollary is an immediate
consequence of Theorem 4.2.

4.3. COROLLARY. Let G be a finite group. Then the following statements are
equivalent:

(i) G is subnormally detectable;
(ii) G is directly indecomposable and (|G/G'|, |Fit(G)|) = 1.

Theorem 4.2 also yields the following somewhat more general statement.

4.4. COROLLARY. Let G be a group satisfying the minimal condition on subnormal
subgroups. Assume that G is directly indecomposable and that there exists no
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non-trivial homomorphism from G into Fit(Cr). If G is subnormal in Hl X ••• XHn,

where each Hj is isomorphic to a subnormal subgroup of G, then there exists

i e { ! , . . . , « } such that G = Ht.

5. Subnormal embeddings

For our approach to Hawkes' problem on normally detectable groups it is
necessary to obtain some general information about subnormal embeddings of a
group G (with finite composition series) in a direct product of groups isomorphic
to G. The aim of this section is to provide a proof of the following result.

5.1. THEOREM. Let G be a group with finite composition series. Assume further
that Go is subnormal in Gl X • • • X Gn, where Gj = G for j — 0 , 1 , . . . , n. Then one
of the following holds:

(a) G is nilpotent;
(b) Go n G, * 1 and Go n Xj¥,. G, = 1 for some i e { 1 , . . . , « } ;
(c) Go is non-trivially subnormally embedded (in the sense of 3.4); in this case,

G = NS, where N<G, S<MG, N C\ S = 1, JV # 1, S is not nilpotent, and
SG/CoieG(S) is nilpotent; in particular, [N, S] < Fit(G).

Since in nilpotent groups all subgroups are subnormal, the embeddings consid-
ered in Theorem 5.1 are classified for nilpotent groups by Lemma 3.7.

The trivial embeddings of 5.1(b) are described in Lemma 3.6. In view of
Theorem 4.2 one might be led to conjecture that all subnormal embeddings for
directly indecomposable groups arise like those in 3.6. However, in 5.12 we give
an example of a finite group G (due to John Cossey) which shows that this is not
the case (even if Z(G) = 1); hence case (c) of Theorem 5.1 actually occurs.

On the other hand, it is easy to construct examples of groups G (with trivial
center) that satisfy the structural properties given in 5.1(c) without admitting a
non-trivial subnormal embedding in a direct product of groups isomorphic to G.
We note further that Theorem 5.1 also yields a proof of Theorem 4.2 for groups
with finite composition series. However, this approach is more elaborate than the
direct argument in Section 4.

To prove Theorem 5.1 we observe that Go n Gj• = 1 for all j = 1 , . . . , n implies
that G is nilpotent (3.3(a)). Therefore, we can assume that the non-nilpotent
group Go is non-trivially subnormally embedded in G1 X • • • X Gn and have to
show that G is factorized in the form given in 5.1(c). This will be accomplished in
Theorem 5.10, where also a concrete description of N and S can be found.
Actually, it is this description which is most essential for the investigations on
normally detectable groups in Section 6.
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First of all, however, we have to introduce some notation. We assume in the
following that all groups considered possess a finite composition series, although
the full strength of this assumption is not always needed.

5.2. NOTATION. Let G be a non-nilpotent group with finite composition series.
Suppose that GQ<<G1 X • • • X Gn, where Gj = G for j = 0 , 1 , . . . , n. These hy-
potheses are tacitly assumed throughout 5.2 to 5.9.

(a) With Gu..., Gn given, we define groups G} = G, I G N, / , G n', in such a
way that Gj is subnormally embedded in Gj t X • • • X Gy „ in the same way as
Go is embedded in Gx x • • • x G n . Hence, for all / e N, Go is subnormal in
XJe^GJt, where we use the lexicographical ordering in n'.

(b) For / G N, define 38, c n' by 38, = {/, e vt\GtftJi < Fit(G,;)} and set b, =
\38,\. (iTj denotes the projection onto Gy; cf. Section 2.) By 3.3(a), B, c {/, e
d\G0 n GJt =* 1}. Since G is not nilpotent, b, > 1 for all /. Now Goirjt < (?ow>(>1

X • • • X G0Wj n implies that b, < b,+l for all /. Hence there exists some positive
integer sx such that bSi = bj for all j > sv because Go is a group with finite
composition series. (Actually, it can easily be shown that bSi = bj for all j > sx is
equivalent to bs = bs + L.) We choose JX minimal with respect to this property and
set b = bs. We call b the branching number of the iterated embedding. (This
notation is justified by the following fact: as mentioned above, 38, c { / , e vl\
Go n Gy # 1}. If G does not admit a nontrivial homomorphism into its center
(the case we are mainly interested in), then we actually have 38, = {J, e v/\Gon GJt

* 1} by 3.3(e).)
(c) For k > sv let Sk = { / t \ . . . , / £ }. For / = 1 , . . . , b, let Js[ = {j[,..., j'J.

Since bs = bs +1, and since GQTTJ, < G0Hji X • • • xGoiTji , there exists exactly
one index ^ + x e ( 1 , . . . , « } such that Js[+\' = (j{,..., j ' t + ' | ) . Analogously, j ^ + 2,
y,1 + 3 , . . . are defined for / = 1 , . . . , fe. For / = 1 , . . . , b, we denote by / ' the
sequence (j^k e N). Let 38x = {/''|/ = 1 , . . . , b}. Finally, for 1 < / < k and
i = 1,...,b, set J(w = (jj,..., jl); thus J'k = J(hk].

(d) Let i t e N and let / e {1 , . . . , b). Then C?o">i+1
 = (^o"/i)'7>i+1 ^s a homo-

morphic image of Gon>. Application of the maximal condition on normal
subgroups to the ascending chain kerwy, n Go yields the existence of some
(smallest possible) index s(i) with GtfTr = GQITJI for all j > s(i). We set
j = max{.s(j') | / = 1,. . . , b) and call s the stationary level of the iterated embed-
ding. We show in 5.3 that s > sv

(e) For k > s, define #j? = {^ 6 ^ |G0*>, = G 0 ^ + i t + ] } and ^ * * = {J<
e ^ f c | GQiTji is not isomorphic to a proper subnormal subgroup of any G0<Jijj,

j = 1, . . . , b }. It will be shown in 5.7 that Jk e #£* for some k > s if and only if
/ / e ^ * * for all / > 5. Therefore, it makes sense to define 38£* = {/' e J1^ | /^
G ^ ^ * for all A: > i } . We have been unable to decide whether an analogous
result holds for 38%.
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(f) For k > s and for i G { 1 , . . . , b }, define the normal subgroup N'k of G^ by
N£ = ker77><+j n Gy; = G^d X (G,* y | / G 11s, / # •/[*+!,*+,]}• It follows from
(d) that N[= ker£,,+f nGj, = Gy, n X {Gy,^| J G < > * ^ + i , f c + / ] } for all

5.3. LEMMA, S > sv

PROOF. Suppose that the assertion is false. Then, by definition of s and sv

there exist h, i G { 1 , . . . , b), h # i, such that Jk = Jk for some k ^ s, but such
that _/£+1 # y*+1. Since G077y/ = Goirji , it follows from the maximal condition on
normal subgroups in GQIT^ that G07r^ n X # ./ G/i>7- = 1. Analogously, G Q ^

PI Xy # >» ^ y = 1. A fortiori, Go n G 7 , / = l*+for all j = l,...,n. By 3.3(e),
this implies that Gomj, and GoiTjk+i are nilpotent, contradicting the fact that

5.4. LEMMA. For i e { 1 , . . . , b) and for m>\, the sequence (jj \l > m) is a

member of 38 x. Moreover, G^ji is isomorphic to a subnormal subgroup of
GoiTjim n+ for any r > s(i) — 1.

PROOF. Let r > s(i) — 1. We have Goirr = Gowr as m + r > s(i). Since
/,'(,•) G ^ j ( ; ) and GQWJ, <<GJ. _ ">- +r = Gow,, , we conclude that GoiTr +r is
not nilpotent. The assertion follows.

5.5. LEMMA. Let i G { 1 , . . . , b} and let k ^ s.

(a) The following statements are equivalent:

w Jk *= ~*k >
(ii) GoiTjik s GoiTj<k+i k+/ for some I > s;

(iii) G o ^ , = GoiTj, for all I ^ s;

(iv) J^ G ^ f c , and Nk is complemented by GoirJk in GJk.

(b) Let 1 < m < A: + 1 and let s ^ I ^ k. If Jk
l G ^ ^ , //ien / / G 38f. Moreover,

(c) Le/ / t ' G # * fee iwc/! ^«ar J{k = (J[, Jk'). Then Jl
mk = {J{m-m, U) for all

m > 2, andJj G ^ * /or a// / > 51. Moreover, if a denotes the k-cycle (l,...,k) in

the symmetric group Sk, then Jjpr G ^ * and GQIT^ = G0w>,o, = G0<iT(Jla, / , o , ) /or

PROOF, (a) It follows from 5.4 that (i), (ii), and (iii) are equivalent. Suppose
Jl e 98%. Then GQirji/(Nk' n Gow^) = Gow/i+j = G07r^. NOW GQTT ,̂ being an epi-
morphic image of Go, satisfies the maximal condition on normal subgroups.
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Hence, NL O GATT,, = 1. Furthermore, Gn/Nl = G,iir,i s Gow,. = G077y,
as /^ G _<??£. Since Gy, satisfies the minimal condition on subnormal subgroups,
(iv) follows.

If (iv) holds, then Govj, = Gj./N' = Gj^Jk+s s G 0 % + i t + ] ; thus J> G 38£.

(b) By 5.4, G07rJ(mm+si]= G o ^ ^ , ^ ^ ^ s G o % + I , t + I l
s Go*>j =

G07r^ (note that w < A; + 1 and /^ G #j£). On the other hand, GO77^ is isomor-
phic to a subnormal subgroup of GQwr by 5.4. The minimal condition on
subnormal subgroups implies that GQITJI^ m+>_i = G o ^ . Setting m — I + 1 <
k + 1, we obtain Gow/[i/+i /+j| s G0Wjj s G07r^:. Hence //' G 38*.

(c) We prove / j , f c = O(m-i)k> ^D ^y induction on m. The case m = 2 holds by
hypothesis, and so we assume that m > 3. Let / ^ t = (•/('„,_!)*, J), J ^ n*. By the
induction hypothesis, Gji _ w(y/ _ y^ = GQITJ^, and this group is not nilpotent.
On the other hand, Gnw,, « G , . w,, . Hence G,. TT,, = G,, TT,,, n is
not nilpotent. Since k > s, we conclude that / = 7^.

Let / > s be arbitrary and choose m such that mk > /. Since / j , ^ = J{mk+i 2mk)<
part (a) shows that Jj,k e ^ * t . By part (b), / / e ^,*. That G077y, = G 0 ^ o , =
GQti(jiar ji ^ holds follows from the preceding arguments, from part (b), and from
5.4. In particular, Jy G 98£.

5.6. LEMMA. Let k ^ S and / G ( 1 , . . . , b} be such that J'k G £g£. Then
(a) (G0wJic)

G^/CoKGj,(G0'nji) is nilpotent,
( b ) [ # F i

PROOF. Recall that, by 5.5(a), GQW ,̂ is a complement to N£ in Gr.
(a) Clearly, Go n GJ^^GQIT^. By 3.3(a), GoiTjj/{GQ n G7,+ ) is nilpotent. More-

over, [JV£ Go n Gy.+J < N'k n Gy.+j = 1 according to the definition of Nk\ Thus
Go n C>' £.Gj,, and GoTT/./Coreg ,{GotTj:) is nilpotent. Since GOTT,, is subnormal
in G^, the conclusion follows from 3.1(a).

(b) This is clear from (a).

5.7. LEMMA. Let i e { 1 , . . . , b}. If Jk' e SSI* for some k > s, then J/ G 38**
for all I > s. Moreover, if m > 1, then Goiy = G^ny, in particular,

T> c (SI**
J[m,m + s-l] e &* •

PROOF. This follows immediately from the definition and from 5.4.

5.8. LEMMA. Let k > s. Then 0 * 38%* c J1*.

PROOF. Since G is not nilpotent, 38k # 0 . Therefore, SSI* ^ 0 by virtue of
the minimal condition on subnormal subgroups. Now let J[

k G 38%*. As in the
proof of the implication (i) => (iv) in 5.5(a) it follows that G0W;, n N[ = 1. Hence
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GoirJk = (GoiTjt)Nl/Nl^Gjj/Nl s GjtkirJk+s = Gon>t+i k+i. From J'k G 98%* we
conclude that GoirJk = Gtftj^ , i.e. that J'k G ^ £ .

5.9. LEMMA. Let i G { 1 , . . . , b) be such that Jj e 98**. Then there exists I > s
andJ/1 G 98f* (forsome h G { 1 , . . . , b}) with Jy+h2i) = J? and Gou>, = G07ry*.

PROOF. It follows from 5.7 that J[us+i^u+i)S] ^ 98f* for all positive integers u.
Since 98** is a finite set, there exist positive integers a < b such that
J[as+ua+»s] = J[bs+ub+i)s]- Set / = s(2> - a) > 5 and / = J(as+1,bs] G n'. Then
GQTTJI = GQTT,̂  = Goirj by 5.7. Hence, / G ^,**, say / = Jf for some /i G
{1, ...,b}. It remains to show that Z/1 = J(i+\,2iy Using 5.4, we infer from

GnTT,,h ,i v This proves the assertion in the case b = a + 1. So we may
assume that b > a + 1. Now Gn^,/ n is nilpotent for all / G n(j-iXo-<»)

G&jf is not nilpotent. Since ^ ( /* ,^+ 1 , ( o + 1 ) 1 ] , / ) < ^ ^ , ^ , + U . + 1 ) I I , / ) =
Gnnv,, ,x for all / e n(i 1X* a), we conclude that Grm, ,* ,/ n is

0 U[«,+ l,(«+l),].-') ' ° (•/( .•JOJ+1,(O+1)*1.')

nilpotent for all / e n(*-ix*-<»)5 / ^ / ^ a + 1 ) j + 1 >fri]. It follows that Jf,+h2i] = Jt •

The following theorem rests upon the results obtained so far in this section. It
exhibits a particular nice factorization and implies the validity of Theorem 5.1
(note the remarks following the statement of 5.1).

5.10. THEOREM. Let G be a group with finite composition series. Let Go<<
Gx X • • • X Gn be a non-trivial subnormal embedding (cf. 3.4), where Gj = G for all
j = 0 , 1 , . . . , n. Then either G is nilpotent or the following statements hold (with the
notation of 5.2(a)). There exists some positive integer I and J, = ( j 1 ( . . . , jt) e n'
such that

(a) Gh = NJt • Go«>;, where NJt =GSin X { GJhJ \J&vl,J*J,}
(b) NSi n Go«>; = 1
(c) GQiiji is a non-nilpotent subnormal subgroup of GJ:

(d) Nj is a non-trivial normal subgroup of Gj
(e) (G0^)GVCoreG/(G07ry/) is nilpotent; in particular, [N^, G^] < Fit(G7/)
(f) Go n GJt = G/; nGj^Gj,
(g) GJm = (GJm n X{Gj'm>J\J e n ' , J ¥=J,om})- GQirJm for 1 < m ̂  /, w/iere

Jm = (A." • •, jm) and a = ( i , . . . , / ) G S,.

PROOF. Let G be non-nilpotent. According to 5.2, let ̂  = {Jl,...,J%} for
A: > s. Now Go satisfies the minimal condition on normal subgroups. Since
Go n G/( > Go n Gy. for all /: > s and all / = 1 , . . . , b, we deduce the existence
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of some integer t ^ s such that

(*) Go n Gjik = Go n GJji+i for all k > r a n d for / = 1 , . . . , b.

Since, by 5.8, 38** # 0 , we can choose / and //" G ̂ ,** as in 5.9. By 5.5(c), we
may replace / by al (a G H) without violating the statement of 5.9. Hence,
without loss of generality, we have I ^ t.

Set J, = J/1. Then (a) and (b) follow immediately from 5.8 and from 5.5(a).
Statement (c) is a consequence of J, G 38 f* c 38,. The fact that the embedding of
GJi in GJfl X • • • X GJ/n is non-trivial yields (d). Part (e) is proved in 5.6.

By the choice of //, and because of (*), we have Go n Gj = Go n Gj j . Thus
Go ^ GJI$QGJI O GJIJI = Gon GJr Hence the minimal condition on subnormal
subgroups implies the validity of statement (f).

Finally, let 1 < m < /. Set NJm = GJmC\ X {GJmJ\J G n', / # J,om}- Then
Gtf<jJ<<Gtf'jm

 n NJJ = Go^(jm,j,o-) = GQir(Jhjm) = GonJr Furthermore, GjJNJm

= Gj V(jmtjlO"<) = GomJiam = GQIT^, where the latter isomorphism is given by 5.5(c).
Employing once again the minimal condition on subnormal subgroups in GJm, we
obtain (g).

5.11. REMARK. Let G be a finite non-nilpotent group satisfying the hypotheses
of Theorem 5.10. Assume further that, for every prime divisor p of \G/G'\, the
Sylow /^-subgroups of G are abelian. Then G is directly decomposable (in a
non-trivial way). In view of 5.10, this follows from the following simple fact: if
the finite group G has abelian Sylow ^-subgroups for every prime divisor p of
\G/G'\, and if G is of the form G = NS, where N<G, S<<G, N n S = 1, and
SyCoreG(S) is nilpotent, then G = N X S for some S < G. This is proved by
induction on |G|. By standard reductions, we may assume that CoreG(5) = 1 and
that S < Op(G) for some prime p. (Op(G) denotes the largest normal /7-subgroup
of G.) Define T = [S, N]S < Op{G). Then T is JV-invariant. Since p divides
\G/G'\, the Sylow /^-subgroups of G are abelian. Consequently, T is abelian, and
p does not divide \N/CN(T)\. Therefore, T= [T,N] X CT(N) [4, III.13.4(b)].
Let S = (*!,..., j m ) . There exist xt e [T,N] such that .$,*, G CT(N) for / =
1, . . . , m. Define S = (s1x1,..., smxm) < CT(N). Since [T, N] < N, we conclude
that G = NS = NS. Let ^ = n,m=i(i,oc,)a' = nT^sf-UT^x^ e AT n 5, where
a, G Z (note that r is abelian). Then 11,11 s°> G N n S = 1; hence ^ = 11,1! x?'
G [T, N] n 5 < [T, N] n Cr(A^) = 1. Consequently, S is a complement for JV in
G. Clearly, then, G = N X 5, as 5 < CT(N).

5.12. EXAMPLES, (a) (J. Cossey) The following example exhibits a directly
indecomposable finite group G with trivial center which possesses a non-trivial
subnormal embedding in G X G (in the sense of 3.4).
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Let G be generated by xr, x2, x3, y^, y2 according to the following defining
relations:

x\ = x\ = x\ = [xx,x3f = [x2,x3]
3 = y\ =yl = 1,

[x1 ;x2] = 1, [JCI,X3, x,.] = [x2,x3,xi] = 1 for / = 1,2,3,

[*2> yi\ = [*3> Ji] = [*i> yi\ = [x-i, y2] = [yi, y2] = !>
[x1,y1] = x1, [x2,y2] = x2.

Then \G\ = I2?,*, Z(G) = 1, and G is directly indecomposable. (If V denotes the
indecomposable faithful Z6-module over GF(3) of dimension 2 and H the
semidirect product of V with Z6, then G is the direct product of two copies of H
with amalgamated factor group Z3.)

Let G* be a copy of G with generators xf, y* that correspond to xt, yr It is
easy to check that Go= \x1,xf,x3x3*,y1,y]1} is a subnormal subgroup of
G X G* which is isomorphic to G (xx corresponds to X;, xf to x2, x3xf to x3,
yx to yv and y? to y2). Clearly, Go n G ̂  1 ^ Go n G*.

(b) Groups G with the structural properties described in 5.1(c) need not admit
non-trivial subnormal embeddings in direct products of groups isomorphic to G.

Let P = (x , y\x3 = y3 = [x, y, x] — [x, y, y] = l ) be an extraspecial group
of order 27 and exponent 3, and let z denote the automorphism of P which
inverts x (and [x, y]) and leaves y invariant. Let R be the semidirect product of
P and (z) . Then N = (x, [x, y], z) is a normal subgroup of index 3 in R.
Moreover, R acts on a cyclic group (t) of order 7 with kernel TV, and [t, y] = t.
Finally, let G be the semidirect product of (t) and R with respect to this action.
Then Z(G)— 1. Since (t) and ([x, y]) are the only minimal normal subgroups
of G, it is easy to verify that G does not allow non-trivial subnormal embeddings
in direct products of groups isomorphic to G. However, statement 5.1(c) is
satisfied with TV as above and with S = (y, t).

It remains an open question as to how those groups G can be characterized
which admit a non-trivial subnormal embedding in a direct product of groups
isomorphic to G.

We conclude this section with a result on the subnormal embeddings of a group
which does not admit a non-trivial homomorphism into its center. This will be of
use in our investigations on normally detectable groups.

5.13. PROPOSITION. Let G be a group satisfying the maximal condition on

subnormal subgroups which does not admit a non-trivial homomorphism into its

center. Let G0<<G1 X • •• X Gn, where Gj = G for j = 0,1,..., n. If N is a

minimal normal subgroup of GQ, and if i e { 1 , . . . , n }, then either Â w, = 1, or Niri

is a minimal normal subgroup of Go.
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PROOF. Suppose that AV, ¥= 1. Then, if 1 =£ M, < AV,- is a normal subgroup of
G0-nt, it follows that 1 ^ A/ = {« G JV|«w(- e M,-} is a normal subgroup of Go.
Hence JVw,- is a minimal normal subgroup of Gow,. Aiming for a contradiction, we
assume that Nirt is not a minimal normal subgroup of Go. Then Nirt £ Go.
Moreover, N n XJ"=1(G0 n Gy) = 1; for otherwise, iV < X"=1(G0 n Gy), and
hence AV, < Go n G, < Go, a contradiction.

Now [JW(. n Go, Gow,] = [AV,. Pi Go, Go] < Afy n Go. Therefore, A%,. O
G0<G07r,. Since A \ ^ Go is a minimal normal subgroup of Gow,, we conclude that
AV, n Go = 1. By 3.3(a), G0Trt/(GQ n G,) is nilpotent, say of class c. Then [AV,,
G07r,,..., Gow,] < Afa,. fi Go fi G,. = 1 (here GOTT, occurs c times). Hence A'w, is
contained in the hypercenter and, as a minimal normal subgroup, even in the
center of Goirt. Consequently, [N, Go] ^ N n X.# I . G-. Since N<nl^ 1 and
A7 Pi X ; # . G ^ G Q , A7 is contained in Z(G0). By 3.3(a) 'again, G o / X ^ ^ G Q O Gy)
is nilpotent. Moreover, N = A ^ X ^ C G Q n Gy))/( XJ= 1(Go n G,-)) <
Z(G0/X7"= 1(G0 n G^)); this holds because A7 n X J L ^ G Q n G7) = 1 and N <
Z(G0). As a nilpotent factor group of Go, G Q / X ^ ^ G Q n Gy) is finitely gener-
ated. By means of 3.2 we deduce the existence of a non-trivial homomorphism
from G o / X " . ^ G Q n Gy) into Â  < Z(G0), the desired contradiction.

6. Normally detectable groups

6.1. DEFINITION. A group G is called normally detectable if the following holds:
whenever Go is normal in Gx X • • • XGn for some positive integer n, where
Gy s G for > = 0 , 1 , . . . , n, then Go = G, for some / e { 1 , . . . , n}.

The following conjecture is due to T. O. Hawkes.

CONJECTURE. A finite group G is normally detectable if and only if
(1) G is directly indecomposable, and

It is clear that (1) and (2) are necessary for a group to be normally detectable:
for (1), the same argument as in the proof of the implication (i) => (ii) of Theorem
4.2 works. For (2), assume that there is a non-trivial homomorphism a: G -> Z(G).
Then Go = {(g, ga) | g e G} is a normal subgroup of G X G, Go = G.

We are not able either to prove or disprove Hawkes' conjecture. This section is
devoted to the proofs of several partial results. We show that if one of the
conditions (1) or (2) is somewhat strengthened, it follows that the group in
question is normally detectable (Theorems 6.2 and 6.5). Moreover, for various
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types of groups we are able to prove that Hawkes' conjecture holds (Theorem
6.9).

To obtain these results, we not only need information about the structure but
also about the type of embedding of a possible counterexample (Theorem 6.8).
Theorem 5.1 already shows that a group which is a counterexample to Hawkes'
conjecture has to admit a certain factorization. In fact, in dealing with normal
embeddings we can describe this factorization more precisely than for general
subnormal embeddings.

The following theorem collects this information. Beforehand, we mention that
in a group G with finite composition series the center Z(G) and the commutator
factor group G/G' are finite. Hence for such groups the condition (\G/G'\,
|Z(G)|) = 1 is meaningful and equivalent to the non-existence of a non-trivial
homomorphism from G into Z(G).

6.2. THEOREM. Let G be a group with finite composition series. Assume that G is
directly indecomposable and that (\G/G'\, \Z(G)\) = 1. If G is not normally
detectable, then the following hold.

(a) G = NS, N n S = 1, N<G, S<<G.
(b) N and S are not nilpotent.
(c) SG/Corec(S) is nilpotent; in particular, [N, S] < Fit(G).
(d)[JV,S]<Soc(G).
(e) [N, S] is not characteristic in G; more precisely, there exists an automorphism

a of G such that (a) = H/Mfor some H < G, M<H, which does not leave [N, S]
invariant.

PROOF. We note first that G # 1 since G is not normally detectable. The
condition (\G/G'\, \Z(G)\) = 1 then implies that G is not nilpotent. By assump-
tion, there is a non-trivial normal embedding G0<G1 X • • • XGn, where n > 2,
where Gj = G for j = 0 ,1 , . . . , n, and where Gow, * 1 for / = 1,...,«. In the
sequel we use the notation from 5.2. In particular, J1, = {//,..., //"} for every
/ > s. By 5.7 and 5.8 we may assume that there is some a, 1 < a < b, such that
&** = {//,.••, •//"} for all / > s.

Now the proof is carried out in a number of steps.
(1) For all l> s and all / / e SSf*, there exists / / e 36s such that Gj. n

(SocCG,,) n [N/, GtfTjj])^^ * 1.
[N,',Goiiji\ ^ 1 as Gji is directly indecomposable, and N,' # 1 * GQnjj. Since

[Nt,G0TTji\<N{ • GOTTJ< = Gj] (5.8 and 5.5(a)), there exists a minimal normal
subgroup N of Gy/ contained in [N,',GOITJJ]. Let / e if be such that NTTJ,J # 1.
By 5.13, NITJJJ < Gjj. Hence, according to 3.3(e), J e 36s, say J = Jj. This
proves (1).
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(2) For all / > s and all / e { 1 , . . . , a} (i.e. J/ G 98f*\ put

* ( / / ) = {// e ^ |G,, n(Soc(G7/) n[iV/,Goffj/])^/>y/ * l}

and c(//) = |«X//)|. By (1), c(//) > 1 for all / > .s and for all / G {1 , . . . , a) .
We choose t ^ s and / G ( 1 , . . . , a) such that c(//) < c(J^) for all m > s and
for all j G ( 1 , . . . , a}. Without loss of generality, we may assume that / = 1.

(3) There exists some r > s and Js
k G 98s such that

GJUI n(soc{GJi+i)

and

G,. n(Soc(G,i)

For A: = 1, . . . , J, let (a(+^) denote the following statement:

fIf fy+* n ( S o c ( % J n [^1
+t.G

!o'Oj+t])'O/+t.j ^ 1 ̂  some J

Suppose, (a , + 1 ) holds. We know that Jp ,+ 1 ] G 98**; in fact, GoiTji+i =
since GjiiTji+i = Goirji2+i = GQWji+i (Lemma 5.7). Hence

GJhi n(soc(Gy.+i) n

if and only if G,i n (Soc(G,i ) n [JVi ,+,,, Gn-n,i ])w,i ¥= 1, where
J •/[2,<+l] V ^ - J[2,,+ l] ' ' l 12,(+1]' 0 y p , + 1]J/ J(2,,+ l] '

^p,«+i] = G 4 , , + l l
 n x {G4,+ 1 ) , /l

7 G ""' 7 * •/u+2,,+,+i]}- Therefore, (« r + 1 ) im-
plies that c(Jpft+1]) < c(7/). By the minimal choice of c ( / / ) , we have equality.
This means that all / / G «"(//) begin with j}+l.

Proceeding in the same manner, we see that in presence of ( a r + 1 ) , . . . , ( a , + / )
( i s { 1 , . . . , J } ) , all / / G <€(J}) begin with Uhi>---> jhi)- I n particular, if
(a , + 1 ) , . . . , ( a , + J are fulfilled, then / G ^(J,1) if and only if / = /[

1,+ 1>,+i]. But
[A*,1, G07Tyi] < iV,1, whence [N*, GQiTji]iTjitJi (+j = 1 by definition of TV,1. How-
ever, this contradicts the definition of ^{J}). Consequently, there exists some
w G { 1 , . . . , s] for which (al+w) fails to hold. If we set r = t + w — 1, then
assertion (3) follows.

(4) Let r and Js
k G 98S be as in (3). Then

n (Soc(G,;)

Since [Nr+i>G<Fjl
r+1\ < [G>r

1
+1»

G/;7rjJ+I] <
 G/,' b y 3-3(b), it follows from (3) that

there exists a minimal normal subgroup M of G7i such that M < [TV^j, GQW Î ]
and Mitj\ y* # 1. By 5.13, Mwyi+ y* < Gyi. Now every prime divisor of
|[TVr

1+i>Go">r
1
+1]l

 1S a l s o a divisor of |G07r^+i/CoreGyl (Gow^i+i)|, and hence of
\G/G'\. Since (|G/G'|, |Z(G)|) = 1, it follows that Mm^^ <Z(G, i ) . Using the
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fact that GoiTji is subnormal in Gji of defect at most r, we conclude that
[MTTJI jk, GoiTji,..., G07rji] < [Gji, GtfTji,..., GoiTji] < GQTTJI (here GoiTj\ occurs r

times). On the other hand, this iterated commutator is contained in Gji }k.
According to 3.3(e), Gj\ n G,i+i y* J= 1 if and only if (j}+l, Js

k) G ^ + i - Hence, if
GoiTji n Gji+itJk * 1 then (J*+l, / / ) = J}+s+i (note that GOTTJI n N* = 1). But
this would lead to the contradiction Miiji jk = Mmji < N}+lmji = 1. Thus
[MiTji+iJk,G0TTji,.. .,GoiTji] = 1. But then'tM, N}]irji'^ = [ M T T ^ ^ , Nr

l] # 1,

for otherwise the minimal normal subgroup Mvji Jk of Gji = Â 1 • GQTTJI would
be central. This proves (4).

(5) Let r and Js
k G ̂  be as in (3). Then

Gji n(soc{GJ}) n [ ^ , G 0 ^ ] G ^ ' ) ^ + i ^ # l.

It follows from the Three Subgroups Lemma [4, III.1.4] that

because N) is normalized by JVr
x
+1. The assertion follows from (4).

(6) With Gj\, N), GoiTji in place of G, N, S, statements (a)-(e) of the theorem
are fulfilled.

Apart from the non-nilpotency of N*, assertions (a), (b), (c) are clear from the
considerations in Section 5. That Â 1 is not nilpotent is a simple consequence of
(\G/G'\, |Z(G)|) = 1: minimal normal subgroups of Gj\ contained in [N},G0Wji]
are central in Gj\ in case Â 1 (and hence G7i/CoreG ^GQTTJI)) is nilpotent. By (5),
[N),GQirj\\irji jk ¥= 1. If [Nr

l,GoiTji] is contained in Soc(Gyi), then 5.13 yields
Gji Pi (Soc(G7i) n [N},GtftJi\)'nj\ jk # 1, contradicting (3). The same contradic-
tion arises directly from (5) if [N*,GoiTj\] is assumed to be invariant under Gji
(or even characteristic in Gsi). This shows that (d) and (e) hold, thus completing
the proof.

Let G be a group with finite composition series. Theorem 6.2 shows that
leaving condition (2) in Hawkes' conjecture as it stands while strengthening
condition (1) in such a way that, apart from direct decompositions, factorizations
as in Theorem 6.2 are also not allowed, forces G to be normally detectable. In
Theorem 6.5 we prove that it is also possible to strengthen condition (2) in such a
way that directly indecomposable groups are then normally detectable.

To this end we introduce the following definition.

6.3. DEFINITION. Let G be a group. A factor group G of G is called essential if
either G = G, or if the following conditions are satisfied:

(1) G is not nilpotent;
(2) G is directly decomposable (in a non-trivial way);
(3) G is isomorphic to a subnormal subgroup of G.
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Theorem 6.5 will be a consequence of the following lemma, where again the
notat ion of 5.2 is used.

6.4. LEMMA. Let G be a group with finite composition series. Assume that
G0<Gi X • • • XG n , where Gj = G for j = 0,l,...,n. Assume further that there
exists some J = Jt = (jv..., j , ) e n' (/ > 2) such that the following conditions are
satisfied:

(1) Gj = N • GOITJ, where N<Gj and N n GoiTj = 1;
(2) GQITJ^GJITJ for some i e { 1 , . . . , / — 1 } , where Jt = (jv..., _/,). Then

Gowj£Gji+*j> °r (\Z(Gjirj)\, \GJTTJ/(GJTTJ)'\) * 1. Moreover, if i = I - 1, then
G0^<GJ, or (\Z(G)\, \G/G'\) * 1.

PROOF. Note that Z{GJ
<nJ) and G/w//(G/w/) ' are finite. Clearly, GjiTj<Gj JTTJ.

Using the modular law we conclude from (1) and (2) that GJWJ = (N n GJVJ) X
GQTTJ. NOW, [N O Gy 7T,, G07ry] < N n Gy.ffy. Since, for any » e J V n G/ + w/5

G07r, and (G07rj)" centrahze JV n G ^ , it follows that [iV n GJj+Vj, GQW,] <
Z{GjiTj). Thus, if GQTT, is not normal in Gy TTJ = {N C\ Gj Wj) • Gowy, there
exists some n^Nr\GJ+iTj such that 1 # [ ^ . G ^ ] c Z(GJTTJ). But then
<p: GyWy -> Z(GjiTj), defined by (mx)<p = [n, x] for w e GyW, n Af and for
JC e GoWy, is a non-trivial homomorphism. This proves the first part of the lemma.

Now let / = / — 1. We have shown that 1 =£ [H.GQTT-J] C Z(GJ_ ">) for some
K G J V , unless GOTTJ<GJ. If [w,Gofl>] c Z(G7), then wy<p is a non-trivial homomor-
phism from Gy into Z(Gj), where <p is defined as above. Hence
(|Z(G)|, |G/G'|) ¥= 1. So we may assume that there exists some y e Gy such
that [GQTT,, «, >»] =)t 1. Since Z(GJr WJ)<GJ, it follows that [GOTTJ, n, y] c
ZiGj,-?j) n G/,_, < ^(Gy,.,). Then p! G/; ^ ^ Z{GJt J, defined by ( « x ) p =
[x, n, y] for x e Gowy and for w e GJt mj O JV, is a non-trivial homomorphism;
this yields (|Z(G)|, |G/G'|) * 1 again.

6.5. THEOREM. Let G be a directly indecomposable group with finite composition
series. Assume that (|Z(G)|, |G/G'|) = 1 for all essential factor groups G of G.
Then G is normally detectable.

PROOF. By way of contradiction, we assume that G is not normally detectable.
Since (|Z(G)|, |G/G'|) = 1, G is not nilpotent. We choose J, = (jx,..., j,) as in
Theorem 5.10 and note that (a)-(g) of 5.10 are satisfied. For 1 < / < /, let
Jj = (Ji,..., jj). We now prove by induction on / (1 < / < /) that
(*) <V/, = (Gjfr n Nj) X G ^ ,

where N7/ = G^n X { G 7 / / | 7 en 7 , J =t J,}. The case / = / then yields a con-
tradiction to the assumption that GJt is directly indecomposable (note 5.10(c),
(d)). Clearly, by the modular law and by parts (a) and (b) of 5.10, GjiTj is a
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semidirect product of the normal subgroup GJmJi ^ Nj, a nd the subnormal
subgroup GQirJr Since GOITJ<GJ1TJ, (*) holds for / = 1. Let 1 < i < / and suppose
that (*) holds for / - 1. Employing 6.4, we see that either (*) holds for /, or that
(\Gj TTJ/(GJ iTjy\, \Z(Gj._Wjt)\) * 1. But the latter alternative is impossible
since, by induction hypothesis, GJf TrJt is an essential factor group of GJ._i = G.
This completes the induction argument.

In the sequel we are going to enlarge our knowledge of the type of embedding
of a possible counterexample to Hawkes' conjecture. For the proof of Theorem
6.8, which contains the relevant facts, two lemmas are needed.

General hypothesis for 6.6 and 6.7: G denotes a non-trivial directly inde-
composable group with finite composition series, where we assume that
(\G/G'\, |Z(G)|) = 1. In particular, G is not nilpotent. Let G0<G1 X • • • xGn

be a non-trivial embedding, where n > 2, where Gj = G for y = 0,1,...,/?, and
where G07r, =£ 1 for 1: = 1,. . . , n. Moreover, we use the notation from 5.2.

6.6. LEMMA. Let r be a positive integer and let Jr = (jlt..., jr) e nr. Suppose
that {/,(,)}'i=i is a (lexicographically ordered) set of l(i)-tuples, l(i) e |\|, i -
l,...,t, t e N, such that Go < X 'i=1 G7/.. For those / e {1 , . . . , / } for which
G0iT(j2 j j ) is not nilpotent, assume that there exists m(i) e M andKm(i^ e nm(i)

such that Gn7r,, , , K *= Gctnu , x= G^IT,, , K v ( / / r = 1, then

PROOF. If GOTT(72 7 /( ) is not nilpotent, then, putting 7Vr /(l) = Gj 7/ n
X { G ( a ( , ) ) i f ) ^ G 2 ' n " « " b ^ ( 0 } , we have Gj«{JrJm)/{Ghv(jnllw) n A^,.,)
= Gj?{jr,ilw.KmW-) = Go^y,,/,(0) by the assumed properties of tf^. Similarly,
GoV(jr,il{iy(Go*(jr,ilw) n ^ . / (o) = Go^(jr,im,Km0)) = Gow

(/r,//(1))-
 I I follows that

<V<y,,/,(0) H ^,,/(/) = 1 and that GjV^,^ = (Gjir^j^ n iVr,/(0) X Gov{JrJmy

This imphes that Z^Gtfr^j>7 ^ < Zx(GjTr(J 7/ ,). The same statement holds
trivially if Gj?(j i,n) is nilpotent. We conclude that Z
( x j . ^ ^ C G o ^ ^ ' n G^ < (x;.1zao(G^(/,,/|(j)))) n G7î  <

6.7. LEMMA. Le/ / ' = (_/i', 7'^,...) e ^ M /or jome / e {1 , . . . , b}. Suppose that
j = j{ =£ j} for all h G ( 1 , . . . , b }, h + i. Then the following statements hold.

(a) jj±jforalll> 1.
(b) 5(1) = 1, i.e. GomJ{ = G0*ty / ^ a// / > 1.

PROOF, (a) Suppose the assertion is false. If r > 1 is an integer such that
j ' r + l = j , then it follows from the hypothesis and from 5.4 that j'k =j'k+mr for all
positive integers k and m. Hence we may choose such an integer r with r ^ s
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(where s is the stationary level of the iterated embedding of Go; cf. 5.2(d)). Let

1 < A: < r — l b e arbitrary. If, for some / e n*, G07r(7i+2 ,/+1,/> is n o t nilpotent,

then, by 5.4, Goir^i 7 ) is not nilpotent (note that k + 2 < r + 1). Since j ' r + l = j ,

we deduce from the hypothesis that / = Ui> • • • > ./k+i) = O/+2> • • • > Jr+k+i)- L e t

a denote the /--cycle (1, . . . , / • ) in the symmetric group Sr. Then.5.5(c) yields

GrflTt ;' ,' r ,' ^ = GnTf J'-* + l ;' \ = GnTTji, GnTT/ii :i r\ = GnUi jink ;i •*

O (A + 2 A + L ' ^ r + J + 2) U (•'/•"l .A + 2) U •'/•' U Uk-Hf-'Jr+l'') U ( ' r ' >7* + l)

= % a n d Go^oi+1 >;+1,/.>;+t+2) =
 Go^a*,;i+1,, i+2) = Go">;- Hence Lemma

6.6 is applicable. We conclude that
(*) Z^Gj^J < Zx(G4Vj.J foralll<fc<r.
Moreover, a similar argument as above shows that if {j1,,..., j ' t + u , J) G 3!u+r+l,
where t > 1, u > r - 1, and / e nr, then / = (j,'+u+1,..., j!+u+r) and
Goffo;,...,,;+„) = Gow

(y; j>,+r-i) = ^ y (5.5(c)). In particular, Jj+1 G ̂ *+ 1 . It fol-
lows from 5.5(a) that Gr+ is a semidirect product of N'+ Y and GQTTJ, .

We now aim to apply Lemma 6.4. Clearly, G0Vji+i<Gj^+i. Let 1 < k < r. If

(lG/i7r/;+1/(G/i'7/;+1)'l' lz(G4'r//+1)l) ^ 1> t n e n ' by means of (*) and the fact that
the prime divisors of \Zx{GjiiTj, )| and those of \Z(Grirr+ )| coincide, there
exists a non-trivial homomorphism <p from GJt into Z(G/,w/,+ ). Now,
[G4<p,G//+J < Z(G4irjUi) n G^ < Z(G4). Hence, if [Gy,<p, g] # 1 for some g e
Gj, , then p: Gy/(j) -» Z{Gj*), defined by yp = [y, g] for all y e Gy,<p, is a
non-trivial homomorphism, contradicting (|G/G'|, |Z(G)|) = 1. Therefore, Ĝ <p
< Z{GJt+ ). But this leads to the same contradiction. Consequently,
{\GjijTjiry{GjjTTjiri)'\, |Z(G y ^ + i ) | ) = 1 for all 1 < k < r. So we apply Lemma
6.4 to deduce that Gnir,, <G,. . Thus G,, = TV.' , X Gnw,, . Since the embed-
ding of Go in Gx X • • • X Gn is non-trivial, this contradicts the hypothesis that G
is directly indecomposable.

(b) Let / > 1 be arbitrary and set TVU = G,, O X (G o , 7 ) | / e n'^1, / ^ ^2,/]}-
By hypothesis, Goir^/(GoiTj, (~) Gy;) = Goir is nilpotent, where # = E{w(y, / ) |
/ G n'~1, J * / ^ / j j . I t follows from 3.3(e) that Go n TVX, = 1. This implies that
GOT^J n TVt / is central in Gy;. If this group is non-trivial, then there exists a
non-trivial homomorphism from the nilpotent group GOW^GOTT,, n G7//) into
((GO77,, n TVU) X (GoirA n Gjj))/(GovA n G^) s GoW/, n TVij < Z(Gyi) (Lemma
3.2). This contradicts (|G/G'|, |Z(G)|) = 1. Consequently, GoirA n TVlj7 = 1, i.e.

6.8. T H E O R E M . Z^/ G be a group with finite composition series. Assume that G is

directly indecomposable and that ( |G /G ' | , |Z(G) | ) = 1. If G is not normally

detectable, and if G0<G1 X • • • X Gn {where n > 2, Gj = G for j' = 0 , 1 , . . . , « ,

and Gowt ¥= 1 for i = 1 , . . . , n) is a non-trivial embedding, then the following hold.

(a) The stationary level s of the iterated embedding is at least 3.

(b) The branching number b of the iterated embedding is at least n + 1. In

particular, b > 3.
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(c) If b = 3, then, up to interchanging the indices 1 and 2, there is only one
possible embedding. This is of the following type: 38 x = { Z 1 , / 2 , / 3 } , where
J1 = (1,1,1,1,...). J1 = (1,2,1,1,...), and P = (2,1,1,1,...). Moreover, in
this case s{\) > 2, s(2) = 2, sQ) = 1 and 38£* = {J1}; in fact, 3&£ = {j£} for
all k > s.

PROOF, (a) Using 5.8, we choose Js' e 38f. Then, by 5.5(a), Gr is a semidirect
product of NJ and GQirji. Since the embedding is non-trivial, both factors are
distinct from 1. The hypothesis that G is directly indecomposable yields s > 1.
Moreover, s = 2 is impossible by the last statement of Lemma 6.4.

(b) Clearly, b > n. By 3.3(e), (f), G07r, * 1 if and only if GOTT, ^ Fit(G,). Hence,
if b = n, we may assumes that J{ = (/) for / = 1 , . . . , n. It follows from 6.7 that
*(/) = 1 for all /, i.e. that s = \. This contradicts part (a). Thus b > n + 1 > 3.

(c) If fc = 3, then « = 2 by part (b). By using 5.4 and 6.7, it is easy to see that,
up to interchanging the indices 1 and 2, Jl,J2,J3 e 36'x have to be of the form
given above. By 6.7, s(3) = 1. Hence G0ir2 = G0ir(2j}) i°T all / > 1. We conclude
that CPJWJJ = GliT(i2jiy This implies that GQv12 = G0TT^12J}) for all / > 1, i.e. that
^(2) < 2. If J ( 2 ) = 1, then G ^ = G0irn<G1vl2 = G0w2, and, as s(3) = 1, G0TT2 =
G0ir21<G2iT2l = Gow1; i.e. GgTrj s Gow2 s GOTT21. But this leads to a non-trivial
decomposition G2 = (G2 n G22) X G0w2, which is a contradiction. Hence J ( 2 ) = 2.
Then j ( l ) > 2 by part (a).

By 5.4, GoiTj2 and GQiTji are isomorphic to subnormal subgroups of GoiTji.
Therefore, J\ e 38% for all k > s, according to 5.8. If j£ G 38* for some
/ G {2,3}, and if /t > j , then, by definition of 38%, Gtft^ = G07ryi. Since i(2) = 2
and 5(3) = 1, it follows that GQIT12 = GoiTj\ (in case i = 2), or that G07r2 = GOTTJI

(in case / = 3). In the first case, let N = G12n X ( G ( 1 2 / ) | / e if, / * J}}.
Then G12/^V = G0-nji = Gow12, and G07T12/(G0IT12 n TV) = Gow(1 ̂ ^ i , = G0w12. It
follows that G12 is a semidirect product of TV and G0w12. The last statement of
Lemma 6.4 now leads to a contradiction. The case Gow2 s GOTTJI is even easier
and leads in a similar way to a non-trivial direct decomposition of G2.

We have been unable to decide whether the situation in 6.8(c) can actually
occur.

6.9. THEOREM. Let G be a group with finite composition series. Assumes that G is
directly indecomposable and that (|G/G'|, |Z(G)|) = 1. Then G is normally detec-
table, provided that one of the following conditions is satisfied.

(1) / / a e Aut(G) is such that (a) = H/M for some H < G, M<H, then a
preserves the conjugacy classes in G.

(2) G possesses a unique maximal normal subgroup.
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(3) Soc(G) is a direct product of at most two minimal normal subgroups of G or of
three minimal normal subgroups of G which are not all elementary abelian of the
same order.

(4) Fit(G) < Soc{G).
(5) G is finite and, for every prime divisor p of \G/G'\, the Sylow p-subgroups of

G are abelian.

PROOF. (1) and (2) follow immediately from 6.2(e) and (a), respectively, and
6.2(c) and (d) imply (4). We note in passing that for case (1) a direct argument
along the lines of the proof of Theorem 4.2 is also possible. This is because
condition (1) implies that Go is normal in X y e ^ Gj for every / e RJ.

From Theorem 6.8(b) we see that the first condition in (3) forces G to be
normally detectable. Moreover, if G is not normally detectable, and if Soc(G) is a
direct product of three minimal normal subgroups of G, then we are in the
situation of Theorem 6.8(c). It follows that Go n G2, Go n Gn, and Go n Gu

each contain exactly one minimal normal subgroup of Go. It is a straightforward
matter to show that the minimal normal subgroup of Go contained in Go n G2

(G0C\ G12) coincides with the minimal normal subgroup of G2 (GJ contained in
G2 n G211 (Gx n G12). This implies that all minimal normal subgroups of G are
isomorphic. Since at least one of them is abelian (Theorem 6.2(d)), we have the
situation which is excluded in (3).

Finally, because G is not nilpotent or G = 1, (5) follows immediately from
5.11.

7. Concluding remarks

A. Characteristic embeddings
The method of iterated embeddings works smoothly for transitive relations

such as subnormality. So it is no surprise that this idea provides a short proof for
the following result on characteristic embeddings.

7.1. PROPOSITION. Let G be a group satisfying the minimal or maximal condition
on normal subgroups. If Go is a characteristic subgroup of Gx X • • • XGn, where
n > 2, and Gj s Gforj = 0 ,1 , . . . , « , then G - 1.

PROOF. If Go n G, = 1 for some /, then Go O Gy = 1 for all jr = 1 , . . . , n, since
the symmetric group Sn acts in a natural way on Gl X • • • X Gn. By 3.3(c), GoiTj is
centralized by every automorphism of Gy. It follows easily that G is an elementary
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abelian 2-group. But then Aut(Gx X • • • X Gn) acts transitively on the set of
non-trivial elements of G1X • • • XGn. Now any of the assumed finiteness
conditions forces G to be trivial.

So assume that Go f l G ^ l for all j . In the notation of 5.2(a), Go is embedded
as a characteristic subgroup in X y e ^ Gj, Gj s G, for any positive integer /. By
the argument given above, GQ n Gj =£ 1 for all J e n7. Hence Go contains direct
products of normal subgroups of unbounded length, which contradicts both the
minimal and maximal condition on normal subgroups.

B. Central products
The following proposition shows that Theorem 4.2 can be extended to the more

general case of central products instead of direct products, at least for groups
admitting no non-trivial central extensions.

We recall that a group G is a central product of the normal subgroups
Nx,..., Nk if G = Nx • • • Nk and [N,, Nj] = 1 for all i, j = 1 , . . . , k, i =h j .

7.2. PROPOSITION. Let G be a group without non-trivial central extensions. If G is
subnormally {normally) detectable, then the following hold: whenever Go is subnor-
mal (normal) in G1 • • • Gn, where Gj = Gforj = 0 , 1 , . . . , n, and where G1 • • • Gn

is a central product of Gx,..., Gn, then Go = G, for some i e ( 1 , . . . , n}.

P R O O F . Let Go be subnormal (normal) in G1 • • • Gn. The map
9: Gl X • • • X Gn -> Gx • • • Gn defined by (gv..., gn)<p = gx • • • gn is onto,
and ker<p < Z(GX X • • • x G J . Let G^'1 denote the full preimage of Go in
Gx X • • • x G n . By assumption, G0(p~l = K X kerqp, where K = K<p = GQ.
Clearly, Gotp~l is subnormal (normal) in G1 X ••• x G n . If G is subnormally
detectable, then K<G0<p~l<<G1 X ••• XGn implies K = Gt for some i.
Consequently, Go = Gt. Now assume that G is normally detectable and that
G0^G1 ••• Gn. If K is not normal in Gx X ••• x G n , there exists g^Gx

X • • • X Gnsuch that [K, g] # 1. For k e K define kp e kerep by [k, g] = k' • kp,
k' G K. Then p: K -> ker<p is a non-trivial homomorphism. From ker<p <
Z(G1 X • • • X Gn) we deduce the existence of a non-trivial homomorphism from
G into Z(G). But this contradicts the fact that G is normally detectable (compare
the remark at the beginning of Section 6). Hence K<GX X • • • x G n , and the
desired conclusion follows as in the case of subnormally detectable G.

C. Lie algebras, associative rings
The argument used to prove Theorem 4.2 is valid not only for groups. Instead

of finding the most general version of 4.2 in the framework of universal algebra,
we content ourselves with two important cases.
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We recall that for a (not necessarily associative) ring R the Fitting radical
Fit(.R) is defined to be the subring of R generated by all nilpotent ideals of R.
(Here and in the sequel, ideal means 2-sided ideal.)

Subideals are defined analogously to subnormal subgroups. (For associative
rings, these are just the meta-ideals of finite index in the language of Baer [2].)

7.3. THEOREM. Let L be a Lie algebra over R, where R is an associative and
commutative ring with 1. Assume that L satisfies the minimal condition on subideals.
Then the following statements are equivalent.

(i) Whenever Lo is a subideal of Ll ffi • • • ®Ln, where Lj = Lforj = 0 , 1 , . . . , « ,
then Lo = L, for some i G { 1 , . . . , « } .

(ii) L is directly indecomposable (as a direct sum of ideals), and there exists no
non-trivial homomorphism from L into a nilpotent subideal of L.

PROOF. One simply translates the proofs of Lemma 3.3(a) and Theorem 4.2 into
the language of Lie algebras.

7.4. COROLLARY. Let Lbe a Lie algebra over K, where K is a field. Assume that
L satisfies the minimal condition on subideals. Then the following statements are
equivalent.

(i) Whenever Lo is a subideal of Lx® • • • ®Ln, where Lj = Lforj = 0 , 1 , . . . , « ,
then Lo = Lt for some i e { 1 , . . . , n}.

(ii) L is directly indecomposable, and either L is perfect (i.e. L = [L, L]) or
there exists no non-trivial abelian subideal of L.

(In characteristic 0, L contains no non-trivial abelian subideals if and only if
Fit(L) = 0.)

PROOF. Because of the fact that, for char# = 0, the Fitting radical is a
nilpotent ideal which contains every nilpotent subideal of L (see Amayo, Stewart
[1, Theorem 6.2.1, Lemma 8.1.3]), the conclusion follows from 7.3.

7.5. THEOREM. Let R be an associative ring which satisfies the minimal condition
on subideals. Then the following statements are equivalent.

(i) Whenever Ro is a subideal of Rt © • • • ®Rn, where Rj = Rforj = 0 , 1 , . . . , « ,
then Ro = R, for some i e ( 1 , . . . , n } .

(ii) R is directly indecomposable, and there exists no non-trivial homomorphism
from R into Fit(R).
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PROOF. By a result of Baer [2, Corollary 5], every subring of Fit(/?) is a
subideal of R because R satisfies the minimal condition on ideals. Moreover, it
follows from [2, Proposition 8] that every nilpotent subideal of R is contained in
Fit(/?). Now the argument of 4.2 is adaptable.

Although Hawkes' conjecture on normally detectable groups (and also the
corresponding problem for Lie algebras) remains unsettled, the analogous situa-
tion in associative rings with unit can easily be handled.

7.6. PROPOSITION. Let R be an associative ring with unit. Assume that R is
indecomposable (as a direct sum of 2-sided ideals). If Ro is a 2-sided ideal in
Rx © • • • ®Rn, where Rj = R for j = 0 ,1 , . . . , n, then Ro = #, for some i e
{1 , . . . ,»} .

PROOF. If e is the unit of Ro, it is easily shown that e is a central idempotent
in R1 © • • • ®Rn. Consequently, Ro is a direct summand of Rx ffi • • • ®Rn- But
then RQ = Rt for some /' (see Lambek [5, 1.4, Proposition 12]).
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