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Abstract

We study curve-shortening flow for twisted curves in R3 (that is, curves with nowhere vanishing curvature
κ and torsion τ) and define a notion of torsion-curvature entropy. Using this functional, we show that
either the curve develops an inflection point or the eventual singularity is highly irregular (and likely
impossible). In particular, it must be a Type-II singularity which admits sequences along which τ/κ2 → ∞.
This contrasts strongly with Altschuler’s planarity theorem, which shows that τ/κ → 0 along any essential
blow-up sequence.
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1. Introduction

Curve shortening flow is the geometric flow defined by the equation

∂tγ = κN, (1.1)

where γ is a smooth immersed curve in Rn, κ is the curvature and N is the unit normal
vector. Solutions to this flow consist of a family of curves γt for t ∈ [0, ω) with γ0
(which we will often denote as γ) as the initial condition.

This flow was introduced by Gage and Hamilton in 1986 as the L2 gradient flow
for the arc length (that is, the flow which shortens curves the quickest) [5]. Their
work established short-time existence and uniqueness for the flow and showed that
if one starts with a closed convex curve in the plane, the curve shrinks to a point while
becoming asymptotically round. Put succinctly, convex curves shrink to round points.
The following year, Grayson [6] proved that any curve which is initially embedded
(that is, does not self-intersect) in R2 eventually becomes convex under the flow, and
thus converges to a round point.
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In two dimensions, curve shortening flow has two fundamental properties which
play a crucial role in its analysis. First, if a curve starts as an embedded curve, it
remains embedded and does not self-intersect until it reaches a singularity. More
generally, if one considers mean-curvature flow for co-dimension one hypersurfaces,
the flow is self-avoiding. In other words, surfaces that do not intersect at the initial
time will never intersect in the future. Second, the number of inflection points (that
is, points where the curvature changes signs) is nonincreasing under the flow. Both of
these facts can be shown by a straightforward application of the parabolic maximum
principle but fail for curve shortening flow in higher dimensions.

1.1. Singularity formation. Since curve shortening flow shrinks the length of
curves as quickly as possible in the L2 topology, a closed curve must encounter a
singularity at some time ω. For closed and embedded curves in the plane, the enclosed
area decreases linearly at the rate of −2π, so it is possible to compute this time
explicitly. The singularities are fairly well understood in two dimensions and a natural
question is to extend these results to curve shortening flow in dimensions three or
higher. To discuss this further, we first introduce some notation.

Curve shortening flow exists so long as the curvature is bounded. So to study
singularities, we consider a blow-up sequence, which is a sequence of points in
space-time (pm, tm) such that the curvature at (pm, tm) goes to infinity. A blow-up
sequence is said to be essential if κ2(pm, tm) ≥ ρMtm for some ρ > 0 where

Mt = sup
p∈γ
κ2(p, t).

One can divide the singularities of curve shortening flow into two broad classes:
Type I and Type II. A singularity is said to be Type I if

lim sup
t→ω

Mt · (ω − t)

is bounded and Type II otherwise. Type-I singularities are global singularities, in that
the entire curve shrinks to a point while converging in C∞ to a homothetic (that
is, self-similar) shrinking curve. For closed curves in two dimensions, the possible
models for these singularities were classified by Abresch and Langer [1]. However,
Type-II singularities are local in that the curvature goes to infinity in a small region
while possibly remaining bounded elsewhere. Such singularities appear as kinks in the
curve. In particular, they admit an essential blow-up sequence which (after rescaling)
converges in C∞ to the Grim Reaper curve y = − log(cos x), which is a translating
soliton under the flow.

As we have mentioned, curve shortening flow behaves differently in higher
dimensions, which complicates its analysis. However, Altschuler [2] established that
under the flow, curves in three-dimensional space become asymptotically planar near
any singularity. More precisely, along any essential blow-up sequence (pm, tm), the
torsion τ satisfies

lim
m→∞

τ

κ
(pm, tm) = 0.
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FIGURE 1. An example of a twisted curve.

This result was then extended to curve shortening flow in Rn by Yan and Jiao [11].
As such, the singularity models for curve shortening flow in higher dimensions are
the same as for curve shortening flow in the plane, although we cannot rule out the
appearance of Abresch–Langer solutions (possibly covered multiple times) or Type-II
singularities even when the initial curve is embedded.

2. Twisted curves and the curvature-torsion entropy

A curve in Rn is said to be twisted if it has linearly independent derivatives up to
order n [4]. In three dimensions, this corresponds to the nowhere vanishing of the
curvature and torsion along the curve. As an archetypal example, one can consider a
curve which wraps tightly around a torus, as shown in Figure 1.

The main focus of this paper is to study curve shortening flow for twisted curves
(that is, curves that are twisted). In particular, we focus on the possible singularities
which emerge when a curve is twisted.

THEOREM 2.1. Suppose γt is a solution to curve shortening flow which is twisted up
to the time of singularity ω. Then:

(1) the singularity is Type II;
(2) there exists a sequence (pm, tm) so that tm → ω and

τ

κ2
(pm, tm)→ ∞.

Note that the sequences where τ/κ2 → ∞ cannot be essential, and may not even
be a blow-up sequence at all. To establish this fact, we find a quantity that is (nearly)
increasing under the flow. In particular, we will study the following entropy functional,
whose behaviour is well controlled under the flow.

DEFINITION 2.2. For a twisted curve in R3, the curvature-torsion entropy is defined
to be the quantity
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∫
γ

κ log
(
τ

κ2

)
ds. (2.1)

One could extend this definition to nontwisted curves by squaring the argument of
the logarithm. However, this integral will essentially always be −∞ whenever there is
a flat point (that is, a point with τ = 0), so we will not consider this generalisation.

3. Nearly monotonic functionals

To prove the main result, we must show that the curvature-torsion entropy is nearly
nondecreasing under the flow. Before doing so, we start with a simpler proof that a
twisted curve cannot develop a Type-I singularity. This result was previously shown in
unpublished work of the author [7]. Since the proof is very short, we include it here.

THEOREM 3.1. Suppose γ is a twisted curve in R3. Under curve shortening flow, one
of the following two possibilities occurs.

(1) There exists a time t0 where γt0 has a point with vanishing curvature. Further-
more, after this time, γt has a flat point until the singular time.

(2) γt develops a Type-II singularity.

PROOF. Consider any curve γ (not necessarily twisted) which develops a Type-I
singularity at time ω. After rescaling, γt approaches an Abresch–Langer solution [1]
with finite winding number in the C∞ sense [2]. This has two consequences.

(a) All blow-up sequences are essential. In other words, for times close to the
singularity, the maximum curvature is a bounded multiple of the minimum curvature.
As a result, there exists a time t0 ∈ [0,ω) such that for all times afterward, γt has no
inflection points, which implies that torsion is defined everywhere on the curve.

(b) Since γ converges to some Abresch–Langer curve, the functional D(t) = sup κt · Lt
converges to a finite limit as the time goes to ω, where Lt is the length of the curve. In
particular, this quantity remains bounded.

Now we consider a solution γt which is twisted after t0. For the following
calculations, we parametrise γt smoothly by u ∈ [0, 2π) and suppose that the curvature
has velocity v. To establish the result, we show that for a twisted curve, the total torsion
is increasing: ∫

γt

τ ds =
∫ 2π

0
τ · v du.

To compute the evolution of this quantity, we use the evolution equations for v, κ
and τ (derived in [2, 3]):

∂tv = −κ2v;

∂tκ = ∂
2
sκ + κ

3 − κτ2; (3.1)

∂tτ = 2κ2τ + ∂s

(2τ
κ
∂sκ
)
+ ∂2

sτ.
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Using these, we find

∂t

∫
γt

τ · v du =
∫ 2π

0
(∂tτ) · v + (∂tv) · τ du

=

∫ 2π

0

(
2κ2τ + ∂s

(2τ
κ
∂sκ
)
+ ∂2

sτ
)
v − κ2vτ du

=

∫
γt

κ2τ ds +
∫
γ

∂s

(2τ
κ
∂sκ
)
+ ∂2

sτ ds

=

∫
γt

κ2τ ds.

Therefore, the L1 norm of τ is increasing and approaches a positive (possibly
infinite) limit as t goes to ω. However,

sup
p∈γt

τ(p) · Lt ≥ ||τ||1(t) > 0.

When combined with the fact that D(t) remains bounded, this implies that

lim
t→ω

sup
p∈γt

τ

κ
> 0,

which contradicts the planarity theorem. As a result, the curve must develop a Type-II
singularity. To complete the proof, we show that if a curve is twisted, it cannot become
untwisted unless a point of zero curvature appears.

PROPOSITION 3.2. Suppose we have a family of curves γt in R3 which satisfy (1.1) and
that γ0 is twisted. Furthermore, suppose that γt has no inflection points for t ∈ [0, t0].
Then for all t ∈ [0, t0], γt is also twisted.

This proposition follows from the maximum principle. Suppose that we have a point
(p, t) so that τ(p, t) = 0 and this is the first time when τ is ever nonpositive. Since both
τ and ∂sτ are zero,

∂tτ(p) = ∂2
sτ + 2(∂s log κ)(∂sτ) + 2τ(∂2

s log κ + κ2) = ∂2
sτ ≥ 0.

By the strong parabolic maximum principle, τ must remain strictly positive. �

This argument fails at inflection points, where torsion is not defined. As such, this
result shows that for a Type-I singularity to develop from a twisted curve, an inflection
point must emerge and, afterward, a flat point is created where the inflection point
occurred. It might seem curious that a single flat point will emerge as we initially
expect the torsion to switch signs twice. However, the Frenet–Serret frame bundle can
become nontrivial after the emergence of an inflection point.
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3.1. The main result. We now turn our attention to proving the main result. To
begin, we compute several more time derivatives:

∂t

∫
γt

κ ds = −
∫
γt

κτ2 ds

∂t

∫
γt

κ log κ ds =
∫
γt

(log κ + 1)(∂2
sκ + κ

3 − κτ2) − κ3 log κ ds

=

∫
γt

− (∂sκ)2

κ
− (κ log κ)τ2 + κ3 − κτ2 ds (3.2)

∂t

∫
γt

κ log τ ds =
∫
γt

(∂2
sκ + κ

3 − κτ2) log τ

+
κ

τ
(2κ2τ + ∂s(2τ∂s log κ) + ∂2

sτ) − κ3 log τ ds

=

∫
γt

−κτ2 log τ + 2κ3 − 2
(∂sκ)2

κ
+ κ(∂s log τ)2 ds. (3.3)

Combining (3.2) and (3.3), we find the following evolution equation for the
curvature-torsion entropy:

∂t

∫
γt

κ log
(
τ

κ2

)
ds =

∫
γt

−κτ2 log
(
τ

κ2

)
+ κ(∂s log τ)2 + 2κτ2 ds. (3.4)

This immediately provides a second proof that twisted curves cannot develop Type-I
singularities. In particular, for a Type-I singularity, τ/κ2 goes to zero uniformly (by
Altschuler’s planarity theorem and the fact that all sequences to the singular time are
essential). As such, the curvature-torsion entropy must go to negative infinity for a
Type-I singularity. However, once sup log(τ/κ2) < 2, the curvature-torsion entropy is
increasing.

Furthermore, we can also show that log(τ/κ2) blows up along some sequence.
Suppose that there is a uniform bound

log
(
τ

κ2

)
< C1.

Then (2.1) must go to negative infinity as t goes to ω. To see this, consider the region
S ⊂ γt where log(τ/κ2) > 0. On this set,∫

S
κ log

(
τ

κ2

)
ds ≤ C1

∫
S
κ ds ≤ C1

∫
γ0

κ ds,

(since the total curvature is decreasing). As such, the positive part of the integral is
bounded from above. However, γt has a region that converges to a Grim Reaper curve,
whose curvature-torsion entropy is −∞.

To reach a contradiction, we can estimate the left-hand side of (3.4) by

∂t

∫
γt

κ log
(
τ

κ2

)
ds ≥

∫
γt

−(C1 − 2)κτ2 ds = (C1 − 2)∂t

∫
γt

κ ds.
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Since the total curvature decreases to a positive limit as t goes to ω, this shows that the
difference between the curvature-torsion entropy at the present time and the singular
time is bounded from below, and so cannot go to negative infinity.

3.2. Points with large torsion and curvature. Theorem 2.1 shows that the potential
singularities of a twisted curve are highly unusual and we suspect they cannot occur.
One strategy would be to try to find an essential sequence so that τ/κ does not go to
zero. Although we cannot show this (or even that log(τ/κ2) goes to infinity along a
blow-up sequence), we can show a weaker result in this direction.

PROPOSITION 3.3. Suppose γ is a curve in R3 which develops a twisted singularity.
Then one of the following two possibilities occurs.

(1) There exists a sequence (pn, tn) so that κ(pn, tn)→ 0.
(2) There is a sequence (pn, tn) so that both

τ and (2κ2 + 2∂2
s log κ)(ω − tn)α

tend to infinity for α < 1. Furthermore, this sequence consists of the points whose
torsion is maximised on γtn .

PROOF. If we assume that κ is bounded away from zero near the singular time, then
Theorem 2.1 shows that log(τ) must go to infinity, and thus we must show that we can
extract a sequence so that (2κ2 + 2∂2

s log κ)(ω − t)α blows up. We calculate

∂t log(τ) =
1
τ

(
2κ2τ + ∂s

(2τ
κ
∂sκ
)
+ ∂2

sτ
)

= 2κ2 + 2∂2
s log κ + 2(∂s log τ)(∂s log κ) +

∂2
sτ

τ
.

At the maximum of log(τ), the maximum principle implies that

∂s log τ = 0 and
∂2

sτ

τ
≤ 0.

At the maximum of log(τ), we find that

∂t log(τ) ≤ 2κ2 + 2∂2
s log κ.

However, for sup log(τ) to go to infinity in finite time, Hamilton’s maximum principle
shows we must be able to extract a subsequence where

2κ2 + 2∂2
s log κ

goes to infinity.
To show the stronger estimate (2κ2 + 2∂2

s log κ(pn, tn))(ω − t)α → ∞, we suppose
that this is not the case. Then, we divide up the time interval (t,ω) into sub-intervals
(ti, (ω + ti)/2) and apply the maximum principle on each sub-interval. Doing so, we
obtain the estimate
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sup
t≤tn

log τ(p, t) − sup log τ(p, t0) ≤
n∑

i=0

C2

2i(1−α) .

This estimate is uniformly bounded in n, giving a contradiction. �

A similar argument shows that we can extract sequences so that both κρτ and
((2 + ρ)κ2 + 2∂2

s log κ)(t − ω)α go to infinity for any ρ ∈ (0, 1]. However, we cannot
conclude that τ must go to infinity on such a sequence, so we do not have a geometric
application for this fact.

3.3. A related quantity. As can be seen from Theorems 2.1 and 3.1, it is possible to
control the behaviour of curve shortening flow by finding quantities that are monotone
(or nearly monotone) under the flow. There are several other quantities whose evolution
is quite simple, and it might be possible to use them to control the singularities that
emerge under the flow. For instance, the quantity

∫
γt
τ log(τ2/κ4) ds evolves as follows:

∂t

∫
γt

τ log
(
τ2

κ4

)
ds =

∫
γt

(
κ2τ log

(
τ2

κ4

)
+ τ
(
(∂s log κ2)2 − 1

2
(∂s log τ2)2

)
+ 4τ3

)
ds.

In this expression, the terms in the argument of the logarithm have been squared so
that this quantity is well defined for arbitrary space curves without assuming they are
twisted. We do not know of a direct geometric application for this quantity. However,
the fact that the evolution is so simple suggests that it may be useful for controlling the
formation of singularities.

4. A heuristic for the emergence of flat points

It remains an open question to determine the limiting behaviour for generic initial
data for spatial curve shortening flow. However, it is reasonable to expect that generic
curves converge to round points, the same as for embedded curves in the plane. There
are several cases where spatial curve shortening flow is known to converge to a round
point. For instance, if the curve is embedded on a standard sphere, we have the
following result (a proof can be found in [10]).

THEOREM 4.1. Given a curve γ0 embedded on a standard sphere S2 in R3, under curve
shortening flow, γt remains embedded on a shrinking sphere and converges to a round
point.

Note that the total torsion of a spherical curve is zero, which immediately implies
that any such curve has flat points. In fact, Sedykh’s theorem shows there are at least
four such points [9]. Furthermore, in recent work, Litzinger showed that curves whose
entropy is at most 2 converge to round points.

THEOREM 4.2 [8]. Suppose that γ is a smooth curve whose entropy

λ(γ) = sup
x0∈Rn, t0>0

(4πt0)−1/2
∫
γt

e−|x−x0 |2/4t0 dμ

satisfies λ(γ) ≤ 2. Then under curve shortening flow, γt converges to a round point.
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Apart from these results, there is another reason why we do not expect initially
twisted curves to remain twisted; the reaction terms for the curvature and torsion tend
to create points of vanishing curvature. To see this, we ignore the spatial derivative
terms in (3.1) describing the evolution of κ and τ and simply consider the system of
coupled ordinary differential equations (ODEs)

κ̇ = κ3 − κτ2, τ̇ = 2κ2τ.

This system reduces to the homogeneous equation

dκ
dτ
=

1
2

(
κ

τ
− τ
κ

)
,

whose solutions are circular arcs of the form

κ(τ) =
√

Cτ − τ2.

As such, no matter how large κ is initially, the reaction ODE tends towards a
situation where κ vanishes. The full evolution equation for the torsion also includes a
complicated term involving its derivatives and those of the curvature, so this analysis
does not constitute a complete proof. However, if the initial curve is a helix (a curve of
constant curvature and torsion), this calculation shows that the limiting configuration
is a straight line, but the limiting value of the torsion is nonzero. The limiting value of
the torsion is not the torsion of a straight line, which is undefined. Indeed, the limiting
value depends on the initial curvature and torsion of the helix.
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